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Figure 1: We investigated whether a robot can use iconic gestures to support its teaching activities, and if it helps to add
variation to these gestures. These are the gesture variations for turtle. Videos available at https://tiu.nu/hri20-gestures

ABSTRACT
To investigate whether a humanoid robot’s use of gestures improves
children’s learning of second language vocabulary, and if variation
in gestures strengthens this effect, we conducted a field study where
a total of 94 children (aged 4–6 years old) played a language learning
game with a NAO robot. The robot either used no gestures at all,
repeated the same gesture every time a target word was presented,
or produced a different gesture for each occurrence of a target
word. We found that, contrary to what the majority of existing
research suggests, the robot’s use of gestures did not result in
increased learning outcomes, compared to a robot that did not use
gestures. However, engagement between child and robot was higher
in both the repeated and varied gesture conditions, compared to the
condition without gestures. An exploratory analysis showed that
age played a role: the older children in the study learned more than
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the younger children when the robot used gestures. It is therefore
important to carefully consider the design and application of robot
gestures to support the learning process. The contribution of this
work is twofold: it is a conceptual reproduction of a previous study,
and we have taken first steps towards exploring the role of variation
in gestures. The study was preregistered, and all materials are made
publicly available.
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1 INTRODUCTION
Manual gestures [18] are an essential part of our everyday commu-
nication with other people: we produce them naturally to support
our thinking process, and use them to avoidmiscommunication [14].
Specifically iconic gestures — a subset of gestures where the move-
ments are meaningfully linked to the concept that is referred to [27]
— are known to be a valuable support mechanism in education, re-
sulting in improved learning outcomes and higher levels of engage-
ment from the student with the educational process [17, 41, 48]. The
present work focuses on the domain of second language (L2) learn-
ing, where gestures have been shown to contribute to increased
vocabulary acquisition [12, 23, 40]. They enable “grounding” of new
knowledge in existing sensorimotor experiences [4]. For example,
when teaching students about the word ball in a second language,
by accompanying this unknown word with an iconic gesture depict-
ing the underlying concept of a ball (e.g., by molding its shape or by
bouncing an imaginary ball) we provide additional scaffolding to
create a link between the new form (the L2 word) and the learner’s
existing knowledge of its corresponding meaning.

With an increasing research interest into using robots in contexts
where they are expected to interact socially with humans, such as
education [5] and specifically second language learning [16, 42], a
number of groups have started exploring whether gestures result
in similar positive effects when they are being performed by a
robot instead of a human. A survey comparing robots to virtual
agents indicates the robot’s ability to move and perform gestures
in the physical world to be one of its key advantages over screen-
based alternatives [22]. Observed effects of a robot’s use of gestures
include increased memorization of story details by the listener [7,
15], better human-robot collaborative task performance [6], and
higher levels of engagement with the robot [7, 11, 35]. Furthermore,
a robot that gestures is generally perceivedmore positively [1, 2, 33],
especially when its motions are exaggerated and cartoon-like [11].

However, applications of robots that gesture in an educational
context, and specifically in (second) language learning, remain
underresearched. One example can be found in first language learn-
ing with adults, where participants that interacted with a robot
that used iconic gestures had better learning outcomes than those
that did not receive support from the robot’s gestures [43]. We
recently conducted two studies in second language learning, both
with young children as participants, with mixed results. A first
exploration showed increased vocabulary retention over time, as
well as higher levels of engagement with the robot for children that
received additional support from the robot in the form of iconic
gestures compared to children that were not presented with ges-
tures [8]. Our second study, although similar in design, did not see
such an effect on learning outcomes [47]. The two studies differed
in their duration (number of sessions) and the vocabulary that was
taught. The first study consisted of only one session, and taught six
animal names while the second study was longitudinal (seven ses-
sions) and contained a larger set of more abstract target words (e.g.,
more and above), potentially leading to a lower degree of iconicity
in the gestures. In view of these conflicting findings, we set out to
test the effects of gestures in a single lesson of second language
learning with a robot, but using a more diverse set of target words.
This part of the current study is a conceptual replication [49] of

our previous work [8] as it includes two of the same experimental
conditions from the original study — one where the robot uses
iconic gestures, and one where the robot does not use any gestures
— although with different target words and several improvements
to the measurements. It is important to highlight that the design of
robot gestures in earlier studies often only relied on the intuitions
of the researchers. Here, instead of defining and designing gestures
ourselves, we looked at existing sources to see how humans depict
the words. We expected to find results that match those found in
the original study, leading to the following two hypotheses:

H1 Children will learn more target words in a second language
(H1a) and remember them better (H1b) when a robot pro-
duces iconic gestures for the target words than when the
robot does not produce such gestures.

H2 Children are more engaged when interacting with a robot
that produces iconic gestures for the target words than with
a robot that does not produce such gestures.

When we gesture, we choose which aspect of a concept to de-
scribe with our movements, and which strategy — or mode of
representation [28] — we use to depict it: do we focus on shape,
such as the roundness of a ball, or rather the act of throwing or
shooting a ball? Although people generally have default strategies,
there is still a degree of individual variation in how we produce
gestures [26, 30, 44, 45]. This variation can partly be explained by
cultural differences [19], as well as age [25, 34, 38]. Children tend
to maintain a smaller symbolic distance to the concept they are
describing, which means they will often use a larger gesture space
(body parts or the full body), while adults tend to take the “out-
sider looking in” perspective, and use only their hands to represent
objects or characters [34]. For example, when depicting a pencil
children are more likely to raise their hands above their head in a
pointy shape, representing the pencil with their entire body, com-
pared to adults who generally use their hands to display the act of
writing, or outline the shape of a pencil.

How we represent concepts in gesture might also be related to
what Piaget defined as schemata, mental representations describing
the objects and concepts we know, and any past experiences or
actions related to these objects [31]. For example, our schema of
a toothbrush could include some of its typical visual features, as
well as the act of brushing our teeth. As we develop and experience
more aspects of a particular concept, our schema of this concept
becomes more elaborate. A related framework is variation theory,
which states that the object of learning (e.g., in our case the concepts
to which we want to link L2 words) may be perceived differently
between people, where one learner might focus on different aspects
than another [24]. This theory suggests to add variation to learn-
ing examples, thus highlighting multiple features of the object of
learning. Both theories identify a certain amount of pre-existing
knowledge in the learner — which varies between individuals, and
grows with experience — to which new features can be added [13].
This, combined with the fact that we use different strategies for
producing gestures, raises the question whether we also have dif-
ferent preferences and skills when it comes to understanding and
integrating gestures.

There appears to be no existing research that looked into possible
benefits of using variation in gestures to support learning. However,



there have been studies in the context of second language learning
where variations were introduced in the number of different speak-
ers [3], reporting better learning outcomes compared to the use of
a single speaker. Another study varied the images that were used
to support second language learning [36]. Contrary to what was
found with variations in speech, this had an adverse effect on the
number of newly acquired vocabulary items compared to repeating
the same image. The researchers suggest that this may have been
caused by shifting the focus from the form (the L2 word and how it
is pronounced — the new knowledge that is being taught) to the
existing meaning assigned to it by the learner (represented by the
image). In the present study we have kept both speech and support-
ing imagery constant throughout the interaction, while variation
is added to the additional gesture modality.

Based on the aforementioned theories, we hypothesize that vari-
ation in the robot’s gestures results in a greater chance that the
gestures align with existing salient features of the underlying con-
cept that are already part of the learner’s schemata. Furthermore,
by presenting several different features the learner might create a
stronger link between the word and the underlying concept, rather
than merely linking words to specific stimuli. Existing research
also indicates that children are more engaged when interacting
with robots that show less repetitive behavior [39]. We therefore
hypothesize:

H3 Children will learn more target words in a second language
(H3a) and remember them better (H3b) when a robot pro-
duces a different iconic gesture every time a particular target
word is presented than when the robot produces the same
iconic gesture every time a target word is presented.

H4 Children are more engaged when interacting with a robot
that produces a different iconic gesture every time a particu-
lar target word is presented than with a robot that produces
the same iconic gesture every time a target word is presented.

Because the ability to interpret gestures grows with age [29, 37],
we also explore whether differences in age within our participant
group have affected their learning outcomes or engagement. The
present study adds to existing research in the field of human-robot
interaction and gesture studies by verifying whether the previously
observed positive effects of gestures persist when the concepts that
are taught are more diverse. Furthermore, we investigate whether
the previously unresearched addition of variation in a robot’s reper-
toire of gestures further increases these effects. We also propose
several improvements to the process of measuring learning out-
comes and engagement, with the goal of improving the reliability of
our findings. Our hypotheses and planned statistical analyses were
preregistered1, and all of the source code and materials needed to
replicate this study are made publicly available2.

2 DESIGN OF THE INTERACTION
We used the one-on-one tutoring interaction from our previous
study [8], in which a child and a SoftBank Robotics NAO robot
together played a simplified version of the game I spy with my little
eye, which is described in more detail below. Two minor changes
were made to the original source code. First, the target words were

1https://aspredicted.org/wj24k.pdf
2https://github.com/l2tor/animalexperiment/tree/variation

changed to include a more diverse set of objects: bridge, horse, pen-
cil, spoon, stairs, and turtle. Second, we implemented the additional
experimental condition in which the robot used a different gesture
every time a target word was presented. The five available gestures
for each concept were randomized for each participant, so that
no order effects could occur. We now briefly explain the process
of designing and validating the gestures, and the workings of the
educational game that was used.

2.1 Gestures
In order to ensure that only gestures that participants were likely
to recognize were used, all of the robot’s depictions were based
on an existing dataset of recordings from humans producing silent
gestures in the context of a game of charades with a robot [9]. We
based our choice of target words on the availability of varied exam-
ples within this dataset, while ensuring that they covered a diverse
range of categories (e.g., tools, static objects, animate objects). We
also took into account the age of acquisition [21] for the words,
so that the children in our study should know them in their first
language. Although the dataset includes three-dimensional Kinect
recordings, directly mapping those onto the NAO robot resulted in
noisy and unclear gestures. We therefore recreated them by defin-
ing keyframes using the Choregraphe software that is distributed
with the NAO robot [32], while staying true to the recorded ges-
tures as much as possible. This is a common workflow for creating
robot motion that was also used in the original study [8], but now
based on examples of people performing the gestures rather than
the researchers’ frame of reference. Out of the 30 gestures that were
implemented, 16 were based on recordings from male performers
and 14 from females. Nineteen gestures were recorded from pri-
mary school-aged children (6–12 years old), another 10 by adults
(20–62 years old), and 1 by a teenager (15 years old).

After recreating the gestures, we video recorded the robot as it
performed them and evaluated their clarity by means of an online
questionnaire. A total of 19 participants (10 male and 9 female,
Maдe = 38 years, SD = 15 years) was recruited through convenience
sampling. They were shown a video of a gesture and were asked
to select the matching concept out of all six included in the study,
to investigate whether the gestures were unique enough within
the set of six target words. Out of the 30 gestures, 8 scored poorly
(< 60% accuracy), 9 scored moderately (60–70%), and 13 scored
strongly (> 70%). Based on these findings and additional qualitative
feedback, 14 of the gestures were revised to more closely match
the human-performed examples from the dataset. Figure 1 shows
the five variations for the target word turtle. For the experimental
conditionwhere the robot did not vary its gestures, we implemented
the example that scored highest in the questionnaire (the middle
image in Figure 1 for turtle).

2.2 Language Learning Game
To train the six target words in the L2 (English), the child and the
robot engaged in a simplified version of the game I spy with my
little eye. The set-up of the experiment included the robot, and a
tablet on which the child was able to select answers (see Figure 2).
During the training the child sat at a table on which the tablet was
placed at a slightly tilted angle. The robot was standing opposite



Figure 2: The set-up of the experiment at one of the schools.

the child and was put in breathing mode, meaning that it moved its
head and arms around slightly and shifted its weight between its
legs in order to appear more lifelike.

The robot started by greeting the child with his/her name and
then explaining the game, after which the child was asked to in-
dicate whether he or she understood the instructions by touching
either a green or red smiley face on the tablet. If the child did not
understand the concept of the game, a researcher stepped in to pro-
vide further explanation. The game then started with two practice
rounds, which were always for the target word horse — one in the
first language, or L1, Dutch and one in the L2, English — followed
by 30 rounds of the game. Each round started with the robot calling
out a target word: “Ik zie ik zie wat jij niet ziet, en het is een... horse”
(“I spy with my little eye a... horse”). Three images then appeared
on the tablet screen: the correct answer, along with two randomly
chosen distractor images (Figure 3). Three images were shown to
ensure that the difficulty level while children were still learning
was lower than during the post-tests (with six images). The robot
provided feedback in response to the child’s answer, in which the
L2 target word was mentioned again but without any gestures. If
the child selected the wrong image, a “repair round” took place
where the robot spied the same word once more, but now only
the correct image and one distractor image — the previously given
answer — were shown.

During the 30 rounds, each of the six target words was presented
five times in total, but their order was randomized. In the experimen-
tal condition with repeated gestures, the same gesture was used for
all five times each target word was presented. In the condition with
variation in gestures, the target word in every round was accom-
panied by a different gesture for that word, but for repair rounds

Figure 3: Children provided answers on a tablet screen.

the same gesture from the main round was used. The condition
without gestures was identical to the others, but no gestures were
used at all. After finishing all 30 rounds, the robot said goodbye
to the child. The researcher had a control panel where the child’s
name was entered, which was used by the robot to personalize the
introduction. After pressing a Start button, the robot operated fully
autonomously, but the interaction could be paused at any time by
the researcher if a break was needed. Autonomous behavior was
possible by minimizing the complexity of the interactions — the
robot did not “listen” to the child, answers to its questions were
given through the tablet device.

3 METHODOLOGY
In order to investigate whether the robot’s use of iconic gestures
resulted in increased learning outcomes and higher levels of learner
engagement compared to a robot that does not use such gestures,
and to see whether variation in gestures increases learning out-
comes and engagement more than repeating the same gesture, we
conducted an experiment with the following three experimental
conditions: (1) No gestures, where no iconic gestures were included
at all; (2) Repeated gestures, where the robot used the same gesture
every time a target word came up in the game; (3) Varied gestures,
where the robot used five different gestures — a new one for every
time a target word came up in the game. Other than these differ-
ences in the robot’s use of gestures, the experimental conditions
were identical, and all children engaged in the same previously
described language learning game.

3.1 Participants
A total number of 116 children, recruited from two different pri-
mary schools in the Netherlands participated in the study. However,
22 participants had to be excluded due to technical or procedural
issues (N = 12), bilingualism (N = 3), English pre-test scores that
were too high (more than four out of six correct, N = 3), and
missing results due to drop-out (N = 4). As a result, the data of
94 children were included in our analyses. The participants were
pseudo-randomly assigned to one of the three conditions with a bal-
anced distribution of age and gender (see Table 1 for demographic
information). The study was approved by the research ethics com-
mittee of Tilburg University. Informed consent was given by the
parents of the children prior to their participation.

3.2 Pre-Test and Post-Tests
Children’s vocabulary knowledge was measured at different times
by means of a test, where images for all six target words were
presented on a laptop screen (Figure 4). A voice recording then

Table 1: Demographic Information of Study Participants

Experimental condition N Age (Y;M) ±SD(M) Boys/girls

No gestures 33 5;3 ±9 51% / 49%
Repeated gestures 32 5;2 ±9 56% / 44%
Varied gestures 29 5;4 ±8 41% / 59%

Total 94 5;3 ±9 50% / 50%



asked the child to identify the matching image for a particular target
word: “Waar zie je een... [word]?” (“Where do you see a... [word]?”).
To reduce bias due to random guessing, in the L2 version each target
word was tested three times, yielding a total of 18 test items. To
ensure that the test also measured generalizable knowledge, such
that the L2 words were not simply linked to the images as they
came up in the training session with the robot but rather to the
underlying concepts, each of the three times a different image was
used: either the same image from training, a photorealistic version,
or a line drawing. A target word was scored as correct if the child
managed to identify it correctly in at least two out of the three
rounds, resulting in a final score of 0–6. In the L1 version of the test
each target word was tested only once to save time, and because
we assumed that children already knew all of the words in their
first language.

3.3 Procedure
3.3.1 Group Introduction. Based on our previous experience work-
ing with children and robots, as well as reports from other stud-
ies [10, 46], we organized a group introduction to help the children
feel at ease with the robot. This was done for entire classrooms at
the same time, with the teacher also present. In this session the
researchers introduced the robot and demonstrated some of its
features. Children were then allowed to shake hands with the robot
and put it to bed. The introduction took approximately 15 minutes.

3.3.2 Pre-Test. To measure the pre-existing knowledge of the tar-
get words in the L1 and L2, each child was retrieved from the
classroom and was asked to complete the test on the laptop, as pre-
viously described in Section 3.2. The pre-tests were planned on the
same day as the group introduction or shortly thereafter, without
the robot present. The tests took approximately 10 minutes and
included additional questions related to the children’s perception
of the robot which are not further analysed here (and were not part
of the preregistered analyses).

3.3.3 Training and Immediate Post-Test. The actual training session
was scheduled at least one day after the pre-test. The child was
retrieved from the classroom and brought to the experiment room.
This session consisted of three parts. First, the child was invited to
complete a short “game” on the laptop, where each of the six target
words was introduced three times (“Look, this is a [word]. Do you
see the [word]? Click on the [word].”), while the corresponding
image was shown on the screen. This was done to familiarize the

Figure 4: “Game” used to test children’s word knowledge.

child with the target words, so that they had some prior knowledge
before practicing with the robot. The child was then invited to go
sit at the table with the tablet and robot, and play the game of I
spy with my little eye for 30 rounds as described previously. After
completing the interaction with the robot, children were asked once
more to sit down at the laptop and complete the English post-test.
The total duration of this session was 25–45 minutes, depending on
experimental condition — gestures slowed down the training — and
on the number of repair rounds needed. The researcher was always
present during the session, although he or she was instructed to
act busy to avoid having the child turn to them for task-related
feedback.

3.3.4 Delayed Post-Test. Between one and two weeks after the
training session with the robot, each child was retrieved from the
classroom once more for a delayed post-test. This test was identical
to the immediate post-test administered after the child’s interaction
with the robot, and lasted approximately three minutes.

3.4 Analyses
In line with the preregistration and with the original study, we
have conducted a series of ANOVAs with difference scores between
the post-tests and pre-test. However, after submitting the prereg-
istration we realized that a single mixed ANOVA would be more
optimal, since it reduces the risk of type I errors by minimizing the
amount of statistical analyses required. For consistency, we present
the results of both analyses. Engagement was annotated by extract-
ing two video clips from each child’s interaction with the robot,
one from the 4th and one from the 24th round of training. Each clip
lasted two minutes and was annotated for two different measures
of engagement: task engagement and social engagement with the
robot. The ratings were based on a coding scheme that was recently
developed3, which resulted in a score for each type of engagement
on a nine-point scale (1–9). Note that engagement is considered as
a measure of how actively the child was involved with the robot or
the task, not whether this was positive (constructive) or negative
(destructive) involvement. The Pearson correlation between task
and robot engagement was .60 (p < .001).

In comparison to our previous analysis of engagement [8] we
aimed to improve robustness by increasing the length of each clip
(twominutes rather than five seconds), by rating engagement across
two distinct dimensions rather than a single all-encompassing mea-
surement, and by using coding schemes upon which to base these
ratings. Instead of distributing an online questionnaire, the ratings
were now performed by one of the researchers. To test the reliability
of our measures, 50 video clips (taken from 25 different sessions)
were annotated by a second rater who did not participate in the
original data collection and was not familiar with the specifics of
the experimental conditions. The intraclass correlation (ICC) es-
timates and their 95% confidence intervals were calculated using
SPSS version 24 based on a single rater, consistency, two-way ran-
dom effects model. This resulted in a 95% CI of [.45, .78] for task
engagement (considered poor–good, cf. [20]), and a 95% CI of [.55,
.83] for robot engagement (moderate–good). Based on this ICC we
proceeded with the ratings of a single rater in our analyses.

3https://github.com/l2tor/codingscheme



4 RESULTS
4.1 Preregistered Analyses
4.1.1 Learning Outcomes. Figure 5 shows the mean scores on the
three tests per condition, indicating a similar increase in vocabulary
knowledge over time between conditions. A 3 (experimental condi-
tion) × 3 (test time) mixed ANOVA was used to evaluate children’s
learning outcomes, with scores on the test tasks (0–6) as dependent
variable, experimental condition as between-subjects independent
variable, and time (pre-test, immediate post-test, and delayed post-
test) as within-subjects independent variable. The analysis showed
a significant effect of time, F (2, 182) = 45.70,p < .001,η2p = .33, in-
dicating that children learned L2 vocabulary from their interactions
with the robot regardless of condition. Pairwise comparisons using
Bonferroni correction show a significant difference between the
immediate post-test and the pre-test,Mdif = 1.10,p < .001, and be-
tween the delayed post-test and the pre-test,Mdif = 1.41,p < .001.
However, there was no significant difference between the delayed
post-test and the immediate post-test,Mdif = 0.30,p = .09. There
was no main effect of condition, F (2, 91) = 0.38,p = .68, and no
significant interaction between experimental condition and time,
F (4, 182) = 1.58,p = .18, indicating that the robot’s use of gestures
— either repeated or varied — did not affect learning outcomes4.

4.1.2 Engagement. Figure 6 visualizes task engagement (left) and
social engagement with the robot (right), measured at rounds 4 and
24. A clear drop between rounds 4 and 24 can be observed for both
types of engagement. Although task engagement levels are similar
between conditions, children in the experimental condition without
gestures are less engaged with the robot than those in both gesture
conditions. To evaluate whether the robot’s use of gestures affected
children’s engagement, we conducted a 3 (experimental condition)
4For consistency with the preregistration and the analyses in the original study, we
also performed a combination of t-tests and separate ANOVAs on difference scores.
The results are identical to the mixed ANOVA approach (a significant effect of time
but not condition), with the exception of the difference between the delayed post-test
and immediate post-test scores, which now also reached significance.

Figure 5: Mean test scores as a function of experimental con-
dition (** p < .001). Chance level (horizontal line) was 0.44.

× 2 (time) mixed MANOVA with the task and robot engagement
ratings as dependent variables, time (round 4 and round 24) as
within-subjects independent variable and experimental condition
as between-subjects independent variable. This shows a significant
effect of time, Wilk’s Λ = .30, F (2, 90) = 107.76,p < .001,η2p =
.71, indicating a drop in engagement between rounds 4 and 24.
This effect was found for task engagement, F (1, 91) = 132.26,p <
.001,η2p = .59, and for robot engagement, F (1, 91) = 134.79,p <
.001,η2p = .60.

The analysis also showed a main effect of experimental condi-
tion, Wilk’s Λ = .60, F (4, 180) = 13.20,p < .001,η2p = .23, indi-
cating differences in average engagement throughout the interac-
tion. This difference was only significant for robot engagement,
F (2, 91) = 25.9,p < .001,η2p = .36, and not for task engagement,
F (2, 91) = 1.88,p = .16. A post-hoc analysis using Bonferroni cor-
rection showed that average robot engagement was significantly
higher in the repeated gestures condition (Mdif = 1.82,p < .001),
as well as in the varied gestures condition (Mdif = 1.93,p < .001),
compared to the conditionwithout gestures. The difference between
the varied and repeated gesture conditions was not significant
(Mdif = 0.06,p = 1.0). The interaction between time and condi-
tion was not significant, Wilk’s Λ = .90, F (4, 180) = 2.32,p = .06,
showing no effect of the robot’s use of gestures on the change in
engagement over time.

4.2 Exploratory Analysis of Age
Existing literature indicates that our ability to recognize and un-
derstand gestures grows with age [29, 37]. Additionally, we intu-
itively observed variations in how children of different ages in-
teracted with the robot. Figure 7 shows a linear fit to children’s
difference scores on the immediate (left) and delayed (right) post-
tests, indicating that age affected children’s performance, espe-
cially in both experimental conditions where the robot used ges-
tures. We ran the same mixed ANOVA with test scores as depen-
dent variable, and time and condition as independent variables,
now adding children’s age in months at the time of the experi-
ment as a covariate. This showed a significant main effect of age,
F (1, 90) = 19.30,p < .001,η2p = .18. The interaction between age
and time was also significant, F (2, 180) = 10.59,p < .001,η2p = .11,
indicating that older children that participated in the study learned
significantly more from the interaction than younger children. To
further explore whether this effect of age was influenced by the
robot’s use of gestures, we split our data by experimental condi-
tion and ran the same analysis. This showed a significant interac-
tion effect of age and time within the repeated gestures condition,
F (2, 60) = 7.83,p = .001,η2p = .21, and within the varied gestures
condition, F (2, 54) = 7.87,p = .001,η2p = .23, but not within the
condition without gestures, F (2, 62) = 0.74,p = .48.

To investigate whether age also influenced children’s levels of
engagement, we ran the previously described mixed MANOVA
with both measures of engagement as dependent variables, adding
age as a covariate. This showed a main effect of age, Wilk’s Λ =
.91, F (2, 89) = 4.41,p = .02,η2p = .09. This effect was only signifi-
cant for task engagement, F (1, 90) = 5.29,p = .02,η2p = .06, where



Figure 6: Task (left) and robot (right) engagement ratings for rounds 4 and 24, by condition (** p < .001).

the older children in the experiment showed higher task engage-
ment than the younger children. There was no main effect for robot
engagement, F (1, 90) = .002,p = .97, and no significant interaction
effect between age and time, Wilk’sΛ = .97, F (2, 89) = 1.18,p = .31.

5 DISCUSSION
This paper describes a study that investigated the potential bene-
fits of a robot’s use of gestures in second language tutoring. We
compared between a robot that repeated the same gesture for each
concept, one that varied its gesture repertoire, and one that did
not use gestures at all, and we measured how this affected chil-
dren’s learning outcomes and engagement with the task and with
the robot. The contribution of this work is twofold. First, it is a
conceptual replication of a previous study [8] with a shift towards
a more diverse set of target words. Our goal was to verify whether
our previous findings persist, especially in light of conflicting find-
ings regarding robot-performed gestures in other studies (e.g., [47]).
Several steps have been taken to improve the reliability and re-
producibility of the study. These include various changes to the
measures such as testing each target word multiple times, and the
use of a coding scheme for rating children’s engagement. Second,
despite the assumed importance of variation for educational pur-
poses [24, 31] we did not find any existing research in this direction.
Therefore we added an experimental condition where the robot
introduced variation by performing different gestures for each con-
cept. Our results show that a single tutoring session with the robot
helped children acquire new L2 vocabulary, and retain this knowl-
edge over time. Children on average learned 1.10 new words on the
immediate post-test, and 1.41 on the delayed post-test — similar
results to those in the original study [8]. This may not seem like a
substantial increase, however these were young children and the re-
sults were obtained after a single training session of approximately
15 minutes. Other word learning studies with robots have shown
similar results [5, 42].

Contrary to the original study we did not find support for our
first hypothesis that children would learn and remember more
words when the robot used gestures than when the robot did not
use gestures. This could be caused by the fact that we introduced

more diverse and potentially more complex target words in the
current work compared to the animal names in the original study,
with perhaps less iconic gestures as a result. Because the overall
number of words learned is similar across both studies, we can
assume that the English words themselves were not necessarily
more difficult to learn. The difference therefore appears to be in the
gestures, where children found it harder to understand the gestures
in the current study. It would be interesting to further investigate
which exact characteristics of the gestures are responsible for these
difficulties with their interpretation.

Older children in our study did appear to understand and benefit
from the robot’s gestures, while younger children did not. Although
literature indicates that children learn how to make sense of iconic
gestures at a slightly younger age than the age of participants in
our study [29, 37], the ability to interpret gestures could be reduced
when the interaction involves a robot instead of a human, and when
it is mediated by a tablet device. The robot’s gestures appear to have
a detrimental effect when they are not understood, which may have
been caused by distraction, confusion, and the additional cognitive
load from attempts to observe and make sense of these gestures.
These findings underline the importance of properly designing the
robot’s gestures. Previous research often included gestures that
were designed by the researchers, but in this work we based the
design on a dataset with recordings of mostly children performing
gestures [9]. The clarity of the robot’s gestures was evaluated with
19 judges, and the consistency of the ratings showed that this sample
size was sufficient. However, the process of designing gestures
could be further improved in two ways. First, it would be better to
evaluate the gestures with children from the same age group that
participated in our study instead of adults. However, we believe
that a task to judge the meaning of gestures is difficult for children
this young, so this should perhaps be done in the form of a guessing
game. Second, based on the ratings we made several improvements
to the gestures, but these were not evaluated. We are confident that
these changes resulted in better gestures since they now align more
with the original human-performed examples, but in future work
we would take a more iterative approach and conduct multiple
evaluations.



Figure 7: Linear fit to the difference scores on the immediate (left) and delayed (right) post-tests compared to the pre-test per
condition, relative to children’s age.

Our second hypothesis stated that children would be more en-
gaged with a robot that produces iconic gestures, than with one that
does not produce gestures. This hypothesis finds partial support in a
higher average robot engagement, however no significant effects on
task engagement are found. These findings are consistent with lit-
erature on the effects of robot gestures on engagement [7, 8, 11, 35].
We conjecture that the main reason for higher robot engagement is
that the robot displayed more bodily movements in the gesture con-
ditions, which can cause the robot to be perceived as more friendly
and human-like [2], resulting in a higher level of engagement with
the robot as children enjoyed the interaction more. Engagement
with the task was influenced by age, however this does not seem to
relate to the robot’s use of gestures.

By introducing variation in the robot’s gestures, and thereby
highlighting different features of the object of learning (cf. [24]), we
aimed to provide greater support to the learning process compared
to using repeated gestures. We also expected this variation in the
robot’s behavior to further increase children’s engagement with the
robot (cf. [39]). However, we did not find support for hypotheses H3
and H4 which stated that the robot’s use of varied gestures would
lead to better learning outcomes and higher levels of engagement
than repeated gestures. This does not align with existing findings
in literature regarding positive effects of speaker variation [3], nor
detrimental effects of image variation [36]. Moreover, with multi-
ple gestures for the same concept it is more difficult to measure
what the contribution of each individual gesture was to children’s
learning outcomes and engagement. We believe more research is
needed to further investigate possible differences between variation
and repetition of gestures. The current study consisted of a single
tutoring session and therefore did not investigate any potential
long-term effects that variation in gestures might have. Further-
more, different results could be observed for older children or adults,
and the use of varied gestures could have affected other factors
that were not measured in the current study, such as perception of
the robot (e.g., human-likeness, intelligence, character) or overall

enjoyment. With younger participants it remains a challenge to
investigate these aspects of a robot’s appearance and behavior.

6 CONCLUSION
This paper documents a study that was conducted to investigate
whether a robot’s use of iconic gestures affects learning outcomes
and learners’ engagement. Furthermore, a robot that varied its
gesture repertoire for a particular concept was compared with one
that always repeated the same gesture. The results of the study show
that there are advantages to having a robot perform gestures when
teaching children L2 vocabulary, in the form of higher engagement
and — for the older children in the study — increased learning gain,
although no additional benefits were found for varied gestures.
Based on existing literature into robot-performed gestures (e.g. [7,
15, 22, 43]) we have reason to believe that our findings generalize to
different target groups, educational domains, and robotic platforms,
and we imagine that robots in the future will become capable of
performing increasingly more human-like motions. The design of
the interaction, the gestures, and the study itself are documented
in this paper to serve as a basis for future research. We envision
two main avenues for future work: (1) the design of the robot’s
gestures, and how this affects their comprehensibility for different
ages, and (2) a further exploration of variation in gestures: does it
have different effects on older learners, and does it change the way
the robot and the interaction are perceived?
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