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ABSTRACT
The field of Human-Robot Interaction (HRI) lies at the intersection
of several disciplines, and is rightfully perceived as a prime interface
between engineering and the social sciences. In particular, our field
entertains close ties with social and cognitive psychology, and there
are many HRI studies which build upon commonly accepted results
from psychology to explore the novel relation between humans
and machines. Key to this endeavour is the trust we, as a field, put
in the methodologies and results from psychology, and it is exactly
this trust that is now being questioned across psychology and, by
extension, should be questioned in HRI.

The starting point of this paper are a number of failed attempts
by the authors to replicate old and established results on social
facilitation, which leads us to discuss our arguable over-reliance
and over-acceptance of methods and results from psychology. We
highlight the recent “replication crisis” in psychology, which di-
rectly impacts the HRI community and argue that our field should
not shy away from developing its own reference tasks.
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Social psychology; social robotics; replication crisis; Human-Robot
Interaction; research methodology

ACM Reference Format:
Bahar Irfan, James Kennedy, Séverin Lemaignan, Fotios Papadopoulos, Em-
manuel Senft, and Tony Belpaeme. 2018. Social Psychology and Human-
Robot Interaction: AnUneasyMarriage. InHRI ’18 Companion: 2018 ACM/IEEE
International Conference on Human-Robot Interaction Companion, March
5–8, 2018, Chicago, IL, USA. ACM, New York, NY, USA, 8 pages. https:
//doi.org/10.1145/3173386.3173389

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HRI ’18 Companion, March 5–8, 2018, Chicago, IL, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5615-2/18/03. . . $15.00
https://doi.org/10.1145/3173386.3173389

1 THE REPLICATION CRISIS IN
PSYCHOLOGY ANDWHAT IT MEANS FOR
HRI

The field of Human-Robot Interaction (HRI), and in particular, the
field of social HRI benefits from awide range of scientific input [4, 5].
As a community, we recognise that the technical fields of engineer-
ing, control theory and computer science do not provide necessary
tools for the scientific investigation of the ‘human’ and ’interaction’
parts of HRI. For this reason, we take inspiration and ground much
of our research in established results from the social sciences – pri-
marily social psychology, cognitive psychology, and sociology. As
scholars in HRI we find ourselves at the intersection of these many
fields, and aim to offer insights to programmers and engineers, as
well as psychologists. In this sense, our field embodies the basic
idea of cognitive sciences: building bridges across disciplines to
gain new insights on complex scientific challenges.

That said, the demographics of the academics working in HRI
are skewed towards engineering backgrounds (Table 1); one often
becomes a researcher in HRI by first building robots and then
looking at how the machines might interact with humans. While
some of us do have training in psychology, many do not. This is
not an issue per se: as trained scientists and engineers, we can
read and interpret the social science literature, and reproduce tasks,
protocols, and –perhaps– results.

However, the recent replication crisis in psychology now casts
doubt on that premise. Aarts et al. [1], in their seminal study, found
that upon attempting to replicate 100 psychology studies, only
39% of the replication studies could subjectively be rated to have
replicated the original result. As the results of two thirds of 100
studies could not be properly replicated, whatever the reasonsmight
be (from publication bias, to sociological changes in the population,

Table 1: Academic fields of accepted authors at HRI17, as
judged by their affiliation or, if advertised on their personal
website, training, n = 193 (a single author can be affiliated
with multiple fields).

Field Eng. Psy. Cog. Sci. Interaction
Design

Other

N 145 24 6 17 13
% 70.73 11.71 2.93 8.29 6.34
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to small effect sizes), it calls for exerting caution whenever we build
upon supposedly established results.

Further research has shown that many scientific studies are
difficult or impossible to replicate upon subsequent investigation.
According to a 2016 poll of almost 1,600 scientists reported in the
journal Nature, over 70% had failed to reproduce at least one other
scientist’s experiment. More than half had failed to reproduce one
of their own experiments [3]. This is problematic for the field of
Human-Robot Interaction, as much of what we do either uses re-
search methods similar to those used in other disciplines (and psy-
chology in particular), or relies directly on insights and results
handed down from other disciplines.

Because many of us are consumers of the psychology literature
rather than producers or active contributors to the psychology com-
munity, we often do not only have insufficient training to correctly
interpret psychological studies, but also tend to be less critical and
often do not question findings thewaywewould in our own commu-
nity. This effect is reinforced by the perceived maturity of different
academic fields. Fields such as social or cognitive psychology are
very mature, compared to the relative immaturity of Human-Robot
Interaction, and studies and insights from psychology are now core
material in textbooks, giving the studies and their results further
credence.

While experienced researchers in HRI might already be aware
of these issues, the influx of new talent requires our field to be
vigilant of uncritical reliance on questionable methods and results.
To illustrate our point, we present our experience in which we
were unsuccessful at reproducing the social facilitation effect. Social
facilitation, also known as the audience effect, is a supposedly well-
established effect where the mere presence of a (silent, passive)
external agent influences one’s behaviour, often measured through
performance on a task. The direction in which the effect works is
not specified: depending on the task and the context, performance
can be positively or negatively impacted. A large body of literature
from psychology reports this effect, and social facilitation has been
studied in robotics as well in various forms.

2 A CASE IN POINT: SOCIAL FACILITATION
2.1 Context: Studying the Mere Presence Effect

in Social Facilitation
Background and Related Theories. In 1898, Triplett [37] observed

that cyclists pedal faster in the presence of rivals than when they
are alone. He later studied this effect on children by using a fishing
reel that they needed to turn as quickly as possible and found the
same effect, although a later analysis of his work by Stroebe [34]
showed that there was no significant difference in either of his
findings. This effect has later been termed as ‘social facilitation’ by
Allport [2] to describe the increase in response due to the presence
of others who are performing the same task. Later the term social fa-
cilitation was expanded to cover two types of conditions: ‘co-action
effects’ like Triplett’s examples, and ‘audience effects’, in which
only the mere presence of an observer affects the performance of a
person performing the task. In order to explain the audience effects,
Zajonc [42] proposed the drive theory, which states that the audi-
ence enhances the exhibition of dominant responses in a person. In
the case of a well-mastered task (‘simple task’), the performance is

facilitated, whereas, for the tasks that are new or require learning
(‘complex tasks’), the performance is inhibited.

Factors. A meta-analysis by Bond and Titus [8] compared 202
published and 39 unpublished studies on social facilitation. They
provide a list of 13 factors that might impact social facilitation
(like the participants’ age, the number of observers, the role of the
observers, the familiarity of the observers, etc.). The meta-study
shows that the performance speed (quantity) is increased for the
simple tasks and the performance accuracy (quality) is decreased
for the complex tasks. The performance quantity is measured by
the latency to respond, time it takes to complete a task and the
number of responses per unit time. The performance quality is
measured by the number of errors. The analysis also showed that
the visibility (presence in the same room as the subject) of the
observers has a slightly larger effect than the non-visibility (e.g.,
one-way mirror [11, 14], use of a video camera [16, 36], a desktop
image on a computer screen [15]), although the difference was not
statistically significant.

On the other hand, Guerin [17] argues in his review that the
majority of studies on social facilitation had observers watching
the subject perform a task. These could be confederates, but often
they are just the experimenter watching a subject, as they were
not seen being busy with other tasks. He also draws attention to
ceiling and floor effects of the tasks, and advises that the task should
be sufficiently hard so that a reasonable comparison can be made
between subjects and conditions.

Tasks. Following Zajonc [42], the literature on social facilitation
distinguishes between ‘simple tasks’ and ‘complex tasks’. Exam-
ples of simple tasks include cancelling specific letters in a text or
multiplication; examples of complex tasks include concept forma-
tion, anagrams, digit span, and pursuit rotor tasks (a motor task
in which the subject has to track a rotating target using a com-
puter mouse). Tasks such as letter copying and paired associates
can be either simple or complex depending on the task structure.
McCaffrey et al. [23] also presented significance levels of each of
these tasks in the literature. They show that visual perception and
construction tasks such as letter or word copying [15, 18, 36] and
motor tasks such as physical activities [35] are good tasks in terms
of significance as simple tasks. Memory or learning tasks such as
paired associates [10, 16, 17] and visuomotor tasks as in the rotary
pursuit task [22, 25] have higher significance for social facilitation
as complex tasks.

Cheating as a reinforcing factor. Self-presentation theory [7] also
suggests conformity to normative behaviours to gain approval
of another person. For example, in the case of an embarrassing
situation such as cheating, this should prevent the subject from
engaging in the cheating behaviour due to social pressure. There
might be several factors that affect cheating behaviour, such as the
importance of the task, the risk of being caught, the probability
of success [39], the belief in free-will [40], the knowledge of peer
performance [19], the potential gain of money or grades, the penalty
for cheating [26] or conformity to cheating behaviour in peers [13].
In the study by Vohs and Schooler [40], the task consisted of a
computer-based mental arithmetic test. The participants were told
that there was a “glitch” in the program which shows the correct
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answer to the problem, but they could close the answer window
by pressing a key after the problem appeared. They were also told
that the experimenter would not know whether they pressed the
bar, but they should try to solve the problems without looking at
the answer. The results revealed that those who were given an
essay prior to the test that stated the lack of free-will cheated more
frequently than others.

Social Facilitation In Robotics. The audience effect has been stud-
ied in HRI by Schermerhorn et al. [32] and Riether et al. [27]. Scher-
merhorn et al. [32] compared the effect of the robot’s presence
during easy and difficult arithmetic tasks with alone and robot-
presence conditions. A significant two-way interaction between
gender and robot was found, because the subjects performed worse
during the difficult task when the robot was present. Overall, a
marginally significant effect of robot presence was found. Riether
et al. [27] on the other hand, compared alone, human-presence,
and anthropomorphic robot-presence conditions with four differ-
ent tasks with easy and complex conditions: anagram solving, nu-
merical distance, finger tapping and a motor reaction task. They
observed that in the anagram solving, numerical distance and finger
tapping tasks, there were significantly larger performance scores
than the alone group for both the robot and human conditions,
but there was no significant difference between the robot and the
human observer conditions. Authors concluded that this finding
suggests that people regard robots as social beings. After the ex-
periment, the subjects were asked to complete a questionnaire in
which they gave higher observation impression scores for the robot
condition than the human observer, perhaps due to the fact that
they thought someone else was watching through the eyes of the
robot or due to novelty effects leading to distraction.

Following the findings from social facilitation literature, we de-
cided to explore the mere presence of two robotic platforms (the
Softbank Robotics NAO and Pepper robots) through a social fa-
cilitation task. We anticipated that there would be a difference
between the two platforms due to their size and appearance. While
the studies aimed to compare the social facilitation of two different
robots, it was important to establish two baselines first: one with
no observers, and one with the social facilitation elicited by the
presence of a human observer. This would essentially be a first step
in validating our methodology and would also serve as replication
of the finding from psychology. Assuming the replication study
was successful, we would have continued the experiments with a
robot as observer and would have compared these results to the
earlier obtained baselines.

We ran two separate studies, with a total of three different tasks.
Because no effect could be found between the alone condition and
the human condition in any of our tasks, we did not actually pursue
the studies with robots.

2.2 Social Facilitation: First Attempt
The first study was run between-subjects with two conditions: an
alone condition and a human-presence condition. Participants were
recruited on a university campus and taken to a room in the cam-
pus library for the experiment. The experimenter would take the
participant to the room and tell them to follow instructions on the
tablet, then the experimenter would leave. In the human observer

A

C

B

door

Figure 1: Layout of the room. The participant (A) is sitting at
a table, with their back to the door. The tasks are performed
on a tablet (B). When present, the social agent (human ob-
server) is placed at C.

condition, a second experimenter would already be sitting in the
room and would remain there for the duration of the experiment
(as per Figure 1).

Tasks. The literature distinguishes between the effects of mere
presence on simple tasks and complex tasks. We sought to elicit
differences in both of these task types. Each participant therefore
performed two tasks, followed by a brief questionnaire. Both the
tasks and the questionnaire were administered on the tablet. The
first task was designed to be a repetitive visuomotor task (the
‘shape matching’ task); the second one required recollection and
comprehension of spoken information (the ‘story’ task). As such,
we examined the effect of social facilitation on both low- and high-
cognitive tasks.

The ‘shape matching’ task is a game where the participants are
asked to match a coloured target shape with another one, of the
same shape, but of a different colour (Figure 2). The target shape as
well as the eight possible responses are random combinations from
the sets {red, yellow, green, purple, blue, white} and {square, cross,
star, circle}. After the participant touches a shape to select it as an
answer, a new random set is shown on screen. This is repeated
200 times. By using the same random seed for all participants, the
stimuli sequence was kept identical for all participants.

The task can be repeated for up to 200 rounds of random shapes.
After 75 rounds, a button labelled “Give up” appears on screen,
giving the participant the option to skip to the second task. The
wording of the label was intentionally chosen instead of a more
neutral “Stop” or “Continue to next task” to elicit a stronger so-
cial response (“Giving up” being more socially costly than simply
“continuing to the next task”), thereby increasing the contrast be-
tween conditions (self-presentation effect). During this first task,
we recorded three metrics: the reaction time for each round, the
number of correct and incorrect responses, and the total number
of rounds completed. We also asked the participants to give an
estimate of how many rounds they thought they had completed,
between 0 and 300.

The second task (‘story’ task) involves listening to a short pre-
recorded text (1min 56sec) and answering eight questions about
this text. The text1 details the history of a fictional country named
“Brookland” and includes a range of facts: names of places (“[they]
sailed to Port Danford”), dates (“Springland was settled in the year
1Recording and transcript available on-line, at https://github.com/severin-lemaignan/
shapes-matching/tree/master/audio.
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Figure 2: Screenshot of the shape matching task. Partici-
pants are instructed to tap on the picture matching the tar-
get’s shape (seen at the top), but with a different colour. In
this example, the participant has to tap the green square.

2503”), terminology (“Settlers or ’squatters’ began to move deeper
into the territories”), and situations (“Women were outnumbered
five to one”). The text was based upon the settling of Australia, but
with key details and place names changed. This was so that the
information would certainly be novel, without sounding implau-
sible. The eight multiple-choice questions are asked immediately
after the end of the text. Each question provides a choice of four
answers (Figure 3). The score of each participant (number of correct
answers) is the performance metric for this task.

Hypotheses. Based on the drive theory by Zajonc [42], our hy-
potheses were the following:

H1 In the ‘shape matching’ task, the presence of a social agent
would lead to better performance: fewer mistakes, faster
reaction times.

H2 In the presence of a social agent, the ‘Give up’ button would
be used less frequently (or later in the game) due to the social
pressure (self-presentation theory).

H3 In the presence of a social agent, participants would report
that they completed fewer rounds of shape matching than
they actually did, due to social facilitation.

H4 In the ‘story’ task, the presence of a social agent would lead
to the impaired performance, i.e., participants would recall
fewer facts.

Protocol & Data Collection. We recruited 45 participants after ex-
clusion (25 for the alone condition and 20 for the human condition,
16 males, 29 females, balanced across conditions) on campus. The
participants’ age was M=20.4 (SD=2.5). We ensured that all partici-
pants who enrolled were not colour-blind (due to the necessity of
seeing colour accurately for the shape matching task) and that they
were native English speakers (to prevent comprehension issues due
to language in the story task).

Participants were first given information sheets describing the
experiment (simply entitled “Learningwith a touchscreen”, so as not

Figure 3: Screenshot of four of the eight questions admin-
istered immediately after listening to a short text about a
fictional country.

to disclose the role of themere presence of the observers). They then
gave consent to participate, compliant with the university ethics
committee rules. Participants were told in writing and verbally
that whether or not they decided to withdraw early from the study,
they would receive financial compensation of £5 (in the form of a
voucher). We made this point explicit to make sure the participants
knew that, even if they quit the shape matching game early (i.e.,
between rounds 75 and 200), they would still receive the full amount.

Results. We did not observe any significant difference between
the two conditions concerning the time required to match 75 shapes,
average reaction time, number of shape completed, ratio of correct
matching, recall performance, or perceived observation (cf. Table 2).

This means that we did not observe any social facilitation effect,
and none of the hypotheses are supported.

2.3 Second Attempt
Reflecting on the lack of effect observed in our first attempt, we
designed a second experiment to address the possible failures of
the first one.

Specifically, we chose (1) to have the human observer closer to
the participant (aiming for greater human influence), (2) a stronger
moral component (aiming for a greater influence of the human pres-
ence), (3) a more difficult task (stronger incentive for behavioural
differences – i.e., cheating – between conditions), (4) financial re-
ward dependent on performance (stronger, clearer incentive for
behavioural differences between conditions) and finally, (5) regard-
ing the methodology, we decided to move away from primarily
using reaction times as metric, so as to avoid any natural perfor-
mance limit.

Task. Based on these constraints, we designed a new task involv-
ing mental arithmetic. Participants were required to calculate the
result of a set of non-trivial mental additions. The additions each
had exactly three 2-digit numbers to sum, one carry (a digit that is
transferred from one column of digits to another), and their results
ranged from 100 to 200. Participants had 5 minutes to perform as
many additions as possible. Each correct answer would earn them
a small financial reward of £0.20 (Figure 4).
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Table 2: Results for the shape matching task: time to match 75 shapes, average reaction time, number of shapes completed,
ratio of perceived matching, recall performance, and perceived observation. No significance has been observed for any of the
metrics (2-tailed independent 2-samples test with equal variance assumption).

Metric Alone conditionM(SD) Human conditionM(SD) p-value t-value
Time to 75 shapes (s) 117.7 (30.01) 110.63 (17.25) .349 0.948
Average reaction time (s) 1.70 (0.47) 1.58 (0.26) .305 1.037
Number of shapes completed 196 (11.5) 198 (7.8) .522 −0.596
Ratio of correct responses 0.98 (0.02) 0.99 (0.01) .082 −1.813
Recall performance 4.81 (1.27) 5.11 (1.49) .473 −0.724
Perceived observation 2.76 (1.27) 2.55 (1.39) .6 0.528

Figure 4: Screenshot of the sums task. Participants have 5
minutes to perform asmanymental additions of three num-
bers (with a result between 100 and 200) as possible. Each
correct answer earns £0.20. A pop-up dialogue with the an-
swer is shown before each new addition. The participants
are instructed that this pop-up is a bug and that they should
ignore it and dismiss it.

Critically, following the design of Vohs and Schooler [40], a sup-
posed “glitch” was showing a pop-up dialogue before each addition.
This dialogue was designed to look like a spurious debug dialogue
and contained the expected answer. The participants were explicitly
shown by the experimenter that the correct answer was erroneously
displayed in the dialogue. They were instructed to ignore the dia-
logue and to dismiss it. This ‘bug’ was explained to the participant
as being caused by a new operating system on the laptops used for
the test (“Our previous computers did not have this issue”). The
bug made it practically easy for participants to cheat: by briefly
glimpsing at the debug dialogue before dismissing it, they could
immediately know the correct answer, and earn money faster.

The dialogue could be dismissed by pressing ‘enter’ on the key-
board. ‘Enter’ was also the key used to move to the next question.
As such, a double-press would move to the next question and close
the dialogue before it could be seen. Through this mechanism, it
was possible to measure how long it took participants to close the
dialogue, and infer whether they had cheated.

Hypotheses. The literature suggests that social presence during
a complex cognitive task like this one should lead to worse perfor-
mance [12, 41]. Accordingly, our hypotheses were the following:

H1 In the presence of a social agent, participants will be more
honest (i.e., they will look at the answer on the dialogue
pop-up less).

H2 In the presence of a social agent, participants will complete
fewer correct questions.

Protocol & Data Collection. As outlined previously, while our plan
was to run four conditions (alone, human presence, NAO presence,
Pepper presence), we first ran the two baseline conditions: alone
and with a human observer. 15 participants were recruited in the
alone condition, 16 participants in the human condition.

The experimental setup was similar to Figure 1 with two differ-
ences: when present, the human observer was sitting at the table,
facing the participant, and the tablets were replaced with laptops
with a keyboard to facilitate the input of the answers. For each
participant, we recorded how many additions were attempted, the
total gain (i.e., the number of correct answers), and the time to
calculate each of the additions. We also asked, upon completion, to
what extent they felt like they were being observed during the test
(marked on a 5-point Likert scale).

Results. Based on the data (31 participants for a total of 633
additions), the average time to dismiss the debug dialogue was
1185ms and the average time to provide an answer was 9980ms.
Based on these values, we conservatively consider cheating as
takingmore than 0.8 seconds to dismiss the spurious debug dialogue
and taking less than 5 seconds to calculate the sum and providing
a correct answer. It results in 147 cheating rounds (23.2% of all
rounds).

Looking at these results per condition, we find 77 rounds involv-
ing cheating from 316 rounds in the human condition (24.4%) and
70 rounds involving cheating from 317 rounds in the alone condi-
tion (22.1%). A 2-samples test for equality of proportions reveals no
significant difference; χ2 = 0.463, p = .496. This indicates no support
for the presence of a human impacting the tendency to cheat. This
result shows that participants do cheat relatively often, however
the presence of a human observer does not significantly impact the
cheating behaviour of the participants, providing no support for
H1.

In terms of performance, participants in the human presence
condition gave 28 wrong answers out of 239 rounds with no cheat-
ing (11.7% were wrong answers), while participants in the alone
condition gave 25 wrong answers out of 247 (10.1%). Using a 2-
samples test for equality of proportions, we obtain: χ2 = 0.096, p =
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.757 indicating no support that the presence of a human impacts the
performance in the test. Again, there is no significant performance
difference between the two conditions, providing no support for
H2. Therefore, neither of our hypotheses are supported. Due to the
absence of any effects between the human and alone conditions,
we did not pursue the study with robots.

Participants were asked how observed they felt on a in a Likert
scale (1: “Not at all”, 5: “Very much”). In the alone condition they
felt more observed (M = 2.69, SD = 1.35) than the participants in
the human presence condition (M = 1.75, SD = 1.06). A 2-tailed
independent 2-samples test with equal variance assumption shows
that there is significant difference: t(28) = 2.179, p = .038.

3 DISCUSSION
We can only speculate about which factors might explain our failure
to observe any effect of social facilitation: the small effect sizes of
social facilitation, the setting in which we collected our experimen-
tal data, or a bias towards publishing only positive results [31] that
might mask how brittle social facilitation effects really are.

Participants also reported the they felt observed: in the alone
condition this wasM = 2.69, SD = 1.31, while in the human condi-
tionM = 1.75, SD = 1.03. When no experimenter was in the room,
they feltmore observed then when there was an experimenter in the
room. This is a very notable result warranting further exploration.

The challenges of observing social interaction. What does this
failed attempt at reproducing a “classic” result of social psychology
tell us? Beyond possible experimental confounds, our failure at re-
producing these results is likely due to the small effect size of social
facilitation. In their meta-analysis of studies on social facilitation,
Bond and Titus [8] showed that the overall mean effect sizes are
low, ranging from 0.03 to 0.36. Uziel [38] reports weighted average
effect sizes of less than 0.2. According to Cohen [9], an effect size
of 0.2 should be regarded as small, an effect size of 0.5 as medium,
and 0.8 as large.

Social facilitation or inhibition, like many other psychological
effects, may be affected by a combination of several other factors:
the observer effect (also known as the Hawthorne effect [28]), de-
mand characteristics, cultural differences and personality. These
effects are potential confounds, and adequately accounting for each
of these in the experimental design is problematic.

One likely explanation is that subjects felt observed in both
conditions, irrespective of a human observer sitting with them in
the room. Just the process of taking part in a study might already
exert a large degree of social facilitation, which is not measurably
weakened or strengthened by the absence or presence of an observer
in the experiment room.

The study of Guerin [18] is relevant in this context: it tried to sep-
arate the effect of observer presence from evaluation apprehension.
For this a letter copying task was used in four conditions: alone;
with a confederate sitting in front of the subject, but facing away;
with a confederate at a desk that is behind the subject; and with
a confederate sitting behind the subject with no desk in between.
Guerin’s results showed that there were no significant differences
of errors in copying (quality) in any conditions, however, alone
and front conditions combined were significantly different from

the behind and behind-desk conditions combined in terms of task
performance (quantity).

Furthermore, he used self-reports for determining the level of
pressure the subjects felt. Subjects in the alone condition were
asked to imagine how they would feel if there was a person in the
room. The results showed that the subjects in the alone condition
felt more disturbed and evaluated than those of the other three
conditions, which concurs with the results we found. However, he
noted that self-reports in social facilitation research may be affected
by demand characteristics and self-presentation. As a result of the
study, he was unable to separate evaluation apprehension from the
mere presence effect on task performance.

It is likely that the subjects in our study felt observed by taking
part in a study. Even though the true intent of the study was not
revealed until the debriefing, subjects felt observed whatever the
condition and this might have impacted their behaviour. This is
know as the Hawthorne effect. However, the Hawthorne effect
itself is a subject of discussion as there are studies that challenge
its existence. Jones [21] studied the original experiment data [28],
and found that there is slight or no evidence of a Hawthorne effect.
McCambridge et al. [24] reviewed over 19 studies that investigate
the Hawthorne effect, and argued that the term is used to describe a
broad range of effects in the literature rather than the core definition
which refers to the change in subjects’ behaviour due to conformity
to perceived norms or researcher expectations. Hence, they could
not confirm whether the effect exists.

Weak methods in older psychology literature. Beyond the caution
that must be observed when studying one specific psychological
effect, a broader range of methodological issues with older research
in psychology might explain why some results in psychology are
incorrectly believed to be reliable.

For instance, the Bond and Titus [8] meta-analysis of research
on social facilitation claims to have exhaustively examined every
publication prior to the publication of the meta-analysis itself (in
1983). As a matter of fact, the oldest study that they reference dates
from 1898, and 35 out of the 241 were published prior to 1965.
As such, social facilitation is a good example of an old, classical
psychological effect. It however also hints at the fact that its char-
acterisation might have relied on weak research methodologies by
today’s standards. In that regard, Bond and Titus raise interesting
points: only 100 out of the 241 studies state that the experimenter
was in a different room in the alone condition (and in 96 studies,
we know the experimenter was in the room). This would be seen
today as a serious confound. Similarly, Bond and Titus report that
72.3% of the total participants were undergrad students, pointing
to a possible demographic bias.

Biases in scientific publishing: the ‘file drawer’ problem. Coined
in 1979 by Rosenthal [30], the file drawer problem refers to the bias
introduced into the scientific literature by mainly publishing pos-
itive results, and rarely negative or non-confirmatory results. As
a consequence, an effect could be reported and believed reliable,
simply for the lack of literature showing the contrary. Rosenthal
proposes to account for this problem by reporting in meta-analysis
the ‘fail-safe N’ measure: N is the number of null effects that would
be required to make the original result non-significant. Rosenthal
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considers an effect resistant to the ‘file drawer problem’ of unre-
ported null effects if the fail-safe N is above 5k + 10, with k the
number of reported effects.

Bond and Titus [8] report the fail-safe N for some of the effects
of social facilitation. For instance, their meta-analysis show that
the performance quantity of participants for complex tasks reliably
decreases in presence of an observer (even thought the effect size
is small). 54 effects are reported, and they note that the fail-safe N
value is 160: 160 is clearly smaller than 5 × 54 + 10 = 280 and as
such, this result could well be subject to the problem of unreported
null effect. The fact that social presence inhibits the performance in
complex tasks is not a robust result in the face of the bias towards
publishing only positive results.

A weighted calculation of the fail-safe number has been pro-
posed [29] that addresses some of the concerns with Rosenthal’s
proposal, and while not systematically reported in the literature,
this metric is a valuable tool for HRI researchers when assessing
how robust a result in psychology is.

4 CONCLUSION
While we have built this paper around social facilitation and our
failed attempt at replicating this well-established effect, the obser-
vations we make above are broadly applicable to Human-Robot
Interaction. Our failure to replicate a result from social psychology
which has stood for 120 years [37] should form a cautionary tale.
The limited reproducibility of results in psychology seems to be
endemic [1] and while the reasons for the lack of reproducibility
are many and diverse, there is a genuine concern that the field
of HRI is also affected. We are, however, not suggesting that HRI
should not build upon psychology anymore. Quite the contrary.
Our field has strong ties with psychology, and our work is grounded
in various theoretical and methodological frameworks. If anything,
we encourage the community to keep on building new links with
neighbouring academic fields, and social psychology should be a
preferred partner in this effort.

However, we need to be frank: results from social psychology,
experimental methodologies and reporting methods which were
considered as commonly accepted or even gold standards until
recently, are losing their special status. Instead we would like to
offer the following suggestions to the HRI field:

Replicate and reproduce. When replicating a social psychology
effect with robots, it is necessary to first reproduce the effect with
people. Methods change, times and mores change, and negative re-
sults often go unreported. A social psychology effect which is touted
in textbooks might not be that easy to replicate. With psychology
at the centre of the recent replication controversy, many results
which seem established should be approached with the necessary
skepticism.

Null-results are interesting. The field of HRI most likely also
suffers from publication bias and the file drawer effect: many studies
go unreported because the results are inconclusive, negative or
because they do not support an agenda. If results are negative
or insignificant, the field needs to know. This helps us focus our
resources better: if an experiment returned negative results and
we know about it, then it can help us avoid setting up a similar

experiment. It also helps us with quantifying bold claims. As results
come in that are inconclusive or unsupportive of those claims, they
tend to go unpublished or do not get the same amount of airtime
and attention as confirmatory results. This culture should change.

Avoid questionable research practices. A number of questionable
research practices (QRPs) have been identified in social psychol-
ogy [20, 33]. While we have not collected data on the presence of
QRPs in HRI, we need to be aware of the QRPs identified in psy-
chology. Examples include (from [20]) selective reporting of data,
or only reporting data which support a particular story; collecting
data until the results are significant; p-value rounding, i.e., rounding
p-values down to .05 to suggest statistical significance (a particular
problem of null-hypothesis testing); failing to report all conditions;
or selectively reporting studies that “worked”.

Register your study. In clinical studies, it is customary to register
the study protocol before beginning data collection (see for example
clinicaltrials.gov). Perhaps a similar practice should be established
for HRI. Among the many benefits, the registration of trials before
running include the reduction of publication bias, the efficient
allocation of research resources, and full engagement with ethical
obligations of the research community.

Avoid the Hawthorne effect. The set-up of most HRI studies often
reveals to the subjects that they are being observed: lab-based
studies always implicitly signal to subjects that their behaviour will
be monitored. Even moving into a naturalistic environment might
not alleviate this problem, as ethics procedures insist that subjects
are briefed before a study and that their explicit consent is sought
before they can engage in the experiment. As such, subjects in HRI
experiments might always experience the Hawthorne effect: their
behaviour changes because they are aware of being observed. The
only way forward here is to either not inform subjects prior to the
study (which is unethical) or work with a distractor task. However,
the latter is particularly difficult to implement in HRI.

Come up with HRI reference tasks. While there is merit in at-
tempting to reproduce effects from social psychology with robots
instead of people, it might be worth identifying new effects and
tasks relevant to Human-Robot Interaction and its applications.
Times change and as robots become more ubiquitous, our response
to robots is likely to evolve rapidly. We need to look at the relation
and interaction between people and robots through new lenses, and
the old (often very old) views from social psychology are perhaps
no longer applicable or appropriate. It may be noted that our imple-
mentation of the methodology did not perfectly match one from
psychology. The task used in the second attempt was the same as
one from psychology, however, we did not deploy the essay writ-
ing portion of the original [40] so as not to introduce a confound.
Finding an appropriate methodology to replicate in the context of
HRI was a challenge in itself, further reinforcing the need for our
own reference tasks.

As a community, HRI should learn from its own mistakes (see
Baxter et al. [6] for good advice) and from the mistakes of others.
We are a young community, with a steady influx of young talent,
and we often look towards established fields for guidance. But when
exactly these established fields start to question their own practices
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and results, we should too. The conclusion of the Science study on
reproducibility in psychology [1] offers the following message:

Following this intensive effort to reproduce a sample
of published psychological findings, how many of the
effects can we confirm are true? Zero. And, howmany
of the effects can we confirm are false? Zero. Is this a
limitation of the project design? No. It is the reality
of doing science, even if it is not appreciated in daily
practice.

Importantly, this is the reality of doing science in general, not
only social science. We must not blind ourselves: our methods and
protocols in HRI do not shelter us from the exact same problems
experienced in other fields. Future researchers may well write the
same kind of article about our field when they revisit today’s litera-
ture on Human-Robot Interaction.
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ABSTRACT
In this paper, we describe a multi-modal Bayesian network for
person recognition in a HRI context, combining information about
a person’s face, gender, age, and height estimates, with the time of
interaction. We conduct an initial study with 14 participants over
a four-week period to validate the system and learn the optimal
weights for each of the metrics. Several normalisation methods are
compared for different settings, such as learning from data, face
recognition threshold and quality of the estimation. The results
show that the proposed network improves the overall recognition
rate by at least 1.4% comparing to person recognition based on face
only in an open-set identification problem, and at least 4.4% in a
closed-set.

KEYWORDS
Person recognition; Bayesian network; multi-modal data fusion;
soft biometrics; personalisation

1 INTRODUCTION
Recognising a person is an essential step in establishing a per-
sonalised long-term human-robot interaction (HRI). In contrast to
verification problems, where a user would state her identity and the
system confirms or rejects it, in an HRI scenario, automatic recogni-
tion is desired for a natural interaction. In addition, the user might
not be encountered before, in which case, the robot is expected to
“meet” the user, i.e. enroll the user into the system. This problem
is classified as an open-set identification problem, which is more
difficult than closed-set identification or verification problems [5].

Biometric systems generally perform user recognition based on
face recognition (FR). However, most FR challenges such as Face
Recognition Vendor Tests1 evaluate algorithms that perform ver-
ification. To this date, the only available open-set identification
challenge is the Unconstrained Face Detection and Open Set Recog-
nition Challenge2, which shows that the algorithms achieve good
identification accuracies at high false identification rates [6].
1https://www.nist.gov/programs-projects/face-recognition-vendor-test-frvt
2http://vast.uccs.edu/Opensetface
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Figure 1: Examples of unreliable face recognition from our
study: (a) a blurry image; (b) an oblique viewing angle; (c) oc-
clusions, e.g. glasses; (d) lighting condition, e.g. direct light.

Similarly, during a real-time interaction, FR could be unreliable
due to a number of reasons including changing facial features, ex-
pressions, and lighting conditions [16] (see Fig. 1). Another example
is the recent release of a smart phone with the built-in FR system for
unlocking the phone that struggle to distinguish family members
due to similarity of their facial features [4]. This issue increased
awareness of the security and privacy problems that might arise
from using a uni-modal biometric system that might not be as
reliable as using a pass code.

Moreover, a biometric systemmay not be able to obtain meaning-
ful data in some cases, resulting in a failure-to-enroll (FTE) error [13].
For instance, a face may not be detected in a blurry image where a
person is moving. In addition, the upper bound on identification
accuracy would limit the matching performance of a uni-modal
biometric system. However, multi-modal biometric systems can
improve the matching accuracy of a recognition by fusing informa-
tion from multiple sources that could reduce the effects of noisy
data, decrease FTE error, and eliminate the upper bound issue for a
better determination of the identity. Robots, due to the rich sensor
suite they carry, lend themselves well to multi-modal recognition.

In this paper, we explore a multi-modal Bayesian network (BN)
for integrating soft biometric information, such as a user’s gender,
age, height, and time of interaction, together with the primary bio-
metric information provided by face recognition. These biometric
modalities are non-intrusive and can be obtained using the camera
embedded on the robot. We designed a pilot study to validate our
system in a real-time HRI scenario. We compare performances of
several normalisation methods using optimised weights for each
comparison. The proposed recognition system is intended to be
used in a real-world application in Cardiac Rehabilitation therapy
with a personalised robot [10].
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2 RELATEDWORK
Several post-classification fusion methods have been proposed for
integrating multi-modal information in biometrics. They can be
classified into three main categories: decision, rank, and confidence
level fusion [8]. Decision level fusion (e.g. majority voting, AND/OR
rule) is based on combining individual best matches from each
biometric matcher. Rank level methods (e.g. highest rank, logistic
regression) are used when the output of each biometric matcher
consists of ranked matches. Confidence level fusion is the most
common approach, as it allows a weighted decision from multiple
biometric classifiers. There are two main approaches for combining
the scores for confidence level fusion: classification methods and
combination approaches. Classification methods treat the classifi-
cations of individual classifiers as input for a new classifier, such
as ANNs and Support Vector Machines, which allows combining
non-homogeneous data without preprocessing. The combination
approach on the other hand consist of three steps: (1) normalisa-
tion of scores from different modalities into a common domain, (2)
combination of scores through a method such as sum or product
rule, and (3) thresholding to obtain the identification results. Per-
formances of the combination approaches depend on the method
and threshold chosen at each of the steps.

Although most biometric systems utilise primary biometrics for
person recognition, such as fingerprint or face, other attributes
of an individual such as age, gender, and clothing –referred to as
soft biometrics– can provide additional information to improve the
recognition performance [2]. In [9], the authors proposed combin-
ing a primary biometric trait (fingerprint) with soft biometric traits,
such as a person’s gender, ethnicity, and height, using a BN. In the
weighting scheme, the traits with smaller variability and larger dis-
tinguishing capability were given more weight in the computation
of the final matching probabilities. Furthermore, smaller weights
were assigned to the soft biometric traits, so that if a soft biometric
trait is measured incorrectly (e.g. a male user being identified as a
female) the rejection probability is decreased. They achieved a 4%
improvement in the genuine acceptance rate, however, the fusion
weights were not optimised.

To the best of our knowledge, our approach is the first in com-
bining soft biometrics with a primary biometric to identify a user
in real-time, in the field of HRI. Moreover, it is the first time that
the presented modalities (face, gender, age, height and time of inter-
action) are fused together, although they have shown improvement
when fused separately or with other biometrics [2, 11, 15].

3 METHODOLOGY
We developed a BN based on [9] integrating multi-modal biomet-
rics for reliable recognition in real-time human-robot interaction.
We fuse face recognition (F) information (primary biometric) with
gender (G), age (A), and height (H) estimations and the time of
the interaction (T) (soft biometrics). Conditional independence is
assumed between nodes, given the identity (I). The pyAgrum [3]
library is used for implementing the structure.

3.1 Structure
The states of each node are determined by: the number of known
users (for F and I), the available range of the modality (for A and

H), and the pre-defined values (for G, "female" and "male", and for
T, the day of the week combined with the time of the interaction).
The data available about each user are converted to probabilities
for each state within a node. These values are used as evidence in
the network, and the maximum posterior for the I node determines
the estimated identity of the user.

FR values are assumed to be similarity scores, such that, each
score gives the percentage of similarity of the current user to the
faces in the database. These scores are normalised to find the proba-
bilities of the states. Age, height, and time are considered as discrete
random variables (e.g. age is taken as 26, between 26 and 27). We
estimate the probabilities of the remaining states by assuming a
discretised and normalised normal distribution, N (µ,σ 2), defined
by Eq. 1, where X is the estimated value, Z is the z-score, and C is
the confidence of the biometric indicator for the estimated value.

µ = X , P(−0.5
σ
< Z <

0.5
σ

) = C (1)

Generally, in FR systems, if the highest similarity score or proba-
bility is below a given threshold, the user is declared as “unknown”.
However, in a BN, the posterior probabilities can be quite low due
to the multiplication of probabilities during inference and the value
can decrease with increasing number of states in a node. Thus,
instead of using a fixed threshold in our system, we use the quality
of the estimation (Q), in which we compare the highest probability
(Pw ) to the second highest probability (Ps ), as shown in Eq. 2. The
difference is multiplied by the number of people in the database
(np ), because the difference between the probabilities decreases as
the number of people increases (the sum of probabilities is 1.0).
Initially Q = 0, which eliminates the cases where the first and the
second highest probabilities are the same.

Q = [Pw (I |F ,G,A,H ,T ) − Ps (I |F ,G,A,H ,T )] ∗ np (2)
The FR threshold (θFR ) is maintained in the system through the

introduction of the “unknown” (U ) state in face and identity nodes.
The similarity score of U for FR is set to the θFR , hence, when
normalised, the similarity scores below the threshold have lower
probabilities than U . Similarly, those that have higher similarity
scores than the threshold will have higher probabilities thanU .

3.2 Learning
Our hypothesis is that the recognition could be improved by learn-
ing the likelihoods of the system through evidence. Hence, as our
contribution, we propose a BN where the likelihoods of the system
are learned from data.

A possible solution could be to create a model that depends on
time-series data, like a dynamic BN. However, in a dynamic BN,
only the immediate prior value at the previous time step is used,
which differs from an open-set identification problem, where the
previous state can contain values that applied to another user. For
example, user "1" might be encountered right before user "2"; in
which case, the evidence for user "1" might not have an effect on
the identity estimation for user "2".

Therefore, we designed our own approach in learning from data.
We initially use the prior knowledge in setting the likelihoods for
each variable (e.g. P(F |I ), P(G |I )). When the robot identifies a user,
and the user confirms her identity, the recognition information and
the identity of the user are fed as evidence to the network, and the
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current posteriors are summed and normalised with the previous
posteriors, to update the posteriors for this user. In our example
(see Fig. 2), initially, P(F ="1"|I ="1") is set to be much greater than
the rest of the likelihoods. However, the FR evidence gives a higher
probability score for "3" than "1", which might be due to the similar-
ity in their appearance. After the identity confirmation of the user,
using the face evidence, and the evidence for the other modalities,
the likelihood is updated by summing with the previous posterior
and then normalising it. Updating the posteriors would allow the
network to learn their similarity, hence, at the next encounter, the
probability for mistaking "1" with "3" would be decreased.

3:0.0333
2:0.0333
1:0.9000
0:0.0333

Initial P(F|I="1")

(a)

3:0.3802
2:0.2038
1:0.1878
0:0.2281

Face

(b)

3:0.0646
2:0.0346
1:0.8620
0:0.0388

P(F|F=f,G=g,A=a,
H=h,T=t,I="1")

(c)

3:0.0490
2:0.0340
1:0.8810
0:0.0361

Updated P(F|I="1")

(d)

Figure 2: Learning: (a) Initial likelihood of F given I = "1",
(b) F evidence, (c) posterior using the evidence, (d) updated
posterior.

Likewise, if the recognised user was not previously enrolled
into the system, then posterior of P(F |I ="0") is updated. However,
gender, age, height, and time posteriors forU are not changed, as
they should be uniformly distributed. In order to allow the network
to learn from enough data to make meaningful estimations, the
output of the system is returned asU if the number of recognitions
is less than a predetermined threshold (here, we chose 5).

3.3 Weights
We smooth the recognition results of each modality by using the
weights as an exponent to the results for the evidence, due to using
product rule as the combination method, as opposed to the sum of
logarithmsmethod in [9]. Also, we do not restrict the sum ofweights
to 1.0, as this could deteriorate results of the primary biometric
trait (face), and instead set the weights to the range from 0.0 to 1.0.

We designed a pilot experiment, described in Section 4, for col-
lecting data to optimise theweights, that wouldminimise the overall
recognition error. The weights were optimised for each parameter
separately, except for the weight of F, which is always 1.0. The
weights that corresponded to the minimum number of incorrect
recognitions were combined to get the optimum weights, based on
the assumption that each node is conditionally independent.

3.4 Normalisation
A good normalisation method should be insensitive to the out-
liers and provide a good estimate of the real distribution [8]. For
analysing the effects on the performance, we compared such nor-
malisation methods that scale the values to [0, 1] range to be used

as probabilities within the BN: min-max, tanh [7], softmax [1], and
norm-sum (dividing by the sum of values).

BNs use the product rule for combining the results of each node,
hence, if a probability of a classifier is zero, it results in an overall
zero probability for a class irrespective of the results from other
classifiers. In order to overcome this problemwe used a small cut-off
probability threshold as pt = 10−6.

3.5 Extendability
Our approach relies on FR primarily, but the described system can
be extended with other primary biometric traits such as voice and
fingerprint, and soft biometric traits, such as the location of the
interaction, and ethnicity. It is intended to increase the recognition
rate from a single image, and tracking is not applied between images.
In order to increase the reliability of the system, multiple images (3
images here) are taken in succession during the pilot study and the
results are normalised to estimate the identity of the user, which
allows discarding the images without a face detected.

The system does not require heavy-computing, hence, it is suit-
able for use on commercially available robots. We use a Pepper ro-
bot3 in our study with Naoqi4 software modules (providing a user’s
face ID, gender, age, and height that we used as input modalities),
however, the network is applicable to any recognition software.

4 STUDY IN USER IDENTIFICATION
The objective of this study is to gather data for finding the optimal
weights for the proposed network for user identification.

4.1 Protocol
The user initially enrolls to the system by entering his/her name,
gender, age, and height, and then the robot takes photos of the user.
During next encounters, the robot predicts the identity of the user
and asks for confirmation.

We ran the study with 14 participants (4 female, 10 male, of age
range 24-40) and collected a total of 66 images per user over the
four weeks period. The recognition process took approximately
5 seconds: ∼2-3s for user detection, ∼1.5s (0.5s each) for image
capture, ∼1s to load the network parameters, ∼0.6s (0.2s each) for
recognition from modalities, ∼0.9s (0.3s each) for estimation of the
identity using the network. The robot stayed in a fixed position
before the interaction, and only when a user was identified, it
would become animate to ensure a natural interaction. We aimed to
achieve better quality of images by keeping the robot fixed, however,
since the robot did not notify participants when taking images, some
of the captured images include people looking sideways, smiling,
partially covering their faces or moving (see Fig. 1).

We use single-user recognition within the images, that is, only
one user is assumed to be present in front of the camera. Hence,
the image database was cleaned of images with multiple people or
any other user rather than the claimed identity for cross-validation.
However, in the future, the position of each user can be considered
for multiple people recognition and interaction.

3https://www.ald.softbankrobotics.com/en/robots/pepper
4http://doc.aldebaran.com/2-5
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4.2 Results
In order to validate our system, 5-fold cross-validation is applied
with 13 images per user in each bin with a different randomised
initial ordering of the users, and the results are averaged. Detec-
tion and identification rates (DIR) and false alarm rates (FAR) are
reported for the pilot study along with receiver operating char-
acteristics (ROC) curves (see Appendix and Fig. 3), which are the
performance measures for the open-set identification problem [12].

The average failure to enroll error (FTE) is 0.214 (0.008), which
corresponds to the fraction of images where a face cannot be de-
tected. The identity was not estimated by the network in those cases
because the only primary biometric in our system is FR and soft
biometrics do not have the deterministic characteristic to estimate
the identity on their own.

The optimised weights (see Appendix) show that in our study the
age is the least effective soft biometric in determining the identity,
whereas height is the most effective one. However, this might be
due to the characteristics of the population in our pilot study, as
the participants’ ages are close to each other. Another important
factor is the reliability of the age recognition software. The standard
deviation of the estimated age of a user on average was 9.3. Hence,
we cannot conclude that age should not be used to supplement the
FR in general, but if used, the accuracy of the software used should
be high, especially in a population with a narrow age range. On the
other hand, the effectiveness of the height can also be explained
by the nature of the population (3 relatively tall (> 180 cm) and 2
relatively short (< 160 cm) users), even though the average standard
deviation of estimated height was 6.3 cm. A more balanced dataset
would allow observing the true effects of these parameters.

The cross-validation results for the optimised weights (see Ap-
pendix) show that combining soft biometrics using our proposed
BN can increase the DIR, depending on the inner settings. It can be
observed that although norm-sum and min-max methods provide
good results without learning, the recognition rate drops below FR
with learning, whereas softmax and tanh methods are not affected.

However, the FAR of the network for any normalisation method
is greater than the FAR of FR. This is caused by the combination of
multimodal data. For example, if the highest face similarity score
is below the threshold, the FR reports the user as “unknown”. The
network, on the other hand, will still try to identify the user based
on other sensor input, where errors might increase FAR.

In order to compare the effects of learning, we chose the min-max
method without learning and with a cut-off threshold (Nminmax)
and the softmax method with learning and no cut-off threshold
(NLsoftmax), because the former provides the second highest DIR
but with lower FAR than that of the best methods (highlighted
in blue), and the latter provides the best DIR in learning in both
training and test sets. The results are presented in Fig. 3.

The trade-off between DIR and FAR can be observed in Fig. 3a.
The ideal FR threshold (θFR ) should maintain a low FARwith a good
DIR. For example, at θFR = 0.7, the FAR is very low for both FR and
NLsoftmax, however, the DIR has also decreased substantially. If we
compare the results in the range where FARFR ≤ 0.5 (θFR = 0.3) and
DIRFR ≥ 0.8 (θFR = 0.6): Nminmax is better in identification (0.93 ≤
DIRminmax≤ 0.949) than NLsoftmax (0.873 ≤ DIRsoftmax≤ 0.946)
and FR (0.801 ≤ DIRFR≤ 0.933). However, NLsoftmax misidentifies
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Figure 3: ROC curves (Dotted lines represent FR results,
dashed line is Nminmax, solid line is NLsoftmax): (a) Perfor-
mance measures, DIR (in blue) and FAR (in red), for varying
θFR ; (b) ROC curve for varying Q values for θFR = 0.4.

the “unknown” users much less (0.286 ≤ FARsoftmax≤ 0.543) than
Nminmax (0.457 ≤ FARminmax≤ 0.571).

θFR = 0.4 gives the highest detection rate for both Nminmax and
NLsoftmax with lower FAR, hence, we compared the effects of quality
of estimation (Q) at this rate (see Fig. 3b). The area of improvement
for the open-set identification problem is where FAR ≤ FARFR
and DIR ≥ DIRFR. NLsoftmax does not provide a value in this range,
hence, we can conclude that the proposed learningmethod performs
worse than the method without learning. DIRminmax is 1.4% higher
than DIRFR where the FAR is equal (Q = 0.31), and FARminmax is
1.4% lower than FARFR where DIR is equal (Q = 0.41). On the other
hand, if the problem was treated as a closed-set problem (where all
the users are enrolled into the system), Q = 0 would be sufficient
and the increase in DIR would be 4.4%.

5 CONCLUSION
Our results suggest that the use of soft biometrics increases the
recognition rate, however, it can also increase the misidentification
rate of unknown users. Increasing θFR and Q can indeed decrease
the FAR, but it can decrease the DIR as well. On the other hand,
our proposed learning method mostly performs worse than the
traditional BN on this dataset.

Furthermore, the results indicated that our dataset might be
biased due to the small population size and the characteristics of the
population. To our knowledge, the only publicly available database
that contains the soft biometrics used in our system (except the
time of interaction) with a face database is the recently released
BioSoft [14]. However, the number of subjects is limited to 75, and
the height is defined in labels instead of numeric values. Therefore,
as a future extension, we will generate an artificial database with
a higher amount of subjects with differing soft biometrics, which
would also allow setting the noise level in the modalities. We aim
to compare the performance of our system with other classification
methods such as Support Vector Machines on the artificial dataset.

In the near future, we plan to use the proposed user recognition
system in Cardiac Rehabilitation (CR) therapy, during which the
robot will recognise the patients and personalise the interaction
based on the information about the patients’ previous sessions and
their progress during the therapy [10]. The study will allow us to
evaluate our system in a real-world application, and to observe the
effects of personalisation in a long-term HRI.
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Appendix: 5-fold cross validation mean (with standard deviation) of false alarm rates (FAR) on the training set, detection and
identification rates (DIR) for rank 1 for training and test sets, and optimised weights for each normalisation method with
varying learning method and cut-off threshold (pt ) settings with θFR = 0.3. Highlights in blue show the best values obtained in
learning and without learning conditions (minimum FAR, maximum DIR for training and test sets). Highlights in red show
the chosen methods for the comparison of learning from data.

Learning pt Normalisation FAR DIR1 (Training) DIR1 (Test) wG wA wH wT

none none FR 0.443 (0.078) 0.933 (0.004) 0.945 (0.015) 0 0 0 0
none none norm-sum 0.629 (0.032) 0.951 (0.004) 0.967 (0.013) 0 0 0.1 0
none none min-max 0.629 (0.032) 0.951 (0.005) 0.965 (0.015) 0.2 0 0.1 0
none none softmax 0.571 (0.072) 0.947 (0.004) 0.965 (0.014) 0.1 0 0.6 0
none none tanh 0.571 (0.051) 0.942 (0.005) 0.955 (0.012) 0 0 0.1 0
none 1e-6 norm-sum 0.529 (0.081) 0.943 (0.003) 0.956 (0.015) 0 0 0.1 0.1
none 1e-6 min-max 0.586 (0.060) 0.949 (0.005) 0.965 (0.014) 0.2 0 0.1 0
none 1e-6 softmax 0.571 (0.072) 0.946 (0.003) 0.959 (0.015) 0.1 0.1 0.1 0.1
none 1e-6 tanh 0.543 (0.039) 0.942 (0.003) 0.957 (0.013) 0 0 0.3 0.1
evidence none norm-sum 0.629 (0.032) 0.782 (0.063) 0.694 (0.093) 0.1 0 0.1 0
evidence none min-max 0.629 (0.032) 0.776 (0.064) 0.692 (0.090) 0 0 0.1 0
evidence none softmax 0.586 (0.060) 0.946 (0.005) 0.961 (0.017) 0.1 0 0.6 0
evidence none tanh 0.571 (0.051) 0.943 (0.007) 0.955 (0.012) 0 0 0.1 0
evidence 1e-6 norm-sum 0.571 (0.072) 0.75 (0.082) 0.632 (0.127) 0.1 0 0.1 0
evidence 1e-6 min-max 0.643 (0.0) 0.776 (0.061) 0.697 (0.089) 0 0 0.1 0
evidence 1e-6 softmax 0.586 (0.060) 0.946 (0.005) 0.954 (0.025) 0.1 0 0.6 0
evidence 1e-6 tanh 0.543 (0.039) 0.943 (0.006) 0.961 (0.019) 0 0 0.3 0
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ABSTRACT 
This paper explores the use of a social robot for one-on-one 
tutoring, in a study in which 15 children participated in four 
second-language tutoring sessions. Specifically, changes across 
sessions are measured on two dimensions: engagement and 
performance. Results have revealed a significant positive change 
in performance as well as a significant pattern in engagement 
across the interactions1.  
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1 INTRODUCTION 
In recent years, increasing effort is made to design social robots 
as second language (L2) tutors [1-2]. The potential for robots to 
be effective tutors comes from various aspects, including their 
ability to tutor one-on-one [3], and to interact with children over 
multiple sessions for a longer period of time. However, most L2 
learning studies thus far involving one-on-one tutoring lasted 
only one session [4], while those that have carried out long-term 
studies allowed one-on-many tutoring [2]. The current study 
explores the effects of a robot tutor over multiple child-robot L2 
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tutoring sessions. Specifically, this study investigates potential 
changes in two dimensions: children’s engagement and their 
performance during the tutoring sessions.  

2 OUR APPROACH  
This study has been carried out as an extensive pilot study as a 
part of the L2TOR project, which aims to develop a robot tutor 
that helps young children learn an L2 [5]. To explore the 
changing relation between child and robot over the course of 
multiple one-on-one tutoring sessions, we conducted an 
experiment that consists of four sessions. During these sessions, 
the robot taught English (L2) vocabulary to Dutch (L1) children 
(age 5-6). Specifically, we examined performance and 
engagement. Performance has been measured as the degree to 
which children managed to complete tasks during the sessions 
and a word-knowledge task during a post-test. Task engagement 
has been measured as the degree to which children are actively 
involved in the tutoring session. This way, the current study 
explores how performance and engagement change over time. 
Based on findings by previous studies [4-7], it is expected that 
engagement will decrease over the course of the sessions. 
However, children’s performance on the tasks will not be 
affected, as children will likely become more relaxed and 
familiarized to the robot and the task setting over time.    

3 METHODS  
The participants were 15 Dutch children (5 girls and 10 boys) 
with an average age of 5 years and 6 months (SD = 4.6 months). 
All parents gave their consent. The experimental setup contained 
a SoftBank Robotics NAO robot, which interacted autonomously 
with the child in four L2 tutoring sessions. Prior to the sessions, 
an introduction session was organized at the school to introduce 
the robot to the children. During the first three sessions, the 
robot taught the children a total of 17 words related to math 
such as numbers, adjectives (e.g., big) and verbs (e.g., add), via 
several games that the child and the robot played together on a 
Microsoft Surface Pro 4. The fourth session was a recap lesson to 
repeat and consolidate all 17 target words. In all sessions, the 
robot had the role of a peer-tutor, that is, the child and the robot 
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together played games on the tablet and ‘learned’ the words. At 
the end of each session (except for the recap lesson), the child 
had to complete a task. During this task, several items appeared 
on the tablet and the robot asked the child to tap on a specific 
item on the screen to which it referred in L2. The robot 
automatically logged children’s answers to measure their 
performance on the tasks. In addition, to measure overall 
improvement of the child’s English skill, a pre-test and two post-
tests were administered. The pre-test was administered right 
before the first interaction. One post-test was completed 
immediately after the recap lesson and the other a week later. In 
these tests, we asked the children to translate the 17 target 
words from English to Dutch. The experiments were recorded 
using a camera. The changes in performance over the course of 
the sessions were measured by comparing the scores on the 
tasks that were completed at the end of each of the three 
learning sessions (the recap lesson did not contain a task part 
and was not included in this measure). In addition, the scores on 
the pre- and post-tests were compared to assess the child’s 
knowledge of the target words. To measure changes in 
engagement over the course of the sessions, a perception study 
was conducted. Eleven participants (Mean age = 25, SD = 2.8) 
rated the task-engagement of children on a five-point differential 
scale for a total of 117 short video clips (5 seconds) without 
audio (2 per child per lesson, 3 videos were missing due to 
technical difficulties). A high degree of interrater reliability was 
found between the participants of the perception study. The 
average measured ICC was .886 (F(116, 1160) = 8.74, p <.001). The 
fragments were taken at specific moments in the robot’s script, 
the first a few minutes after the start and the second a few 
minutes before the end of the lesson.  

3  RESULTS  
On average, scores on the immediate post-test (M = 3.64, SD = 
3.08) were higher than scores on the pre-test (M = 2.43, SD = 
2.41), but this difference was not significant (Mdif = 1, t(14) = 
1.46, p = .165). The scores on the delayed post-test (M = 4.21, SD 
= 3.14) were significantly higher than the scores on the pre-test 
(Mdif = 1.79, t(13) = 2.29, p = .039), indicating that children’s 
knowledge of the target words improved over time (max. 
possible score: 17). To test the relation between the amount of 
sessions with the robot and performance on the tasks and 
engagement, a one-way repeated measures ANOVA was 
performed for both dependent variables. For performance, the 
overall ANOVA was significant (F(1,14) = 22.65, p < .001, η2 = 
.72), revealing a significant effect of session on performance. 
Performance increased between the first (M = 0.64, SD = 0.35) 
and second lesson (M = 1.40, SD = 0.46) (Mdif = 0.96, p < .001), 
but not between lesson two and lesson three (M = 1.39, SD = 
0.24) (max. possible score: 2). For engagement, the overall 
ANOVA was also significant (F(1,14) = 4.61, p = .014, η2 = .02), 
revealing a significant effect of session on engagement. No 
significant change was observed between the first (M = 3.55, SD 
= 0.46) and second lesson (M = 3.64, SD = 0.36). Engagement 
decreased between the second and third lesson (M = 3.09, SD = 
0.63) (Mdif = -0.55, p = .034), and increased between the third and 

fourth lesson (M = 3.62, SD = 0.62) (Mdif = 0.53, p = .039) (max. 
possible score: 5).  

4 CONCLUSIONS 
In this study, we carried out an extensive pilot to study long-
term effects of L2 tutoring using a social robot. Results have 
revealed a positive relationship between time spent with the 
robot and performance on the learning tasks. Children improved 
their learning achievements after spending more time with the 
robot, possibly because they get more used the robot as a tutor. 
However, we cannot know this for sure as the content of the 
individual lessons might have influenced the performance. 
Furthermore, results showed a decrease of engagement between 
the second and third session and an increase of engagement 
between the third and fourth session. The downward trend may 
be explained by familiarization with the robot. The positive 
change between the third and fourth session may have been 
caused by the content of the recap session being different from 
the three learning sessions or by the fact that children knew that 
it was the last time they got to play with the robot. While more 
extensive studies on changes in performance and engagement in 
longitudinal one-on-one tutoring need to be conducted, this 
explorative study has thus taken first steps and found promising 
results regarding how performance and engagement evolve over 
time in long-term child-robot L2 tutoring sessions. Moreover, 
this study has set the stage for a larger evaluation study planned 
in the near future involving more lessons, more children and 
different conditions. 
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ABSTRACT 
Previous research has shown that the presence of a human peer 
during a learning task can positively affect learning outcomes. 
The current study aims to find out how second language (L2) 
vocabulary gains differ depending on whether children are 
learning by themselves, with a child peer, or with a robot peer. 
Children were administered an L2 vocabulary training in one of 
these three conditions. Children’s word learning was measured 
directly after the training and one week later. Contrary to our 
expectations, children learning by themselves outperformed 
children in the peer conditions on one out of four word 
knowledge tasks. On the other tasks, there were no differences 
between the three conditions. Suggestions to further study the 
potential benefits of a robot peer are provided. 
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1 INTRODUCTION 
Human peers can positively affect learning outcomes, by 
transferring their knowledge onto the learner, increasing task 
enjoyment, or allowing for learning-by-teaching [1]–[3]. One of 

the advantages of robots over other forms of technology is that 
they can take up various roles in learning interactions, such as 
tutors, teaching assistants, and, crucially, peers. Perhaps robot 
can, similarly to human peers, enhance learning outcomes. 

Present evidence in robot-assisted language learning studies 
on the effectiveness of robot peers is contradictory. Some studies 
employing a robot as a peer find that children do learn [4]–[6], 
while other studies find limited learning or effects for only a 
subgroup of the children (e.g., those who voluntarily continued 
playing with a robot over time) [7], [8]. In these studies, the 
presence of a robot peer has not always been systematically 
compared to children learning alone or together with a human 
peer, and they differ in their design (e.g., single or multiple 
sessions, the robot acting like a tutor versus a learner). The 
current study compares L2 vocabulary gains across three 
learning conditions: children learning by themselves, with a 
child peer, or with a robot peer during a single session. The 
findings will help develop effective robot peers.  

2 METHOD 
In this study, 67 Dutch kindergartners (26 girls and 41 boys) with 
an average age of 67 months (SD = 7) participated in an L2 
(English) vocabulary training. They were randomly assigned to 
one of the three conditions: (1) the child-only condition, in 
which they were learning by themselves (N=23), (2) the robot-
peer condition, in which they learned together with a robot 
(N=23), or (3) the child-peer condition, in which they learned 
together with a child of the same age (N=21).  

Children were taught six L2 English target words: “heavy”, 
“light”, “full”, “empty”, “in front of”, and “behind”. As part of the 
training children had to manipulate 3D images of objects on a 
tablet (e.g., putting animals in a cage). In the child-only 
condition, the child performed all manipulations on the tablet 
screen. In the peer conditions, the target child and the robot or 
child peer took turns in performing actions on the tablet.  

The robot used in the present study was a NAO robot, 
developed by Softbank Robotics. We used the Wizard-of-Oz 
approach. The robot’s responses had been preprogrammed, such 
that its responses and behaviors were consistent for all children. 
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To make sure the children would perceive the robot as a peer, 
children were instructed prior to the training that the robot also 
did not know the English words yet and was going to learn these 
as well. The robot’s behaviors were: 1) manipulating the tablet; 
2) repeating the target words; 3) commenting on the children’s 
manipulations; 4) pointing to the tablet while explaining what to 
do, in case the child failed a task. Types 1 and 2 were the same 
activities as the child (and child peer) was/were asked to do, type 
3 was included to increase children’s motivation and stimulate 
interaction, and type 4 was used to provide scaffolding.  

Children’s word learning gains were assessed immediately 
after the training and one week later using four tasks: (1) a 
translation task in which the child had to translate the word 
from English to Dutch; 2) the same task from Dutch to English; 
3) a comprehension task in which children had to select the 
picture that best represented the target word out of four options; 
and 4) a sorting task in which the child had to sort cards 
depicting one of two antonyms, e.g. “heavy” and “light”, into 
trays depending on the word depicted on it. In addition, children 
were asked directly after the training whether they perceived the 
robot as a friend or a teacher, to assess whether our framing of 
the robot as a peer succeeded. Finally, a non-word repetition task 
in which children repeated non-existing words [9] was 
administered during the delayed post-test to investigate the 
comparability of the three groups on an important skill related to 
word learning: phonological memory.  

The training and the tests were administered individually in 
a quiet room at children’s schools. The first session, in which the 
training and the immediate post-test were administered, lasted 
about 50 minutes. The second session, with the delayed post-test 
and the non-word repetition task, lasted about 30 minutes. 

In our data analyses, we included phonological memory and 
age as covariates, as one-way ANOVAs revealed a significant 
difference across the three groups in phonological memory, p = 
.039, with post-hoc tests showing that children in the robot-peer 
condition outperformed children learning alone, and in age, p = 
.047, with post-hoc tests showing that children learning alone 
were older than children in the robot-peer condition. Due to 
floor effects, the scores on the translation tasks were 
transformed into a dichotomous variable (having produced no 
words or at least one word correctly).  

3 RESULTS 
First, we assessed whether framing the robot as a peer succeeded 
and whether children performed above chance level on the 
comprehension task (25%) and the sorting task (50%). Most 
children (18 out of 23) saw the robot as a friend rather than as a 
teacher. Children performed above chance level on the 
comprehension task and the sorting task in both sessions (all ps 
<.005, 1.04 < d < 2.03).  

Pearson’s Chi-Square Tests indicated no effect of condition 
on the scores of the translation tasks in both sessions (all ps > 
.101, .305 < φ < .382). A repeated-measures ANCOVA showed an 
interaction effect between condition and time (p = .012, partial η2 

= .10), which was significant for the comprehension task (p = 
.010, partial η2 = .15), but not for the sorting task (p = .091, partial 

η2 = .08). For the comprehension task, children learning alone 
outperformed children in the child-peer condition during the 
delayed post-test (p = .031, d = 0.72) (with a trend for children in 
the robot-peer condition, p = .071, d = 0.47), while they did not 
differ significantly from children in the peer conditions during 
the immediate test (both ps >.999, 0.12 < d < 0.14).  

4 CONCLUSIONS 
Contrary to our expectations, we found that children learning by 
themselves in an L2 vocabulary training outperformed children 
learning with a child or robot peer on one out of four word-
knowledge tasks. On the other tasks, there were no differences 
between the three conditions.  

A possible explanation for the lack of peer benefits is that the 
vocabulary training did not allow for enough interaction 
between the learner and the peer for the learner to benefit from 
the peer. In addition, there were fewer learning opportunities in 
both peer conditions by manipulating the tablet, as tasks were 
divided between the target child and the (child or robot) peer. 
We recommend future researchers to look into more interactive 
learning tasks in which robots can take a more active role in 
supporting children’s learning. Furthermore, qualitative 
analyses, which were beyond the scope of the current paper, 
would be especially valuable to assess which types of 
interactional patterns in child-child and child-robot dyads do or 
do not benefit learning in such tasks.  
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ABSTRACT
This paper presents a study in which children, four to six years old,
were taught words in a second language by a robot tutor. The goal is
to evaluate two ways for a robot to provide scaffolding for students:
the use of iconic gestures, combined with adaptively choosing the
next learning task based on the child’s past performance. The results
show a positive effect on long-term memorization of novel words,
and an overall higher level of engagement during the learning
activities when gestures are used. The adaptive tutoring strategy
reduces the extent to which the level of engagement is diminishing
during the later part of the interaction.
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1 INTRODUCTION
Robots show great potential in the field of education [24]. Embodied
agents in the form of humanoid robots, in particular, may deliver
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educational content for various subjects in ways similar to human
tutors. The main advantage of using such a robot compared to
traditional learning tools is its physical presence in the referential
world of the learner [20]. The human-like appearance and presence
in the physical environment may facilitate interactions that are, to
some extent, similar to the ways in which human teachers would
communicate with their students. Care should be taken, however,
to design for the correct amount of social behavior, so as to avoid
distracting students from the task at hand [16].

When designing such interactions, we can draw upon ways in
which human teachers give contingent support to students in their
learning activities. For instance, particularly in one-on-one tutoring
situations, teachers tend to adjust the pace and difficulty of learning
tasks based on the past development and current skill set of the
student [29]. For example, teachers may help by scaffolding, taking
the initial knowledge base as a starting point and trying to optimize
the learning gain by choosing the hardest task to perform that still
lies within the zone of proximal development [32] of the student.

The use of gestures that coincide with speech is another way
for teachers to provide scaffolding, particularly when the concepts
which the gestures refer to are not yet mastered by the student
[1]. For instance, when teaching a second language (L2), gestures
can help to ground an unknown word in the target language by
linking it iconically or indexically to a real world concept. Such a
facilitating effect on word learning has been found for imitating
gestures of a virtual avatar [2]. However, it is an open question
if the embodied presence of a robot can be exploited to support
language learning through a robot’s gesturing, and if so, what kind
of gestures would have a positive impact.

In this paper, we present the results of an experiment conducted
to explore how these two tools for scaffolding the learning of lan-
guage — choosing the task that yields the greatest potential learning
gain for a particular student and the use of appropriate co-speech
gestures — carry over to a humanoid robot. Both were combined
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in one study to better estimate what the relative importance of
the respective techniques is, while keeping all other factors con-
stant, and to find out whether the benefits of the two strategies can
potentially reinforce or impede each other. The techniques were
implemented and tested in a one-on-one tutoring system where
children, four to six years old, play a game with a robot to learn
an L2. In the next section, we briefly present the approaches taken
to realize the adaptive tutoring along with co-speech gesturing of
the robot. We then describe the experimental methodology, before
reporting and discussing the results obtained.

2 BACKGROUND
2.1 Adaptive Bayesian Knowledge Tracing
A robot tutor that personalizes the learning experience for indi-
vidual students has been shown to have a positive effect on per-
formance [19]. This robot is also perceived as smarter or more
intelligent and less distracting or annoying. In order to simulate
the way human tutors tailor learning activities and difficulty levels
to a particular student, an adaptive tutoring system would have
to measure and track the knowledge level of the student. Often
the knowledge is traced skill-wise, where in the case of language
learning, the mastery of particular words or phrases in the target
language is represented probabilistically (e.g., [11]). This approach
yields promising results, but it lacks flexibility because of the need
to define domain-specific distance metrics to choose the next skill.
Others have used Dynamic Bayesian Networks to represent the
learner’s knowledge about a skill, conditioned on the past inter-
action and taking into account skill interdependencies [14]. This
approach requires detailed knowledge about the learning domain
to model those interdependencies and their parameters. Recently,
Spaulding et al. [27] used a simpler approach based on Bayesian
Knowledge Tracing (BKT) [6]. The general BKT model consists
of latent variables St representing the extent to which the system
believes a particular skill to be mastered by the student. The be-
lief state of the system is updated based on observed variables Ot ,
which correspond to the result of a learning action (e.g., correctly
or incorrectly answering a question), while accounting for possible
cases of guessing p(дuess) and slipping p(slip) during the answer
process. It was shown that this model outperforms traditional ap-
proaches for tracing the knowledge state in learning interactions,
and that it can be easily extended to, for example, incorporate the
emotional state of a child. In previous work [26], we have extended
the basic BKT with action nodes to also model the tutor’s decision-
making based on current beliefs about the student’s knowledge
state (see Figure 1). Additionally, we employed a latent variable S
that can attain discrete values for each skill, corresponding to six
bins for the belief state (0%, 20%, 40%, 60%, 80%, 100%). This allows
for quantifying the robot’s uncertainty about a learner’s skills as
well as the impact of tutoring actions on future observations and
skills.

This so-called Adaptive Bayesian Knowledge Tracing (A-BKT)
approach can be used to choose the next skill from which the
learner will most likely benefit, by estimating the greatest expected
knowledge gains. It tries to maximize the belief of each skill while
also balancing over all skills and not teaching a particular skill over
and over again, even if the answer to the task was wrong and the

Figure 1: Dynamic Bayesian Network for BKT (taken from
[26], with permission): with the current skill-belief the ro-
bot chooses the next skill St and action At for time step t
and observes Ot as response from the user.

skill belief is the lowest. The system does not only allow to choose
the best skill to address next, but also the action to be used for
scaffolding the learning of this skill. In this context, actions can be,
for example, different types of exercises, pedagogical acts, or task
difficulties. For the sake of simplicity, three task difficulties have
been established (easy, medium, hard) to address a skill and to find
the best action for a given skill.

The goal of this strategy is to create a feeling of flow which
can lead to better learning results [7]. It strives not to overburden
the learner with tasks that would be too difficult nor to bore them
with tasks that would be too easy, both of which may lead to disen-
gagement and thus hamper the learning. Note that this approach is
comparable to the vocabulary learning technique of spaced repeti-
tion as implemented, for instance, in the Leitner system [18]. The
implementation of A-BKT used in the current study is identical
to the one used previously in [26]. However, it has not yet been
evaluated with children nor in conjunction with other techniques
that might affect action difficulty (such as gestures). Furthermore,
its impact on student engagement has not been explored previously.

2.2 Gestures
Iconic gestures elicit a mental image that corresponds directly, ei-
ther in form or execution, to the concept or action that is being
described verbally at the same time [23]. For example, a flying bird
could be depicted by stretching both arms sideways and moving
them up and down. Studies have shown that iconic gestures, when
performed by a human teacher, may aid the acquisition of L2 vocab-
ularies [8, 15, 21, 28]. Hald et al. [12] provide an overview of how
gestures can contribute to learning an L2. They propose that ges-
tures might have a ‘grounding’ effect by linking existing perceptual
and motor experiences to a new word. This is expected to result in
a richer mental representation. Research by Rowe et al. [25] shows
that gender, language background, and level of experience in the
native language (L1) influence the extent to which gestures can
contribute to L2 learning. The positive effects of gestures hold true
for younger students as well; in fact, gestures are suggested to be a
crucial part of communication with children [13]. It has also been
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shown that gestures help not only to acquire knowledge, but also
to retain it over time [5].

Previous research has explored the use of gestures by virtual
agents (e.g., [2]) and robots (e.g., [30]), finding similar, positive
effects on memory performance when gestures are produced by an
artificial embodied agent compared to a human tutor.While humans
tend to spontaneously perform and time their gestures, they will
often need to bemanually designed and coordinated with speech for
the robot. Due to its limited degrees of freedom, however, the robot
is unable to perform motions with the same level of detail, finesse,
and accuracy as a human. This may lead to a loss in meaning when
human gestures are being translated directly to the robot, indicating
a need for alternative gestures. As a concrete example, the SoftBank
Robotics NAO robot that was used in this case is unable to move its
three fingers individually, preventing it from performing pointing
gestures or finger-counting. However, research suggests that iconic
gestures are almost as comprehensible when performed by a robot,
compared to a human [4].

3 METHODOLOGY
An experiment was conducted to investigate the effect of using
iconic gestures and an adaptive tutoring strategy on children’s
acquisition of L2 vocabularies, with the intention of answering the
following three hypotheses:

H1: There is a greater learning gain when target words are
accompanied by iconic gestures during training, than in the
case of not using gestures.
H2: There is a reduced knowledge decay when target words
are accompanied by iconic gestures during training, than in
the case of not using gestures.
H3: There is a greater learning gain when target words are
presented in an adaptive order during training, based on the
knowledge state of the child, than when target words are
randomly introduced.

These hypotheses rely upon the underlying assumption that chil-
dren are able to acquire new L2 words during a single session with a
robot tutor, regardless of experimental conditions; this assumption
was also put to the test.

The experiment had a 2 (adaptive versus non-adaptive) x 2 (ges-
tures versus no gestures) between-subjects design. In the two con-
ditions with the adaptive tutoring strategy, the A-BKT system de-
scribed in Section 2.1 was used to select the target word for each
round, based on the believed knowledge state of the child. In prac-
tice, this meant that children would be presented with a particular
target word more frequently if they had answered it incorrectly in
the past, thereby changing the number of times each target word
occurred during training, although each target word was guaran-
teed to occur at least once. Other conditions had a random selection,
where each of the six target words would always be presented five
times, in a randomized order, for a total of thirty rounds. In the
gesture conditions, whenever a target word was introduced in the
L2 it was accompanied by an iconic gesture (as shown in Figure 2).
All conditions had the robot standing up and in “breathing” mode,
which meant that it slowly shifted its weight from one leg to the
other and had a slight movement in its arms to simulate breathing.

Figure 2: Examples of the stroke of two iconic gestures per-
formed by the robot (taken from [9], with permission). Left:
imitating a chicken by simulating the flapping of its wings;
right: imitating amonkey by scratching head and armpit.

3.1 Participants
Participants were 61 children, with an average age of 5 years and
2 months (SD = 7months), 32 girls. They were recruited from
primary schools in the Netherlands, by first contacting schools and
then sending out an information letter together with a consent form
through the schools to the parents of children that satisfied the age
limit of four to six years. Only native Dutch children with Dutch
as their L1 are included in the evaluation, although all 99 children
that had signed up were allowed to participate in the experiment.
The children were randomly assigned to conditions, while taking
into account a balance in age and gender.

3.2 Materials
The aim of the tutoring interaction was to teach children six animal
names in English: bird, chicken, hippo, horse, ladybug, and monkey.
These specific words were chosen because the Dutch words are
distinctly different from their English translations and because it
was possible to create uniquely defining iconic gestures for them.

The SoftBank Robotics NAO robot was used, which was standing
in front and slightly to the right of the child. After an experimenter
had filled in the name of the child and pressed the start button,
the experiment ran fully autonomously. Two experimenters were
always present, where one would take care of getting the child
from the classroom and explaining the procedure of the experiment,
while the other would set up the system. To avoid having the child
seek them out for feedback, the experimenters would announce
that they would be occupied. The child was asked to sit on pillows,
close to the tablet which was raised on a box and slightly tilted.
Two cameras were used to record the interaction, one facing the
front of the child and one at an angle from the side. The basic setup
is shown in Figure 3, although it differed slightly between locations
due to the layout of the rooms. In the condition with gestures every
occurrence of the target word in L2, except when giving feedback,
was accompanied by the matching iconic gesture (see Figure 2). The
gesture was timed in such a way that the pronunciation of the target
word would coincide with the stroke of the gesture, i.e., the accented
phase that is most related to the meaning. A perception study
was conducted to evaluate the quality of the gestures [9], where
14 participants were shown video recordings of all six gestures
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Figure 3: The setup for the experiments.

performed by the robot and then asked to indicate which out of the
six target words corresponds to each particular recording. Based on
the results of this study, each gesture was deemed to be sufficiently
unique to distinguish between the six target words.

The adaptive tutoring system starts with medium (0.5) confi-
dence for all target words, a value associated with two distractors
during training. Each distractor is a false answer to a task, an image
belonging to one of the five other target words. In the random
conditions, since there is no knowledge tracing the difficulty was
always set to medium (two distractors). The tablet was used to get
input from the child, because speech recognition does not work
reliably with children [17]. This is also why only comprehension
and not production of the target words is evaluated. An example of
what the tablet screen would look like is shown in Figure 5. The
images used during training belong to a different set of images
than the ones used for the pre-test and post-tests. The set of images
used during training matches the gesture that the robot performs
related to the animals, for example the image of the horse for the
training stage (shown in Figure 5) also includes a rider because the
robot shows the act of riding a horse as a gesture. The image that
was used during the tests did not include a rider and the horse is
standing still, facing the opposite direction (shown in Figure 4). In
addition to changing the pose or context of the animals, colors also
varied. Together with having a recorded voice in the tests instead of
the robot’s synthesized speech, this aims to verify whether children
learn how the English words map to the concepts of the animals
and their matching Dutch words, rather than to one specific image.

3.3 Procedure
Prior to partaking in the experiment, participants were introduced
to the robot during a group introduction. This approach is inspired
by the work of Vogt et al. [31] with the intention of lowering the
anxiety of children in subsequent one-on-one interactions with
the robot. The introduction consisted of a description of what the
robot is like, including a background story and how it is similar to
humans in some respects, and different in others. Together with
the children (and sometimes teachers and experimenters) the robot
performed dances, after which all children were presented with

Figure 4: The pre-test and post-tests on a laptop, using a
recorded voice and a different set of images from those on
the tablet.

Figure 5: The tablet during training, showing images corre-
sponding to the target word and two distractors.

the opportunity to shake the robot’s hand before putting it to bed.
Introductory sessions were scheduled several days before the first
participant was to take part in the experiment, allowing time for
the children to process these new impressions.

Before starting the tutoring interaction, a pre-test was admin-
istered to gauge the level of prior knowledge with respect to the
animal names in the L1 (Dutch) and L2 (English). This test was
administered on a laptop, where images of all six animals were ran-
domly positioned on the screen. A recording of a (bilingual) native
speaker pronouncing one of the six animal names was played, after
which the child was asked to click the corresponding image on the
screen (Figure 4). This was done for all six target words, first in
Dutch and then in English.

After completing the pre-tests, the child would go through each
target word one by one, still using the laptop. This is done to give the
children a first exposure to the correct mappings between target
words and the concepts they refer to, to avoid turning the first
rounds of learning with the robot into a guessing game. Because
there is no feedback during the pre-tests, this also ensures that
concepts are linked to the correct word, rather than having the child
assume that their answers during the pre-tests were all correct. For
each word, the image of the corresponding animal would be shown
in the center of the screen and the laptop would play a recording
by a (bilingual) native speaker saying: "Look, this is a [target in L2].
Do you see the [target in L2]? Click on the [target in L2]!"
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The training stage of the experiment consisted of the child and
robot playing thirty rounds of the game I spy with my little eye. The
robot, acting as the spy, would pick one of six target words and call
out: "I spy with my little eye...", followed by the chosen word in the
L2. For this stage, children were assigned to one of four conditions:

(1) Random tutoring strategy, no gestures (N = 16)
(2) Random tutoring strategy, gestures (N = 14)
(3) Adaptive tutoring strategy, no gestures (N = 15)
(4) Adaptive tutoring strategy, gestures (N = 16)

Prior to playing the game, the robot explained the procedure and
asked the child to indicate whether they understood by pressing
either a green or a red smiley. If the red smiley is pressed, the
interaction would pause and an experimenter would step in to
provide any further explanations. After this introduction, there
were two practice rounds: one in Dutch and one in English.

After the robot had "spied" an animal, a corresponding image
was shown on the tablet along with a number of distractor images
(Figure 5). The child was then asked to pick the image that matched
the animal name that the robot had spied. The number of distractors
was determined by the difficulty level of the round, which in the
case of the adaptive conditions depended on the confidence that the
system had in that the child knew this particular target word. A low
confidence resulted in only one distractor, while a high confidence
had three distractors.

Feedback to the task was given by both the tablet and the robot.
The tablet highlighted the image selected by the participant, either
with a green, happy smiley if the correct answer was provided or a
red, sad smiley if the selected image was an incorrect answer. The
robot then provided verbal feedback, which in the case of a correct
answer consisted of a random pick out of six positive feedback
phrases (e.g., "well done!"), followed by "The English word for
[target in L1] is [target in L2]". In the case of negative feedback,
the robot would say "That was a [chosen answer in L1], but I saw a
[target in L2]. [Target in L2] is the English word for [target in L1]".
Whenever an incorrect answer was given, the same round would
be presented once more but at the easiest difficulty (with only one
distractor: the image that was incorrectly chosen in the previous
attempt). This, combinedwith additional exposures in the corrective
feedback, means that the number of times each target word was
presented in the L2 may vary between children, depending on
how many rounds were answered incorrectly. After finishing thirty
rounds of training with the robot, the child was asked to complete a
post-test on the laptop. This test is identical to the pre-test that was
administered at the start of the experiment, in L2. Finally, the post-
test was repeated once more, at least one week after the experiment,
to measure long-term retention of the newly acquired knowledge.

3.4 Analysis
Immediate learning gain was measured as the difference between
the number of correct answers on the post-test, administered di-
rectly after the training stage, and the number of correct answers
on the pre-test, taken prior to the tutoring interaction. Test scores
were always between 0 and 6 because each target word was asked
once in the L2. The post-test was administered once more, (at least)
one week after the experiment. We then looked at the difference
between this delayed test and the pre-test for long-term learning

gain. Finally, we took the difference between the delayed test and
the immediate post-test as a measure of knowledge decay. The
design of these tests is described in more detail in Section 3.2.

Children’s tasks during training were of varying task difficulty in
the adaptive tutoring condition, with one to three distractor images.
To account for these differences, as well as to allow a comparison
with the post-test results (five distractor images), we mapped binary
task success (1: correct response; 0: incorrect response) onto the
span between 0.0 and 1.0 by subtracting a value of 0.2 for each of
the potential five distractor images that was not provided, which
would, for example, result in a score of 0.6 for a correct response in
a task with three distractors. The total score during training was
then divided by the number of rounds (30), resulting in a training
performance value between 0.0 and 1.0 (Figure 7).

4 RESULTS
The average duration of the training stage of the experiment was
18:38 minutes (SD = 3:03). Including the introduction, pre-test,
and post-test this amounted to a session length of roughly thirty
minutes. To confirm whether children managed to learn any new
words from a single tutoring interaction, regardless of strategy
or the use of gestures, a paired-samples t-test was conducted to
measure the difference between post-test and pre-test scores for all
conditions combined. There was a significant difference between
the scores on the pre-test (M = 1.75, SD = 1.14) and immediate
post-test (M = 2.85, SD = 1.61), t(60) = 5.23,p < .001. The same
analysis was conducted for the delayed post-test that was taken (at
least) one week after the experiment. Results revealed a significant
difference between the pre-test scores (M = 1.75, SD = 1.14) and
the delayed post-test test scores (M = 3.02, SD = 1.40), t(60) =
6.81,p < .001. However, therewas no significant difference between
the delayed post-test and the immediate post-test, t(60) = .92,p =
.34. This means that H2 is not supported by these results, since no
significant decay was observed in any of the conditions.

To investigate the effects of the different conditions on training
performance, a two-way ANOVA was carried out with tutoring
strategy (adaptive versus non-adaptive) and the use of gestures (ges-
tures versus no gestures) as independent variables and performance
during training as the dependent variable (Figure 7). As described in
Section 3.4, these scores are weighted by the number of distractors
present and divided by 30 rounds, resulting in a value between 0.0
and 1.0. For the 30 rounds of training there was a main effect of ges-
ture use, F (1, 57) = 18.23,p < .001,η2p = .24, such that trainingwith
gestures led to higher score (M = .38, SD = .09) than learning with-
out gestures (M = .29, SD = .08). Children in the adaptive condition
achieved a higher score (M = .36, SD = .12) than children in the
non-adaptive condition (M = .32, SD = .06), but the effect of tutor-
ing strategy was not significant, F (1, 57) = 3.62,p = .06,η2p = .06.
There was a significant interaction effect between use of gestures
and tutoring strategy, F (1, 57) = 4.72,p = .03,η2p = .08. Without
gesture use, there was no significant difference between tutoring
strategies. When gestures were present, however, children in the
adaptive condition turned out to perform better than those in the
non-adaptive condition. Hence, children’s learning outcome was
best when gesture use and adaptive training were combined.
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Figure 6: Test scores for the gesture vs no gesture conditions (left) and the adaptive vs random conditions (right).

Another two-way ANOVA was carried out to measure learning
gain, with the difference score between the post-test results and
the pre-test results as the dependent variable (Figure 6). There
was no significant effect of tutoring strategy, F (1, 57) < .001,p =
.95,η2p < .001, or use of gestures, F (1, 57) = 1.53,p = .22,η2p = .03.
These results do not support H1 and H3 (greater learning gains
when gestures and adaptive tutoring are used). The same two-way
ANOVA with the difference score between results of the delayed
post-test and the pre-test also did not give a significant effect of
tutoring strategy, F (1, 57) = .36,p = .55,η2p = .006, but there
was a significant effect for use of gestures, F (1, 57) = 6.11,p =
.02,η2p = .097, indicating that the learning gain between pre-test
and delayed post-test was greater when gestures were used during
training (M = 1.70, SD = 1.56) than when no gestures were used
(M = .81, SD = 1.25). Although this does not fully support H1 or
H2, it does show a long-term learning gain when gestures are used
during learning. No interaction effect was found, F (1, 57) = .04,p =
.84,η2p ≤ .001.

4.1 Evaluation of engagement
The engagement of the children during the training stage with the
robot was examined to find out whether children became more
disengaged with the tutoring tasks towards the end of the thirty
rounds, andwhether the application of an adaptive tutoring strategy
and gestures would influence the change in engagement levels.
This was done by asking 18 adult participants, without specific
training in working with children, to rate video clips (without
audio) of the children interacting with the robot. The choice for
conducting a perception study with adults using video recordings of
the experimentwasmade for two reasons: so that the trainingwould
not have to be interrupted for questions regarding the experience,
thereby potentially influencing the engagement, and because it is
difficult for children of a young age to reflect upon their experiences
and verbalize these thoughts [22]. For each child, one clip was taken
from the fifth round of training and one clip from the twenty-fifth
round, to get observations that are close to the beginning and end

Figure 7: Interaction effects of gesture use and training strat-
egy.

of the training, but far enough from these actual moments to avoid
short bursts of engagement when children realize the experiment
is starting or finishing. The clips start right after the robot finishes
introducing the task, i.e., the point at which the turn switches to
the child to provide an answer. All clips then run for five seconds.
One child that was excluded from the previous analysis because
delayed post-test results were missing, was included for this part
of the evaluation. However, data from one other child was missing,
making the number of stimuli 122 (61 children, two clips each), with
14 to 16 children in each condition. Participants in the evaluation
were asked to rate all 122 clips, randomly presented to them, on a
scale from 1 (completely disengaged) to 7 (completely engaged). As
a practice round, two clips of a child that was not included in the



Effect of a Robot’s Gestures and Adaptive Tutoring on Children’s L2 Acquisition HRI ’18, March 5–8, 2018, Chicago, IL, USA

Figure 8: Rated engagement levels early and late in the training interaction for the gesture versus no gesture conditions (left)
and the adaptive versus random conditions (right).

main experiment were presented, where one example was clearly
engaged and the other was clearly not engaged. After this practice
round, participants were told which features from the examples
showed engagement (i.e., rapid response to the question, upright
body posture, displaying joy after answering the question) and
disengagement (i.e., slower response to the question, supporting
the head by leaning on the arms, showing less interest in the task).

For each participant, the ratings were averaged over all children
belonging to the same experimental condition, resulting in a to-
tal of eight average ratings (four conditions, each with fifth and
twenty-fifth round). Figure 8 visualizes the data from the evaluation.
Results from a paired-samples t-test showed that children were con-
sidered to be significantly less engaged in the twenty-fifth round
(M = 4.38, SD = .84) than in the fifth round (M = 5.21, SD = .64),
t(71) = −12.09,p < .001. Furthermore, a two-way ANOVA with
tutoring strategy (adaptive versus non-adaptive) and gesture use
(gestures versus no gestures) as factors showed no significant effect
for the use of gestures, F (1, 68) = 1.36,p = .25,η2p = .02, but there
was a significant effect for tutoring strategy, F (1, 68) = 86.26,p <
.001,η2p = .559. The drop in engagement between round five and
round twenty-five was less when an adaptive strategy was applied
(M = −.40, SD = .35) than when words were randomly presented
(M = −1.27, SD = .44). There was no interaction effect between ges-
tures and tutoring strategies, F (1, 68) = .01,p = .93,η2p = .00. The
same analysis was conducted with the average engagement level
of the fifth and twenty-fifth rounds combined, to get an idea of the
overall engagement throughout the entire training session in differ-
ent conditions. In this case the overall level of engagement was sig-
nificantly higher in the gesture condition (M = 5.02, SD = .63) than
in the condition without gestures (M = 4.57, SD = .68), F (1, 68) =
8.75,p = .004,η2p = .114. There was also a significantly higher en-
gagement when an adaptive strategy was used (M = 4.97, SD = .67)
as opposed to a random tutoring strategy (M = 4.63, SD = .67),
F (1, 68) = 5.10,p = .03,η2p = .07. No interaction effect between the
two factors was found, F (1, 68) = .08,p = .78,η2p = .001.

5 DISCUSSION
The results presented above show that by spending a single tutor-
ing interaction of about twenty minutes with a robot tutor, young
children were able to acquire new words in an L2, regardless of
the experimental condition, and were also able to retain this newly
acquired knowledge for a prolonged period of time. Care was taken
to design the pre-test and post-tests in such a way to be clearly
distinct from the training session with the robot in terms of physical
context (laptop versus tablet), voice, and characteristics of the im-
ages used, with the aim of getting a reliable measure of the attained
knowledge. Results from the pre-test show that there is indeed
a realistic amount of prior knowledge, on average above chance,
presumably because some children have been exposed previously
to the target words, for example in television programs. The ob-
served number of correct answers on the immediate and delayed
post-test are higher than on the pre-test, indicating the expected
knowledge gain after engaging in learning activities. The scores on
the post-test are lower than the number of correct answers towards
the end of the training stage, which could show that indeed the test
evaluates whether children acquire the underlying concepts, rather
than simply being able to link a word being pronounced by the
robot to one specific image (in some cases with the help of gestures
that are not present in the tests). One potential point of improve-
ment for the tests could be to introduce context when querying the
target words, for example by using sentences rather than isolated
words. Although explicitly instructed, children seemed not always
aware that they were supposed to select the image corresponding
to an English word, causing them to choose the animal with the
most similar sounding name in Dutch instead (e.g., bird was often
confused with the Dutch word ‘paard’).

When gestures were performed by the robot during training,
there was a higher retention of newly acquired words after at least
one week. This aligns with similar effects that were shown previ-
ously in the context of math with a human tutor [5] and indicates
that these indeed carry over to a robot; a compelling finding that
warrants future research into the intricacies of gesture use by hu-
manoid robots. As mentioned by Hostetter [13] with respect to
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human-human communication, it appears that gestures retain their
positive effects on communication when they are scripted rather
than being produced spontaneously. In this work, only iconic ges-
tures are used that clearly relate to the concept they describe. Future
work could investigate whether a similar contribution to learning
gain is found when non-iconic gestures are used. Furthermore, the
target words used in this experiment were chosen specifically such
that matching gestures could be designed for the robot. It would be
interesting to explore how well a broader range of gestures, describ-
ing various abstract and concrete concepts, could be performed by
a robot as opposed to a human interlocutor. Finally, asking children
to actually re-enact the gestures (e.g., as in [8, 28]), or to come up
with their own gestures, might further increase the potential utility
of gestures in learning due to the embodiment effect [10].

The test results regarding the adaptive tutoring system are cur-
rently inconclusive. This might be a result of the manner in which
learning gain was measured, i.e., a quantification of newly acquired
words — perhaps the adaptive system did not result in more words
learned, but rather led to a more focused acquisition of exactly
those words that the child found most difficult. The main remain-
ing difference between the ways in which human teachers and the
system presented here personalize content is that teachers tend to
draw upon a memory that spans a longer period of time. In this
experiment, the memory of the adaptive system was built up, and
then applied, over the course of a single session. The system might
come to fruition if there are multiple sessions with the same child,
allowing the results of one session to become prior knowledge for
the next one. It is also possible that the actions that the system
performs based on the estimated knowledge levels of the child are
too subtle. Currently, only the order and frequency of words is tai-
lored, within the thirty rounds, and different levels of difficulty are
represented by adding or removing one distractor image. Actions
and difficulty levels could be more complex than that, for example
by applying completely different tutoring strategies or games that
might fit a particular child better. For the sake of this experiment,
the number of rounds was fixed to thirty, but this session length
might also be left up to the adaptive system to control. This would
allow the interaction to end at the exact moment where the learning
is ‘optimal’, i.e., a point at which the adaptive system thinks that
the child has achieved his or her highest potential learning gain.
A final avenue for improvement that is currently being pursued is
to incorporate additional information about the affective state of
the child. Some children might not be in the right mood to learn
when they start, or their attention might fade during the interac-
tion; rather than focusing only on the learning objectives the robot
might want to engage in activities that work towards creating and
maintaining the right atmosphere for learning.

We found it valuable to include the measure of children’s en-
gagement during the interaction. A higher level of engagement in-
dicates increased motivation and willingness to learn [3]. Although
students might succeed in simple word learning with limited en-
gagement and the use of a low-level learning strategy, increased
engagement could stimulate them to go beyond simple memoriza-
tion and relate these new words to prior knowledge. Furthermore,
engagement can serve as a measure of how well the learning ac-
tivities are tailored to the child’s abilities — constantly presenting
tasks that are either too hard or too easy could have a detrimental

effect on engagement. The results of our evaluation show that in-
deed the adaptive system appears to match the learning activities
to each child’s needs by providing a realistic yet challenging task,
resulting in a reduced decline in engagement towards the end of
the interaction. Gestures contribute to a higher overall engagement,
which could be explained by the fact that the robot appears more
active and playful in this condition, thereby stimulating the child
to remain engaged.

6 CONCLUSION
The study presented in this paper aimed to explore if a humanoid
robot can support children, four to six years old, in learning the
vocabulary of a second language. We found that, indeed, children
manage to learn new words during a single tutoring interaction,
and are able to retain this knowledge over time. Specifically, we
investigated whether the effects of tailoring learning tasks to the
knowledge state of the learner and using co-speech gestures — both
of which are strategies used by human teachers to scaffold learning
— transfer to the use of a humanoid robot tutor. Our results show
that the robot’s use of gestures has a positive effect on long-term
memorization of words in the L2, measured after one week. Fur-
thermore, children appear more engaged throughout the tutoring
session and are able to provide more correct answers when ges-
tures are used. An adaptive tutoring strategy helps to reduce the
drop in engagement that inevitably happens over the course of an
interaction, by providing contingent, personalized support to each
learner. By combining both methods in a tutoring session, adap-
tivity seems to succeed in finding the ‘sweet spot’ of challenging
children enough to keep them motivated while gestures can add to
overall engagement and support children in finding the correct an-
swer. Therefore, gestures can form an additional tool in the toolbox
of A-BKT to be deliberately employed, for example, when a reduced
difficulty is deemed necessary or engagement is decreasing.

ACKNOWLEDGMENTS
This work is partially funded by the H2020 L2TOR project (grant
688014), the Tilburg center for Cognition and Communication
‘TiCC’ at Tilburg University (Netherlands) and the Cluster of Excel-
lence Cognitive Interaction Technology ‘CITEC’ (EXC 277), funded
by the German Research Foundation (DFG), at Bielefeld University
(Germany). The authors would like to thank all members of the
L2TOR project for their valuable comments and suggestions that
have contributed towards the design of the experiment. Further-
more, we are grateful to the schools, parents, and children that
participated in our experiment, Elske van der Vaart for lending
us her voice for the content on the laptop, as well as Sanne van
Gulik, Marijn Peters Rit, and Emmy Rintjema for their help with
data collection. The preliminary design of this experiment was first
presented at the R4L workshop, HRI’17 [9]; we thank the attendees
for their feedback.

REFERENCES
[1] Martha W. Alibali and Mitchell J. Nathan. 2007. Teachers’ Gestures as a Means

of Scaffolding Students’ Understanding: Evidence From an Early Algebra Lesson.
Video Research in the Learning Sciences 39, 5 (2007), 349–366. https://doi.org/10.
1111/j.1467-8535.2008.00890_7.x



Effect of a Robot’s Gestures and Adaptive Tutoring on Children’s L2 Acquisition HRI ’18, March 5–8, 2018, Chicago, IL, USA

[2] Kirsten Bergmann and Manuela Macedonia. 2013. A virtual agent as vocabulary
trainer: iconic gestures help to improve learnersâĂŹ memory performance. In
International Workshop on Intelligent Virtual Agents. Springer, 139–148.

[3] Phyllis C. Blumenfeld, Toni M. Kempler, and Joseph S. Krajcik. 2005. Motivation
and Cognitive Engagement in Learning Environments. Cambridge University Press,
Cambridge, Chapter 28, 475–488. https://doi.org/10.1017/CBO9780511816833.029

[4] Paul Bremner and Ute Leonards. 2016. Iconic gestures for robot avatars, recog-
nition and integration with speech. Frontiers in Psychology 7 (feb 2016), 183.
https://doi.org/10.3389/fpsyg.2016.00183

[5] Susan Wagner Cook, Zachary Mitchell, and Susan Goldin-Meadow. 2008. Ges-
turing makes learning last. Cognition 106, 2 (2008), 1047–1058. https://doi.org/
10.1016/j.cognition.2007.04.010 arXiv:NIHMS150003

[6] Albert T. Corbett and John R. Anderson. 1994. Knowledge tracing: Modeling the
acquisition of procedural knowledge. User modeling and user-adapted interaction
4, 4 (1994), 253–278.

[7] Scotty Craig, Arthur Graesser, Jeremiah Sullins, and Barry Gholson. 2004. Affect
and learning: an exploratory look into the role of affect in learningwith AutoTutor.
Journal of educational media 29, 3 (2004), 241–250.

[8] Jacqueline A. de Nooijer, Tamara van Gog, Fred Paas, and Rolf A. Zwaan. 2013.
Effects of imitating gestures during encoding or during retrieval of novel verbs
on children’s test performance. Acta Psychologica 144, 1 (2013), 173–179. https:
//doi.org/10.1016/j.actpsy.2013.05.013

[9] Jan de Wit, Thorsten Schodde, Bram Willemsen, Kirsten Bergmann, Mirjam de
Haas, Stefan Kopp, Emiel Krahmer, and Paul Vogt. 2017. Exploring the Effect of
Gestures and Adaptive Tutoring on Children’s Comprehension of L2 Vocabularies.
In Proceedings of the Workshop R4L at ACM/IEEE HRI 2017.

[10] Katinka Dijkstra and Lysanne Post. 2015. Mechanisms of embodiment. 6, OCT
(2015), 1525. https://doi.org/10.3389/fpsyg.2015.01525

[11] Goren Gordon and Cynthia Breazeal. 2015. Bayesian Active Learning-based Robot
Tutor for Children’sWord-reading Skills. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence (AAAI’15). AAAI Press, 1343–1349.

[12] Lea A. Hald, Jacqueline de Nooijer, Tamara van Gog, and Harold Bekkering.
2016. Optimizing Word Learning via Links to Perceptual and Motoric Experience.
Educational Psychology Review 28, 3 (2016), 495–522. https://doi.org/10.1007/
s10648-015-9334-2

[13] Autumn B. Hostetter. 2011. When do gestures communicate? A meta-analysis.
Psychological Bulletin 137, 2 (2011), 297–315. https://doi.org/10.1037/a0022128

[14] Tanja Käser, Severin Klingler, Alexander Gerhard Schwing, and Markus Gross.
2014. Beyond knowledge tracing: Modeling skill topologies with bayesian net-
works. In International Conference on Intelligent Tutoring Systems. Springer, 188–
198.

[15] Spencer D. Kelly, Tara McDevitt, and Megan Esch. 2009. Brief training with
co-speech gesture lends a hand to word learning in a foreign language. Lan-
guage and Cognitive Processes 24, 2 (2009), 313–334. https://doi.org/10.1080/
01690960802365567 arXiv:http://dx.doi.org/10.1080/01690960802365567

[16] James Kennedy, Paul Baxter, and Tony Belpaeme. 2015. The Robot Who Tried Too
Hard: Social Behaviour of a Robot Tutor Can Negatively Affect Child Learning. In
Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction.
67–74. https://doi.org/10.1145/2696454.2696457

[17] James Kennedy, Severin Lemaignan, Caroline Montassier, Pauline Lavalade, Ba-
har Irfan, Fotios Papadopoulos, Emmanuel Senft, and Tony Belpaeme. 2017. Child
Speech Recognition in Human-Robot Interaction : Evaluations and Recommenda-
tions. Proc. of the ACM/IEEE International Conference on Human-Robot Interaction
(HRI) (2017), 82–90. https://doi.org/10.1145/2909824.3020229

[18] S. Leitner. 1972. So lernt man Lernen: Der Weg zum Erfolg [Learning to learn: The
road to success]. Freiburg: Herder.

[19] Daniel Leyzberg, Samuel Spaulding, and Brian Scassellati. 2014. Personalizing ro-
bot tutors to individuals’ learning differences. In Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction. ACM, 423–430.

[20] Daniel Leyzberg, Samuel Spaulding, Mariya Toneva, and Brian Scassellati. 2012.
The Physical Presence of a Robot Tutor Increases Cognitive Learning Gains. 34th
Annual Conference of the Cognitive Science Society 34, 1 (jan 2012), 1882–1887.
https://doi.org/ISBN978-0-9768318-8-4

[21] Manuela Macedonia, Karsten Müller, and Angela D. Friederici. 2011. The impact
of iconic gestures on foreign language word learning and its neural substrate.
Human Brain Mapping 32, 6 (2011), 982–998. https://doi.org/10.1002/hbm.21084

[22] Panos Markopoulos, Janet C. Read, Stuart MacFarlane, and Johanna Hoysniemi.
2008. Evaluating Children’s Interactive Products: Principles and Practices for In-
teraction Designers. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
Chapter 1, 3–18.

[23] David McNeill. 1985. So you think gestures are nonverbal? Psychological Review
92, 3 (1985), 350–371. https://doi.org/10.1037/0033-295x.92.3.350

[24] Omar Mubin, Catherine J. Stevens, Suleman Shahid, Abdullah Al Mahmud, and
Jian-Jie Dong. 2013. A Review of the Applicability of Robots in Education.
Technology for Education and Learing 1 (2013), 209—-0015. https://doi.org/10.
2316/Journal.209.2013.1.209-0015

[25] Meredith L. Rowe, Rebecca D. Silverman, and Bridget E. Mullan. 2013. The role
of pictures and gestures as nonverbal aids in preschoolers’ word learning in
a novel language. Contemporary Educational Psychology 38, 2 (2013), 109–117.
https://doi.org/10.1016/j.cedpsych.2012.12.001

[26] Thorsten Schodde, Kirsten Bergmann, and Stefan Kopp. 2017. Adaptive Ro-
bot Language Tutoring Based on Bayesian Knowledge Tracing and Predictive
Decision-Making. In Proceedings of ACM/IEEE HRI 2017. ACM Press, 128–136.
https://doi.org/10.1145/2909824.3020222

[27] Samuel Spaulding, Goren Gordon, and Cynthia Breazeal. 2016. Affect-Aware Stu-
dent Models for Robot Tutors. In Proceedings of the 2016 International Conference
on Autonomous Agents & Multiagent Systems (AAMAS ’16). International Founda-
tion for Autonomous Agents and Multiagent Systems, Richland, SC, 864–872.

[28] Marion Tellier. 2008. The effect of gestures on second language memorisation by
young children. Gesture 8, 2 (2008), 219–235. https://doi.org/10.1075/gest.8.2.06tel

[29] Janneke van de Pol, Monique Volman, and Jos Beishuizen. 2010. Scaffolding
in teacher-student interaction: A decade of research. (2010), 271–296 pages.
https://doi.org/10.1007/s10648-010-9127-6 arXiv:arXiv:1002.2562v1

[30] Elisabeth T. van Dijk, Elena Torta, and Raymond H. Cuijpers. 2013. Effects
of Eye Contact and Iconic Gestures on Message Retention in Human-Robot
Interaction. International Journal of Social Robotics 5, 4 (2013), 491–501. https:
//doi.org/10.1007/s12369-013-0214-y

[31] Paul Vogt, MirjamDe Haas, Chiara De Jong, Peta Baxter, and Emiel Krahmer. 2017.
Child-Robot Interactions for Second Language Tutoring to Preschool Children.
Frontiers in human neuroscience 11, March (2017), 1–7. https://doi.org/10.3389/
fnhum.2017.00073

[32] Lev Vygotsky. 1978. Mind in society: The development of higher psychological
processes. Harvard University Press, Cambridge, MA.



International Journal of Social Robotics (2018) 10:325–341
https://doi.org/10.1007/s12369-018-0467-6

Guidelines for Designing Social Robots as Second Language Tutors

Tony Belpaeme1,2 · Paul Vogt3 · Rianne van den Berghe5 · Kirsten Bergmann4 · Tilbe Göksun6 ·
Mirjam de Haas3 · Junko Kanero6 · James Kennedy1 · Aylin C. Küntay6 ·Ora Oudgenoeg-Paz5 ·
Fotios Papadopoulos1 · Thorsten Schodde4 · Josje Verhagen5 · Christopher D. Wallbridge1 · Bram Willemsen3 ·
Jan de Wit3 · Vasfiye Geçkin6 · Laura Hoffmann4 · Stefan Kopp4 · Emiel Krahmer3 · Ezgi Mamus6 ·
Jean-Marc Montanier7 · Cansu Oranç6 · Amit Kumar Pandey7

Accepted: 11 January 2018 / Published online: 25 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract
In recent years, it has been suggested that social robots have potential as tutors and educators for both children and adults.
While robots have been shown to be effective in teaching knowledge and skill-based topics, we wish to explore how social
robots can be used to tutor a second language to young children. As language learning relies on situated, grounded and social
learning, in which interaction and repeated practice are central, social robots hold promise as educational tools for supporting
second language learning. This paper surveys the developmental psychology of second language learning and suggests an
agenda to study how core concepts of second language learning can be taught by a social robot. It suggests guidelines for
designing robot tutors based on observations of second language learning in human–human scenarios, various technical
aspects and early studies regarding the effectiveness of social robots as second language tutors.

Keywords Social robot · Second language learning · Robot tutor · Human–robot interaction

1 Introduction

One of the goals of Human–Robot Interaction (HRI) is to
research and develop autonomous social robots as tutors
that are able to support children learning new skills effec-
tively through repeated interactions. To achieve this, the
interactions between child and robot should be pleasant,
challenging, and pedagogically sound. Interactions need to
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be pleasant for children to enjoy, challenging so that chil-
dren remain motivated to learn new skills, and pedagogically
sound to ensure that children receive input that optimises their
learning gain. One domain in which robots for learning are
developed is second language (L2) tutoring (e.g., [1,33,64]).
While much progress has been made in this field, there has
not been an effective one-on-one L2 tutoring programme that
can be structurally applied in educational settings for various
language communities.

The L2TOR project1 (pronounced as ‘el tutor’) aims to
bridge this gap by developing a lesson series that helps
preschool children, around the age of 5 years, learn basic
vocabulary in an L2 using an autonomous social robot as
tutor [8]. In particular, we develop one-on-one, personalised
interactions between children and the SoftBank NAO robot
for teaching English to native speakers of Dutch, German,
and Turkish, and for teaching Dutch or German to Turkish-
speaking children living in the Netherlands or Germany. To
ensure a pedagogically sound programme, lessons are being
developed in close collaboration with developmental psy-
chologists and pedagogists.

1 http://www.l2tor.eu.
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Personalising the interactions between child and robot is
crucial for successful tutoring [45]. Personalisation can be
achieved by creating some initial common ground between
child and robot, and by having the robot adapt to the individ-
ual progress of children. Constructing initial commonground
helps to promote long-term interactions between child and
robot [33], and can be achieved by framing the robot as a
peer and by explaining (dis)similarities between robots and
humans. However, to keep children motivated to learn, it
is important to keep the learning targets within the child’s
Zone of Proximal Development [70]. Throughout the lessons
the target should be sufficiently challenging for the child:
not too challenging as this may frustrate the learner and not
too easy as this may bore the learner. Moreover, interactions
should be designed such that the robot provides a scaffold that
allows the child to acquire the desired language skills. For
instance, by providing non-verbal cues (e.g., gestures) that
help to identify a word’s referent or by providing appropriate
feedback, it is possible for children to reinforce successfully
acquired skills or to correct suboptimal (or wrong) skills.

The L2TOR approach relies on the current state-of-the-
art in HRI technology, which offers promising opportunities,
but also poses major challenges. For instance, NAO has the
ability to produce speech in various languages, making it
possible for the robot to address the child in both the native
language (L1) and in the L2. However, at present, automatic
speech recognition (ASR) for child speech is not performing
to a sufficiently reliable standard, and thus using ASR is cur-
rently infeasible [37]. This not only limits the ability to rely
on verbal interactions since the robot is unable to respond to
children’s speech, but it also limits the ability to monitor and
respond to children’s L2 productions. Hence, our design has
to find ways to work around such technological limitations.

The paper aims to present a number of guidelines that
help researchers and developers to design their own social
robot, especially for, though not necessarily limited to, L2
tutoring. After a brief review of L2 learning from a devel-
opmental psychology point of view, Sect. 3 reviews some
previous research on language tutoring using social robots.
In Sect. 4, wewill present our guidelines relating to pedagog-
ical considerations, child–robot interactions and interaction
management. These issues will be discussed in light of some
of our early experiments. Section 5 discusses our approach to
evaluating the L2TOR system, which is designed to demon-
strate the (potential) added value of using social robots for
L2 tutoring.

2 Second Language Learning

Learning an L2 is important in today’s society. In the Euro-
pean Union (EU), for example, 54 percent of the population
can hold a conversation in at least two languages, and 25 per-

cent are able to speak three languages [20]. Consequently,
L2 teaching has become an essential part of primary educa-
tion. In 2002, the EU proposed a multilingualism policy of
teaching an L2 to all young children. The policy suggests
every European citizen learns practical skills in at least two
languages aside from their L1 [4]. According to a recent sur-
vey, the vast majority of European citizens (98 percent of the
respondents in this survey) believe that mastering a foreign
language is useful for the future of their children [20].

Preschool years are vital for L2 learning, because later
academic success depends on early language skills [29].
For children learning English as their school language, their
English vocabulary size predicts their performance inEnglish
reading tests [57]. Although learning an L2 comes naturally
for some children, for many others it is a challenge that they
must overcome. For children from immigrant families or
minority communities, the language used at school is often
different from the language used at home. These children,
thus, not only start learning the school language later than
their peers, but also continue to receive relatively less input
in each of their languages [30]. Hence, novel ways to expose
children to targeted L2 input must be considered.

Patterns of L2 learning largelymirror those of L1 learning,
which requires both the quantity and the quality of language
input to be sufficient [27]. Children do not learn language
just by listening to speech; rather, interactive experience is
essential [39]. L2 learning is no exception, and several fac-
tors such as interactivity must be considered (see [38] for
a review). In addition to quantity, socio-pragmatic forms
of interaction involving joint attention, non-verbal interac-
tion, feedback, and temporal and semantic contingencies are
expected to contribute to L2 learning [3,9,59,66]. However,
there are also some notable differences between L1 and L2
learning. For example, in L2 education it is important to con-
sider fromwhom children are learning the L2. Place andHoff
[56] found that hearing English from different speakers and
the amount of English input provided by native speakers is
critical for learning English as L2. Another notable differ-
ence between L1 and L2 learning is that children may rely
on their L1 when learning an L2 (e.g., [75]). Thus, we may
need to be cautious about factors such as negative transfer or
interference, in which some concepts and grammar in the L2
are hard to acquire because children are thinking in their L1
[67].

When children are learning more than one language, the
amount of input a child hears in each language predicts
vocabulary size in each language [30,55]. Bilingual chil-
dren tend to have a smaller vocabulary size in each language
compared to their monolingual peers [54], although the com-
bined or conceptual vocabulary size of both languages is
often equal to that of monolinguals [31,54]. The amount of
language input also affects language processing speed and
trajectories of vocabulary learning, and thus early language
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input may have cascading effects on later language learn-
ing. Hurtado et al. [32] found that the amount of language
input bilingual children receive at 18months of age predicts
their speed of recognizing words and the size of their vocab-
ulary at 24months. To properly foster development of two
or more languages, adults must carefully consider a good
balance between languages [67].

Although both monolingual and bilingual children moni-
tor and respond to social pragmatic cues, bilingual children
have heightened sensitivity to those non-linguistic cues,
probably due to an early communicative challenge they face
because of less than perfect mastery in one of the languages
[74]. Brojde et al. [10] found that bilingual children rely
more on eye gaze than their monolingual counterparts when
learning novel words. Yow and Markman [76] also demon-
strated that 3- and 4-year-old bilingual childrenwere better at
understanding and using gestures and gaze direction to infer
referential intent. Thus, especially for childrenwith advanced
L2 knowledge, wemay be able to boost their learning process
by making use of these pragmatic cues.

As the demand for early L2 education increases, the usage
of additional teaching opportunities in terms of educational
tablet games, or electronic vocabulary trainers becomesmore
and more important to increase the quantity of L2 input.
Moreover, especially with regard to young children, the con-
sideration of embodied technologies (e.g., virtual agents or
robots) seems reasonable, because they invite intuitive inter-
actions that would add to the quality of the L2 input. The
question then becomes: howshould such a robot be designed?

3 Robots for Language Tutoring

In recent years, various projects have started to investigate
how robot tutors can contribute to (second) language learn-
ing. In this section, we review some of these studies, focusing
on: (a) the evidence that robots can promote learning; (b) the
role of embodiment in robot tutoring; and (c) the role of social
interactions in tutoring.

3.1 Learning from Robots

There has been an increased focus on how social robots
may help engage children in learning activities. Robots have
been shown to help increase interaction levels in larger
classrooms, correlating with an improvement in children’s
language learning ability [22]. How best to apply this knowl-
edge in the teaching of a foreign language has been explored
by different researchers from various perspectives. Alemi et
al. [1] employed a social robot as an assistant to a teacher
over a 5-week period to teach English vocabulary to Ira-
nian students. They found that the class with the robot
assistant learned significantly more than that with just the

human teacher. In addition, the robot-assisted group showed
improved retention of the acquired vocabulary. This builds
on earlier findings by [33] where a 2-week study with a robot
situated in the classroom revealed a positive relation between
interacting with a robot and vocabulary acquisition. Further
results by [64] also confirm that the presence of a robot leads
to a significant increase in acquired vocabulary. Movellan
et al. [50] selected 10 words to be taught by a robot, which
was left in the children’s classroom for 12 days. At the end
of the study, children showed a significant increase in the
number of acquired words when taught by the robot. Lee et
al. [42] further demonstrated that robot tutoring can lead not
just to vocabulary gains, but also improved speaking ability.
In their study, children would start with a lesson delivered
by a computer, then proceed to pronunciation training with
a robot. The robot would detect words with an expanded
lexicon based on commonly confused phonemes and correct
the child’s pronunciation. Additionally, the children’s confi-
dence in learning English was improved.

All of these studies show the capacity of various robots
as tutors for children (with the children’s age ranging from 3
to 12years old) learning an L1 or L2 ‘in the wild’. How-
ever, what exactly is it that gives robots the capacity for
tutoring? Moreover, how does this compare to other digi-
tal technologies, such as tablets and on-screen agents? Is it
merely the embodiment of the robot, or rather the quality
of social interactions? These questions are explored in the
following sections.

3.2 Embodiment

The impact of embodiment and social behaviour for children
learning English as their L1 has been explored in a laboratory
setting. Neither [24] nor [71] found significant differences
due to the embodiment of the robot in their studies on chil-
dren’s vocabulary acquisition. However, this may be due in
part to methodological limitations. Gordon et al. [24] only
found an average of oneword learned per interaction, leaving
very little room for observing differences; similarly [71] only
compared the learning of six words. These studies were con-
ducted with children between the ages of 3 and 8years. The
relatively small gains are therefore quite surprising, due to
the speed at which children at this age acquire language [40].
Given the non-significant results or the small effect sizes in
these studies, it is difficult to draw conclusions onwhat could
make robot language tutoring effective.

Rosenthal-von der Pütten et al. [58] found that language
alignment, i.e., the use of similar verbal patterns between
interacting parties, when using an L2 appears to not be
affected when using a virtual robot as opposed to a real one.
Participants completed a pre-test and were then invited for
a second session at a later date. During the second session
the participants were asked to play a guessing game with an
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agent, either the real NAO robot or a virtual representation
of one. The study reported whether the participants used the
same words as the agent, but no significant difference was
found. This may be due to some issues with the experimental
design: the authors suggest the post-test was given straight
after a relatively long session with the agent, and participants
may have been fatigued.

Moriguchi et al. [49] looked at age differences for young
children and how they learned from a robot compared to
a person. Children between the ages of 4 and 5years were
taught using an instructional video: one group of children
was shown a video inwhich a human taught them newwords,
while another group of children was shown a video with the
same material, but using a robot tutor. While children aged 5
were able to perform almost as well when taught by a robot,
those aged 4 did not seem to learn from the robot at all. It is
unknown as to whether this result would transfer to the use of
a physically-present robot, rather than one shown on a video
screen.

These studies above do not provide support that the mere
physical presence of the robot has an advantage for language
learning.However, there is evidence for the physical presence
of a robot having a positive impact on various interaction
outcomes, including learning [46]. The lack of a clear effect
of a physical robot on language learning might be due to
a scarcity of experimental data. However, it is also likely
that the effectiveness of robot tutors lies not in their physical
presence, but instead in the social behaviour that a robot
can exhibit and the motivational benefits this carries. This
is explored in the next section.

3.3 Social Behaviour

Social behaviour has previously been studied in the con-
text of children learning languages. Saerbeck et al. [60]
explored the impact of ‘socially supportive’ behaviours on
child learning of the Toki Pona language, using an iCat robot
as a tutor. These behaviours included verbal and non-verbal
manipulations which aimed to influence feedback provision,
attention guiding, empathy, and communicativeness. It was
found that the tutor with these socially supportive behaviours
significantly increased the child’s learning potential when
compared to a neutral tutor. This study used a variety of mea-
sures including vocabulary acquisition, as other studies have,
but also included pronunciation and grammar tests. Another
study which did not only consider vocabulary acquisition
was [26]. French and Latin verb conjugations were taught
by a NAO robot to children aged 10 to 12years old. In one
condition, the robot would look towards the student whilst
they completed worksheets, but in the other, the robot would
look away. Although gaze towards the child was predicted to
lead to greater social facilitation effects, and therefore higher
performance, this was not observed.

Kennedy et al. [36] investigated the effects of verbal
immediacy on the effect of learning in children. A NAO was
used to teach French to English-speaking children in a task
involving the gender of nouns and the use of articles ‘le’
and ‘la’. A high verbal immediacy condition was designed
in which the robot would exhibit several verbal immediacy
behaviours, for example calling the child by name, providing
positive feedback, and asking children how they felt about
their learning. When contrasted with a robot without this
behaviour, no significant learning differences were observed.
However, children showed significant improvement in both
conditions when comparing pre- and post-test scores, and
were able to retain their acquired knowledge as measured by
means of a retention test. This suggests that the particularities
of robot behaviour do not manifest themselves in the short-
term, but could be potentially be observed over the longer
term.

In [2], a robot acted as a teaching assistant for the purpose
of teaching English to Iranian students. A survey found that
students who were taught by the robot were significantly less
anxious about their lessons than those that were not. This was
thought to be due to a number of factors, including the fact
that the robot was programmed to make intentional mistakes
which the students could correct, which could have made
students less concerned about their own mistakes.

3.4 Summary

In summary, promising results have been found for the use of
robots as constrained language tutors for children and adults,
with the presence of the robot improving learning outcomes
[1,2,33,64]. However, the impact of robot embodiment in this
context has not been explored in depth, leaving an important
question largely unanswered: do robots hold an advantage
over tablets or virtual characters for language tutoring? The
impact of social behaviour is also less clear, with some pos-
itive results [60], but also inconclusive results [26]. Robots
open up new possibilities in teaching that were previously
unavailable, such as the robot taking the role of a peer. By
having an agent that is less like a teacher andmore like a peer,
anxiety when learning a new language could be reduced [2].
Despite an increasing interest, there are still relatively few
studies that have considered robot language tutoring, leaving
space to explore novel aspects of language learning.

4 Designing Robot Tutoring Interactions for
Children

Several design issues with respect to robot-guided L2 tutor-
ing have to be considered before an evaluation of robot-child
tutoring success is possible. In particular, multiple design
choices have to be considered to create pleasant, challeng-
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ing, and pedagogically sound interactions between robot and
child [69]. First, we will discuss pedagogical issues that
ensure optimal conditions for language learning. Second,
we will present various design issues specifically relating
to the child–robot interactions. Finally, we will discuss how
tomanage personalised interactions during tutoring. The sec-
tion builds on some related work as well as various studies
conducted in the context of the L2TOR project.

4.1 Pedagogical Issues

It is imperative to understand how previous research findings
can be put into practice to support successful L2 acquisition.
Although the process of language learning does not dras-
tically differ between L1 and L2, there are a few notable
differences aswe already discussed in Sect. 2. For theL2TOR
project a series of pedagogical guidelines was formulated,
based on existing literature and pilot data collected within
our project. These guidelines concern: (a) age differences;
(b) target word selection; (c) the use of a meaningful con-
text and interactions to actively involve the child; and (d) the
dosage of the intervention. These specific aspects were cho-
sen based on a review of the literature showing that they are
the most crucial factors to consider in designing an interven-
tion for language teaching in general and specifically L2 (see
e.g., [29,51]).

4.1.1 Age Effects

From what age onward can we use social robots to support
L2 learning effectively? From a pedagogical point of view,
it is desirable to start L2 tutoring as early as possible, espe-
cially for children whose school language is an L2, because
this could bridge the gap in language proficiency that they
often have when entering primary school [29]. Various stud-
ies have targeted children as young as 3years focusing on
interactive storytelling in the L1 [22] or on L2 tutoring [73].
However, preschool-aged children (3 to 5years old) undergo
major cognitive, emotional and social developments, such as
the expansion of their social competence [15]. So, whereas
older children may have little difficulty engaging in an inter-
action with a robot, younger children may be more reliant
on their caregivers or show less engagement in the interac-
tion. Therefore, we may expect that child–robot interactions
at those ages will also present some age-related variation.
Clarifying these potential age differences is essential as, in
order to be efficient, interactive scenarios with robots must
be tailored to the diverging needs of children.

In [6], we sought to determine whether there are age-
related differences in first-time interactions with a peer-tutor
robot of children who have just turned 3 and children
who are almost 4years old. To this end, we analysed the
engagement of 17 younger children (Mage = 3.1years,

SDage = 2months) and15older children (Mage = 3.8years,
SDage = 1month) with a NAO robot as part of the larger
feedback experiment discussed in Sect. 4.2.6. These children
first took part in a group introduction to familiarise themwith
the NAO robot; a week later they had a one-on-one tutoring
session with the robot. We analysed the introductory part of
this one-on-one session, which consisted of greeting, bond-
ing with, and counting blocks with the robot. All speech was
delivered in Dutch, except for the target words (i.e., ‘one’,
‘two’, ‘three’, and ‘four’), which were provided in English.
We analysed the children’s engagement with the robot as
measured through eye-gaze towards the task environment
(robot and blocks) compared to their gazes outside the task
environment (experimenter, self, and elsewhere), as this is
suggested to indicate how well the child is “connected” with
the task [62].

In short, the analyses revealed that the older children gazed
significantly longer towards the robot than the younger chil-
dren, and that the younger children spent more time looking
elsewhere than the older children.Moreover, the average time
the older children maintained each gaze towards the robot
was longer than that of the younger children.

It is possible that the 3-year-olds have trouble being
engaged with a language learning task, but it may also be
that the NAO robot is somewhat intimidating for 3-year-olds.
As such, for them either group interactions [22] or a more
“huggable” robot (e.g., Tega) [73] could be more appropri-
ate. Moreover, [49] also found children at the age of 5 years
to be more responsive to robot tutoring. Drawing from these
findings about 3-year-olds, combined with experiences from
other pilots with 4- and 5-year-olds, we decided to develop
the L2TOR tutoring system for 5-year-olds, as they generally
appear to feel more comfortable engaging one-on-one with
the robot than 3- and 4-year-olds.

4.1.2 Target Words

Another important aspect to consider is what words are
taught. Previous research recommends that vocabulary items
should be taught in semantic clusters and embedded in a con-
ceptual domain [11,51]. For L2TOR, three domains were
chosen: (a) number domain: language about basic number
and pre-mathematical concepts; (b) space domain: language
about basic spatial relations; and (c) mental states domain:
language about mental representations such as ‘being happy’
and propositional attitudes such as ‘believe’ or ‘like’. These
domainswere selected for their feasibility, aswell as their rel-
evance and applicability inL2 tutoring sessions in a preschool
setting. Appropriate words to be taught for each domain are
words that children should be familiar with in their L1, as the
goal of the intervention is not to teach children new math-
ematical, spatial, and mental state concepts, but rather L2
labels for familiar concepts in these three domains. This will
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enable children to use their L1 conceptual knowledge to sup-
port the learning of L2 words. To select appropriate target
words and expressions that children are familiar with in their
L1, a number of frequently used curricula, standard tests,
and language corpora were used. These sources were used
both for identifying potential targets, and for checking them
against age norms to see whether they were suitable for the
current age group (for more details, see [53]). Thus, target
words selection should be based both on semantic coherence
and relevance to the content domain and on children’s L1
vocabulary knowledge.

4.1.3 Meaningful Interaction

An additional aspect of L2 teaching is the way in which new
words are introduced, which may come to affect both learn-
ing gains as well as the level of engagement. Research has
indicated that explicit instruction on target words in mean-
ingful dialogues involving defining and embedding words
in a meaningful context yields higher word learning rates
than implicit instruction through fast mapping (i.e., mapping
of a word label on its referent after only one exposure) or
extracting meaning from multiple uses of a word in context
as the basic word learning mechanisms [48,51]. Therefore,
for the L2TOR project, an overall theme for the lessons was
selected that would be familiar and appealing to most chil-
dren, and, as such, increase childrens engagement during the
tutoring sessions. This overall theme is a virtual town that the
child and the robot explore together, and that contains var-
ious shops, buildings, and areas, which will be discovered
one-by-one as the lesson series progresses. All locations are
familiar to young children, such as a zoo and a bakery. Dur-
ing the lessons, the robot and the child discover the locations,
and learn L2 words by playing games and performing simple
tasks (e.g., counting objects or matching a picture and a spe-
cific target word). The child and the robot are awarded a star
after each completed session, to keep children engaged in the
tasks and in interacting with the robot. Thus, the design cho-
sen for L2TOR is thought to facilitate higher learning gains
as it involves explicit teaching of target words in a dialogue
taking place in a meaningful context. Moreover, this design
should facilitate engagement as it involves settings that are
known and liked by children.

4.1.4 Dosage of Language Input

The final pedagogical aspect that was identified in the lit-
erature concerns the length and intensity, or dosage, of the
intervention. Previous research has shown that vocabulary
interventions covering a period of 10 to 15 weeks with one
to four short 15- to 20-min sessions per week are most effec-
tive. As for the number of novel words presented per session,
the common practice is to offer 5 to 10 words per session, at

least in L1 vocabulary interventions [47]. However, notmuch
is known about possible differences betweenL1 andL2 inter-
ventions with regard to this aspect. Therefore, to determine
the number of target words to be presented in the L2TOR
project lesson series, a pilot study was conducted. In this
study, we taught English words to one hundred 4- and 5-year-
old Dutch children with no prior knowledge of English. We
started by teaching the children 10 words; when these were
established,morewordswere added. The results showed that,
for children to learn any of these words at all, the maximum
number of L2 words that could be presented in one session
was six.We also found that a high number of repeated presen-
tations of each word was necessary for word learning: each
word in our study was presented 10 times. Yet, children’s
accuracy rates in the translation and comprehension tasks in
our study were lower than in earlier work on L1 learning. A
possible explanation might be that the items included in the
study were relatively complex L2 words (e.g., adjectives like
‘empty’) rather than concrete nouns such as ‘dog’ or ‘house’.
These items are probably more difficult for children who had
no prior exposure to the target language. However, within the
L2TOR project the choice was made to include these rela-
tively complex items given their relevance for L2 learning
within an academic context [52]. Thus, it was decided that
in all the lessons included within the L2TOR project a max-
imum of six words will be presented in each lesson and each
wordwill be repeated at least ten times throughout the lesson.

4.2 Child–Robot Interaction Issues

Not only pedagogical issues need to be considered when
designing a social robot tutor, but also other issues relating
to how the interactions between the robot and child should
be designed. As mentioned, we focus on how to design the
interactions to be pleasant, challenging, and pedagogically
sound. In this section, we discuss six aspects that we deem
important: (a) first encounters; (b) the role of the robot; (c)
the context in which the interactions take place; (d) the non-
verbal behaviours and (e) verbal behaviours of the robot; and
(f) the feedback provided by the robot.

Before elaborating on these guidelines, it is important to
remind the reader that in L2TOR, we are designing the robot
to operate fully autonomously. Ideally, this would include
the possibility to address the robot in spoken language and
that the robot can respond appropriately to this. However,
as previously mentioned, current state-of-the-art in speech
recognition for child speech does not work reliably. Kennedy
et al. [37] compared several contemporary ASR technolo-
gies and have found that none of them achieve a recognition
accuracy that would allow for a reliable interaction between
children and robots.Wehave therefore decided tomediate the
interactions using a tablet that can both display the learning
context (e.g., target objects) andmonitor children’s responses
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to questions. This has the consequence that the robot cannot
monitor children’s L2 production autonomously, but it can
monitor children’s L2 comprehension through their perfor-
mance with respect to the lesson content presented on the
tablet.

4.2.1 Introducing the Robot

The first encounter between robot and child plays a large
role in building the child’s trust and rapport with the robot,
and to create a safe environment [72], which are necessary
to facilitate long-term interactions effectively. For example,
[21] has shown that a group introduction in the kindergarten
prior to one-on-one interactions with the robot influenced
the subsequent interactions positively. Moreover, [72] have
shown that introducing the robot in a one-to-many setting
was more appreciated than in a one-on-one setting, because
the familiarity with their peers can reduce possible anxiety
in children.

We, therefore, developed a short session inwhich the robot
is introduced to children in small interactive groups. In this
session, the experimenter (or teacher) first tells a short story
about the robot using a picture book, explaining certain sim-
ilarities and dissimilarities between the robot and humans
in order to establish some initial common ground [14,33].
During this story, the robot is brought into the room while
in an animated mode (i.e., turned on and actively looking
around) to familiarise the children with the robot’s physical
behaviour. The children and the robot then jointly engage in a
meet-and-greet session, shaking hands and dancing together.
We observed in various trials that almost all children were
happy to engage with the robot during the group session,
including those who were a bit anxious at first, meaning
these children likely benefited from their peers’ confidence.
Althoughwedid not test this experimentally, our introduction
seems to have a beneficial effect on children’s one-on-one
interaction with the robot.

4.2.2 Framing the Robot

One of the questions that arises when designing a robot tutor
is: How should the robot be framed to children, such that
interactions are perceived to be fun, while at the same time
be effective to achieve language learning? We believe it is
beneficial to frame the robot as a peer [5,7,24], because chil-
dren are attracted to various attributes of a robot [33] and
tend to treat a robot as a peer in long-term interactions [64].
Moreover, framing the robot as a peer could make it more
acceptable when the flow of the interaction is suboptimal
due to technical limitations of the robot (e.g., the robot being
slow to respond or having difficulty interpreting children’s
behaviours). In addition, framing the robot as a peer who

learns the new language together with the child sets the stage
for learning by teaching [64].

While the robot is framed as a peer and behaves like a
friend of the child, the tutoring interactions will be designed
based on adult-like strategies to provide the high quality input
children need to acquire an L2 [39], such as providing timely
and sensible non-verbal cues or feedback. So, in L2TOR we
frame the robot as a peer, it behaves like a peer, but it scaffolds
the learning using adult-like teaching strategies.

4.2.3 Interaction Context

To facilitate language learning, it is important to create a con-
textual setting that provides references to the target words
to be learned. The embodied cognition approach, on which
we base our project, states that language is grounded in real-
life sensorimotor interactions [28], and consequently predicts
that childrens interactions with real-life objects will benefit
vocabulary learning [23]. From this approach, one would
expect children to learn new words better if they manipu-
late physical objects rather than virtual objects on a tablet,
as the former allows children to experience sensorimotor
interactions with the objects. However, for technical reasons
discussed earlier, it would be convenient to use a tablet com-
puter to display the context and allow children to interact
with the objects displayed there. The question is whether
this would negatively affect learning. Here, we summarise
the results from an experiment comparing the effect of real
objects versus virtual objects on a tablet screen on L2 word
learning [68]. The main research question is whether there is
a difference in L2 vocabulary learning gain between children
who manipulate physical objects and children who manipu-
late 3D models of the same objects on a tablet screen.

In this experiment, 46 Dutch preschoolers (Mage = 5.1
years, SDage = 6.8months; 26 girls) were presented with a
story in Dutch containing six L2 (English) target words (i.e.,
‘heavy’, ‘light’, ‘full’, ‘empty’, ‘in front of,’ and ‘behind’).
These targets were chosen as children should benefit from
sensorimotor interactions with objects when learning them.
For example, learning the word ‘heavy’ could be easier when
actually holding a heavy object rather than seeing a 3Dmodel
of this object on a tablet screen. Using a between-subjects
design, children were randomly assigned to either the tablet
or physical objects condition. During training, the target
words were each presented ten times by a human. Various
tests were administered to measure the children’s knowledge
of the target words, both immediately after the training and
one week later to measure children’s retention of the target
words.

Independent-samples t-tests revealed no significant dif-
ferences between using a tablet or physical objects on any
of the tasks, as indicated by childrens mean accuracy scores
on the direct and delayed post-tests (see Fig. 1; all p val-
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Fig. 1 Mean accuracy scores on
the direct post-test (top) and the
delayed post-test (bottom).
Purple bars refer to the object
condition; orange bars to the
tablet condition. Reprinted from
[68]. (Color figure online)

ues > .243). In the receptive tests (the comprehension task
and sorting task), children scored significantly above chance
level (indicated by the black line), irrespective of condition
(all p values < .001). Interestingly, in both conditions, the
mean scores on the Dutch-to-English translation task were
higher for the delayed post-test than for the immediate post-
test (both p values < .001), possibly indicating some sort of
“sleep effect”. These findings indicate that it does not mat-
ter much whether the context is presented through physical
objects or a tablet computer.

Displaying the context (i.e., target objects) on a tablet does
not seem to hamper learning,which is convenient, since using
a tablet makes designing contexts more flexible and reduces
the need to rely on complex object recognition and tracking.
Because of this, the lessons in the L2TOR project are dis-
played on a tablet, which is placed between the child and
the robot (see Fig. 2). This tablet not only displays the target
objects (e.g., a set of elephants in a zoo), but also allows chil-

Fig. 2 The L2TOR setup includes the NAO robot standing to the side
of the child with a tablet in between them

dren to perform actions on these objects (e.g., placing a given
number of elephants in their cage). Since at present ASR for
children is not performing reliably [37], the robot cannot
monitor children’s pronunciation or other verbal responses.
We therefore focus on language comprehension rather than
language production and use the tablet to monitor compre-
hension. The use of a tablet in the interaction allows us to
monitor the child’s understanding of language and to control
the interaction between child and robot.

4.2.4 Non-verbal Behaviour

Human language production is typically accompanied by
non-verbal cues, such as gestures or facial expressions. It is
therefore not surprising that research in children’s language
development has shown that the use of gestures facilitates L2
learning in various ways (e.g., [25,59,65]). Gestures could
take the form of deictic gestures, such as pointing to refer to
physical objects near the child, or of iconic gestures used
to emphasize physical features of objects or actions in a
more representational manner. Such iconic gestures help to
build congruent links between target words and perceptual
or motor information, so learners may benefit not only from
observing gestures, but also by way of execution, such as
enactment and imitation [23,25].

Due to its physical presence in the child’s referential
world, a robot tutor has the ability to use its physical embod-
iment to its advantage when interacting with the child, for
example, through the manipulation of objects in the real
world, or simply through the use of gestures for various com-
municative purposes. We believe that the robot’s ability to
use gestures is one of the primary advantages of a robot as
tutor compared to a tablet computer, since it can enrich the
language learning environment of the child considerably by
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exploiting the embodiment and situatedness of the robot to
facilitate the child’s grounding of the second language.

Even though a growing body of evidence suggests that
non-verbal cues, such as gestures aid learning, translating
human’s non-verbal behaviour to a robot like NAO remains
a challenge,mostly due to hardware constraints. For instance,
the NAO robot is limited by its degrees of freedom and con-
straints with respect to its physical reach, making it unable
to perform certain gestures. Motions may sometimes seem
rigid, causing the robot’s movements to appear artificial
rather than human-like. Especially when certain subtleties
are required when performing a gesture, such shortcomings
are not desirable. A noteworthy complication comes with
the NAO’s hand, which has only three fingers that cannot
move independently of one another. This makes an act such
as finger-counting, which is often used for the purpose of
explaining numbers or quantities, practically impossible.

This, thus, requires a careful design and testing of appro-
priate referential gestures, because otherwise they may harm
learning [35].

4.2.5 Verbal Behaviour

One potential advantage of using digital technologies, such
as robots, is that they can be programmed to speak multiple
languageswithout an accent.However,NAO’s text-to-speech
engines do generate synthetic voices and have few prosodic
capacities. Yet, studies have shown that children rely on
prosodic cues to comprehend spoken language (e.g., [16]).
Moreover, adults typically use prosodic cues to highlight
important parts of their speech when addressing children.
In addition, the lack of facial cues of the NAO robot may
potentially hinder the auditory-visual perception processes
of both hearing-impaired and normal-hearing children [19].
These limitations pose the question to what extent children
can learn the pronunciation of L2 words sufficiently well.

To explore this, aWizard-of-Oz (WoZ) experimental pilot
was devised using the NAO robot and a tablet for tutor-
ing and evaluating English children counting up to five in
German. The task involved multiple steps to gradually teach
children to count, in L2, animals shown on screen. First, the
robot-tablet concept was introduced, with the robot describ-
ing content displayed on the tablet screen, and the children
were trained on how and when to provide answers by means
of touching images on said screen. The children then pro-
ceeded with the main task, which involved the counting of
animals, first in English and later in German. The interaction
was managed by using multiple utterances from a WoZ con-
trol panel in order to prompt the children to give the answer
only after they were asked to. The WoZ operator triggered
appropriate help and feedback from the robot to the child
when required. Finally, at the end of the task, the robot asked
the children to count up to five again with the robots help
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Fig. 3 Pronunciation ratings from seven German native speakers for 5
child participants. Three of the children improve over the course of the
interaction, although one child has initially accurate pronunciation that
drops over time, possibly due to fatigue

and then without any help at all. The purpose of this step was
to evaluate whether the children were able to remember the
pronunciation of the German numbers and if they were able
to recall them with no support.

Voice and video recordings were used to record the inter-
actions with five children aged 4 to 5 years old. The first
and final repetitions of the children pronouncing the German
words were recorded and rated for accuracy on a 5-point
Likert scale by sevenGerman-native coders; intraclass corre-
lation ICC(2, 7) = .914, indicating “excellent” agreement
[13]. Based on these ratings, our preliminary findings are that
repetitions generally improve pronunciation. Several chil-
dren initially find it hard to pronounce German numbers but
they perform better by the end (Fig. 3). This may be because
some children had trouble recalling the German numbers
without help. We believe that the task needs updating to
improve the children’s recall (by, for example, including
more repetitions). In addition, it should be noted that children
generally find it difficult to switch from English to German.

To conclude, children can learn the pronunciation of the
L2 from the robot’s synthetic voice, but we should compare
this to performance ratings of children that have learned the
L2 from native speakers. It is worth noting that they seem
to have some reservation speaking a foreign language, but
whether or not this is due to the presence of the robot is
unknown.

4.2.6 Feedback

A typical adult-like strategy known to support language
learning is the use of appropriate feedback [3]. Adult care-
givers tend to provide positive feedback explicitly (e.g., ‘well
done!’) and negative feedback implicitly by recasting the cor-
rect information (e.g., ‘that is the rabbit, now try again to
touch the monkey’). However, evidence suggests that a peer
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does not generally provide positive feedback and that they
provide negative feedback explicitly without any correction
(e.g., ‘no, that is wrong!’). So, when the robot is framed as a
peer, should it also provide feedback like a peer?

To explore this,we carried out an experiment to investigate
the effect the type of feedback has on children’s engagement
[17,18]. In the experiment, sixty-five 3-year-old children (30
boys, 35 girls; Mage = 3.6 years, SDage = 3.6months)
from different preschools in the Netherlands participated.
Six children stopped with the experiment before it was fin-
ished and were excluded from the data. The children were
randomly assigned to one of three conditions, varying the
type of feedback: adult-like feedback, peer-like feedback,
and no feedback. The adult-like feedback of the robot used
reformulations to correct the children in case they made a
mistake (e.g., ‘three means three’, where the text in ital-
ics represents what the robot said in the L2, here English;
the rest was said in the L1, here Dutch) and positive feed-
back (‘well done!’) when children responded correctly. In the
peer-like condition, only explicit negative feedback without
correction was provided whenever children made a mistake
(‘that is wrong!’) and no feedback was provided when they
responded correctly. In the no feedback condition, the robot
simply continued with the next task without providing any
feedback.

During the experiment, the robot taught the native Dutch-
speaking children counting words one to four in English. The
interaction consisted of an introductory phase followed by
the tutoring phase. During the introductory phase, the target
words (i.e., ‘one’, ‘two’, ‘three’, and ‘four’) were described
and associated with their concept in sentences such as ‘I have
one head’, ‘I have two hands’, ‘I have three fingers’, and
‘there are four blocks’. We analysed the introductory phase
as part of the age-effects study reported in Sect. 4.1.1. In the
tutoring phase, the robot asked the child to pick up a cer-
tain number of blocks that had been placed in front of them.
All instructions were provided in Dutch and only the target
words were provided in English. After the child collected the
blocks, the robot provided either adult-like feedback, peer-
like feedback, or no feedback depending on the experimental
condition assigned to the child.

As a result of the relatively low number of repetitions of
the target words over the course of the interaction, we did not
expect to find any effects with respect to learning gain. How-
ever, the objective was not to investigate the effect feedback
has on learning, but rather on the child’s engagement with
the robot as an indicator of learning potential [12]. As for the
age-effect study, we analysed engagement by annotating the
children’s eye-gaze towards the robot, human experimenter,
to the blocks, and elsewhere, and measured the average time
children maintained their gaze each time they looked at one
of these targets.

Fig. 4 Mean duration per gaze to the robot, blocks, experimenter, and
elsewhere for the three feedback conditions

Results from a repeated measures ANOVA indicated that,
on average, the children maintained their gaze significantly
longer at the blocks and the robot than at the experimenter,
regardless of their assigned condition (see Fig. 4).

However, we did not see any significant differences in
the gaze duration across the three conditions. As such, the
way the robot provides feedback does not seem to affect the
engagement of the child with the robot. This would suggest
that, as far as the child’s engagement with the robot and task
is concerned, it does not matter how the robot provides feed-
back or whether the robot provides feedback at all. Hence,
the choice for the type of feedback that the robot should give
can, thus, solely be based on the effect feedback has on learn-
ing gain. Future workwill investigate which type of feedback
is most effective for learning.

4.3 InteractionManagement

4.3.1 Objective

To realise robot-child tutoring interactions that provide a
pleasant and challenging environment for the child, while
at the same time being effective for L2 learning, interaction
management plays a crucial role.

As children typically lose interest when a lesson is either
too easy or too difficult, personalisation of the lessons to each
child’s performance is very important. The tutor has to struc-
ture the interaction, needs to choose the skills to be trained,
must adjust the difficulty of the learning tasks appropriately,
and has to adapt its verbal and non-verbal behaviour to the
situation. The importance of personalised adjustments in the
robot’s behaviour has been evidenced in research showing
that participants who received personalised lessons from a
robot outperformed others who received non-personalised
training [5,45]. Suboptimal robot behaviour (e.g., too much,
too distracting, mismatching, or in other ways inappropriate)
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can even hamper learning [35]. Therefore lessons should be
adapted to the knowledge state (i.e., level) of the child [70].

Along these lines, the L2TOR approach is to personalise
language tutoring in HRI by integrating knowledge-tracing
into interaction management [61]. This adaptive tutoring
approach is realised in a model of how tutors form men-
tal states of the learners by keeping track of their knowledge
state and selecting the next tutoring actions based on their
likely effects on the learner. For that purpose, an extended
model based on Bayesian Knowledge Tracing was built that
combines knowledge tracing (what the learner learned) and
tutoring actions in one probabilistic model. This allows for
the selection of skills and actions based onnotions of optimal-
ity: the desired learner’s knowledge state as well as optimal
task difficulty.

4.3.2 Proposed Model

Aheuristic is employed thatmaximises the beliefs of all skills
while balancing the single skill-beliefswith one another. This
strategy is comparable to the vocabulary learning technique
of spaced repetition as implemented, for instance, in the Leit-
ner system [43]. For the choice of actions, the model enables
simulation of the impact each action has on a particular skill.
To keep the model simple, the action space only consists of
three different task difficulties (i.e., easy, medium, hard).

4.3.3 Results

As an evaluation, the model was implemented and tested
with a robot language tutor during a game-like vocabulary
tutoring interaction with adults (N = 40) [61].

We adopted the game ‘I spy with my little eye’. In this
game, the NAO robot describes an object which is displayed
on a tablet along with some distractors, by referring to its
descriptive features in an artificial L2 (i.e., “Vimmi”). The
student then has to guess which object the robot refers to.
The overall interaction structure, consisting of five phases
(i.e., opening, game setup, test-run, game, closing), as well
as the robot’s feedback strategies were based on our observa-
tions of language learning in kindergartens. After the tutoring
interaction, a post-test of the learned words was conducted.

The results revealed that learners’ performance improved
significantly during trainingwith the personalised robot tutor
(Fig. 5). A mixed-design ANOVA with training phase as a
within-subjects factor and training type as between-subject
factor demonstrated a significant main effect of training
phase (F(1, 38) = 66.85, p < .001, η2 = .64), such that
learners’ performance was significantly better in the final
phase as compared to the initial phase. Crucially, partici-
pants who learned in the adaptive condition had a higher
number of correct answers as compared to the control con-
dition (F(1, 38) = 6.52, p = .02, η2 = .15). Finally, the

3.5

Co
rr

ec
t a

ns
w

er
 c

ou
nt

srewsna7tsaLsrewsna7tsriF

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Adap�ve

Random

Fig. 5 Mean numbers of correct answers at the beginning (first 7) and
end (last 7) of the interaction in the different conditions. Adapted from
[61]

Table 1 Results of both post-tests (L1-to-L2 and L2-to-L1): Means
(M) and standard deviation (SD) of correct answers grouped by the
experimental conditions

Adaptive (A) Control (C)

M SD M SD

L1-to-L2 3.95 2.56 3.35 1.98

L2-to-L1 7.05 2.56 6.85 2.48

Adapted from [61]

interaction between training phase and type was also signif-
icant (F(1, 38) = 14.46, p = .001, η2 = .28), indicating
that the benefit of the adaptive training developed over time.

The results of the post-test did not show significant dif-
ferences between the two conditions, which may be due
to the way in which responses were prompted during the
training sessions and post-test (Table 1). In the training ses-
sions participants saw pictures relating to the meaning of the
to-be-learned words, whereas in the post-test they received
a linguistic cue in form of a word they had to translate.
Although no main effect of training type emerged in the
post-test, some details are nevertheless worth mentioning. In
the L1-to-L2 post-test, a maximum of ten correct responses
was achieved by participants of the adaptive-model condi-
tion, whereas the maximum in the control condition were
six correct answers. Moreover, there were two participants
in the control condition who did not manage to perform
any L1-to-L2 translation correctly, while in the adaptive-
model condition, all participants achieved at least one correct
response (see Fig. 6).
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Fig. 6 Participant-wise amount of correct answers grouped by the dif-
ferent conditions for the L1-to-L2 post-test. Adapted from [61]

4.3.4 Outlook

This basic adaptive model will be extended by further inte-
grating skill interdependencies aswell as affective user states.
Both have already been shown to improve learning [34,63].
In addition, themodel can, and ismeant to, provide a basis for
exploiting the full potential of an embodied tutoring agent,
and will therefore be advanced to the extent that the robot’s
verbal and non-verbal behaviour will adapt to the learner’s
state of knowledge and progress. Specifically, it aims to
enable dynamic adaptation of (a) embodied behaviour such
as iconic gesture use, which is known to support vocab-
ulary acquisition as a function of individual differences
across children (cf. [59]); (b) the robot’s synthetic voice to
enhance comprehensibility and prosodic focusing of content
when needed; and (c) the robot’s socio-emotional behaviour
depending on the learners’ current level of motivation and
engagement.

5 Evaluation Framework for Robot L2
Tutoring

In this section, we discuss our plans for evaluating our
robot-assisted L2 vocabulary intervention. While this sec-
tion describes future plans rather than already completed
work, it also provides guidelines for evaluating tutoring
systems similar to the L2TOR system. The first step in
an evaluation is the development of pre- and post-tests
designed to assess children’s learning of the targeted vocab-
ulary through comprehension and translation tasks, as well
as tasks assessing deep vocabulary knowledge (i.e., concep-
tual knowledge associatedwith aword). Not directly targeted
but semantically-related vocabulary will also be assessed, as
well as general vocabulary and other skills related to word
learning (e.g., phonological memory). This is important as
children learn not only the words directly used, but can also

use thesewords to bootstrap their further vocabulary learning
in the same as well as related domains [51].

In addition to assessing children’s L2 word learning, we
will evaluate the word learning process during the interac-
tive sessions between children and the robot by observing,
transcribing, and coding video-taped interactions. Measures
will include children’s and the robot’s participation and turn-
taking, the type of questions, recasts and expansions, the
semantic contingency of responses and expansions, and the
coherence and length of episodes within the sessions. All
these aspects are known to promote language learning [9,44].
Therefore, it is important to evaluate how these processes are
taking place within the context of language learning with a
social robot.

Finally, given the importance of motivation, we will
observe how children comply with the robot’s initiatives and
instructions, how involved they are in the intervention, and
to what extent they express positive emotions and well-being
during the lessons [41]. The intervention will consist of mul-
tiple sessions, such that children’s learning, motivation, and
interaction with a social robot can be judged over time.

The design of the evaluation studywill be based on a com-
parison between an experimental and a control group. The
experimental groupwill be taught using the social robotwhile
the control group will receive a placebo training (e.g., non-
language activitywith the robot). This design is very common
in educational research as it enables testing whether children
who participate in an educational programme (L2TOR in
this case) learn more or just as much as children who follow
the normal curriculum. Additionally, learning gains with the
robot will be compared to learning gains using an intelligent
tutoring system on a tablet, to test the additional value of
a social robot above existing technology used in education.
In evaluating the robot-supported program developed within
L2TOR, our aim is not only to assess the effectiveness of
the specific tutoring by the L2TOR robot, but also to provide
recommendations for further technological development and
guidelines for future use of social robots in (L2) language
tutoring situations.

6 Conclusion

In this paper, we have presented guidelines for designing
social robots as L2 tutors for preschool children. The guide-
lines cover a range of issues concerning the pedagogy of L2
learning, child–robot interaction strategies, and the adaptive
personalisation of tutoring. Additional guidelines for eval-
uating the effectiveness of L2 tutoring using robots were
presented.

While the benefits of social robots in tutoring are clear,
there are still a range of open issues on how robot tutors
can be effectively deployed in educational settings. The spe-
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cific focus of this research programme –tutoring L2 skills to
young children– requires an understanding of how L2 learn-
ing happens in young children and how children can benefit
from tutoring. Transferring the tutoring to social robots has
highlighted many questions: should the robot simulate what
human tutors do? Should the robot be a peer or a teacher?
How should the robot blend L1 and L2? How should feed-
back be given?

Our aim is to develop an autonomous robot: this incurs
several complex technical challenges,which cannot currently
be met by state-of-the-art AI and social signal processing.
ASR of child speech, for example, is currently insufficiently
robust to allow spoken dialogue between the robot and the
young learner. We propose a number of solutions, including
the use of a tablet as an interaction-mediating device.

Our and our colleagues’ studies show that social robots
hold significant promise as tutoring aids, but a complex pic-
ture emerges as children do not just learn by being exposed
to a tutoring robot. Instead, introducing robots in language
learning will require judicious design decisions on what the
role of the robot is, how the child’s learning is scaffolded,
and how the robot’s interaction can support this.
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ABSTRACT—In this article, we review research on child–
robot interaction (CRI) to discuss how social robots can be

used to scaffold language learning in young children. First

we provide reasons why robots can be useful for teaching

first and second languages to children. Then we review

studies on CRI that used robots to help children learn

vocabulary and produce language. The studies vary in first

and second languages and demographics of the learners

(typically developing children and children with hearing

and communication impairments). We conclude that,

although social robots are useful for teaching language to

children, evidence suggests that robots are not as effective

as human teachers. However, this conclusion is not defini-

tive because robots that tutor students in language have

not been evaluated rigorously and technology is advancing

rapidly. We suggest that CRI offers an opportunity for

research and list possible directions for that work.

KEYWORDS—child–robot interaction; social robots;

language learning

Using technology in early education has gained considerable

attention as digital devices (e.g., smartphones and tablets) have

developed and been integrated into children’s lives (1). In this

article, we spotlight one of the newest additions to the list of

devices—social robots—and discuss whether research on

child–robot interaction (CRI) can help children learn first and

second languages.

A social robot is “an autonomous or semiautonomous robot that

interacts and communicates with humans by following the behav-

ioral norms expected by the people with whom the robot is

intended to interact” (2, p. 592). Social robots have been used to

teach scientific knowledge, mathematics, social skills, computer

programming, and language (3, 4). However, research on CRI

has not been readily accessible to all those interested because

the studies appear primarily in conference proceedings and jour-

nals dedicated to the field of robotics. Furthermore, these studies

often focus on technical features of robots rather than educa-

tional concerns, such as whether and how robots can help young

language learners.

In this article, we summarize findings on CRI and evaluate

them critically. First we discuss briefly why a robot may be

useful for teaching language to children. Then we evaluate

whether children enjoy learning language with a robot. In the

main section of the article, we ask whether children can

learn language from a robot. We analyze learning outcomes

at three levels: whether robots are at all successful teaching

language to children, whether they are more successful teach-

ing language than other digital devices, and whether robots

can teach language as effectively as human teachers.

Although social robots have potential as a language teaching

tool, evidence suggests that robots are not as effective as

human teachers. However, we argue that researchers must

continue exploring this issue because the educational benefits

of robots have not been evaluated thoroughly and technology

in robotics is advancing quickly. In the last section, we sug-

gest directions for research on CRI.
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WHY USE ROBOTS FOR LEARNING LANGUAGE?

Learning language with a human teacher benefits children, but

successful learning often takes more than just classes at school.

Social robots are theorized to contribute to the early language

learning experience in unique ways, and to supplement and

enhance the experience. As a social agent with a physical body,

a robot can play the role of a human through vocal, gestural,

and facial expressions (5, 6). Although it remains unclear

whether all the pedagogical strategies used by human teachers

can and should be adopted by robots, many can be applied to

robot-assisted language lessons (7).

One strength of robot tutors is their ability to perform actions

and gestures. For example, a humanoid (a robot that resembles

a human in appearance) can point to a physical object or open

its arms to represent the meaning of the word big. Gestures

abound in natural communication and can be a powerful cue

that supplements speech. Robot tutors that can gesture may be

especially effective for children because children benefit from

gestures more than adults in human–human interaction (8); ges-

tures improve speech comprehension in a second language (L2)

in less-skilled learners (9), and gestures increase children’s

attention to the learning materials (10). For example, Italian-

speaking 5- to 6-year-olds recalled stories more accurately when

the tales were narrated by an expressive humanoid robot that

used gestures, eye gaze, and voice tone than when they were

told by an inexpressive human teacher (11).

Another strength of robots is that they are adaptive—through

sensors, they can detect humans’ motivational and educational

needs and change their behavior accordingly. As suggested by

scaffolding, learning outcomes are maximized when a task is not

too difficult but challenging enough for a child (12). In one

study, English-speaking 3- to 5-year-olds learned Spanish words

successfully with a robot that provided explicit verbal feedback

(e.g., “Good job!”) as well as implicit feedback via eye gaze, a

feature children often rely on in learning words (13), and

adjusted them based on the children’s performance (14). It can

be difficult for classroom teachers to adjust lesson levels to each

child and robot tutors can serve as a supplementary tool, espe-

cially when children can practice one on one with the robot.

In theory, social robots could provide unique support for

young language learners. Does research confirm the idea? Next,

we review empirical findings and evaluate whether children

enjoy learning with a robot (in terms of motivation and engage-

ment) and whether they can learn from a robot (in terms of

learning outcomes).

MOTIVATION AND ENGAGEMENT

Motivation and engagement are popular measures in research

on CRI. To understand whether children enjoy learning with a

robot, studies of these factors have used children’s self-reports

to measure attention, satisfaction, and enjoyment (15, 16), and

they have analyzed children’s facial expressions (14). Although

parents and educators may put less focus on engagement than

on learning outcomes, engagement is a critical measure because

children learn best when they are engaged (13). For robot-

assisted lessons to be successful, children must want to continue

to interact with robots.

Most children find learning language with social robots engag-

ing (5, 14–21). For example, fifth graders in Taiwan practiced

English skills in a group lesson led by a human teacher with or

without a humanoid robot. Children who studied with the robot

reported that they were more motivated and satisfied with the

learning materials, and were less anxious and had greater self-

esteem than their counterparts who studied without the robot

(15). In another study, 3- to 5-year-old English speakers enjoyed

learning fruit names in French with a robot (17). And in another

study, Japanese preschoolers who learned English words from a

humanoid robot were engaged and imitated the robot’s move-

ments as instructed (18). Interviews with children also suggest

that children like robots (19) and prefer to learn from a robot

than a tablet or a human (20). Positive attitudes toward robots

have been observed both in class (21) and at home (5).

Researchers working with children with autism spectrum disor-

der (ASD) also suggest that children’s interest in robots con-

tributes to their learning (22). Furthermore, teachers found a

robot useful after using it in class (23; see also 24).

In summary, children enjoy learning language with a robot.

However, we must interpret these findings cautiously because

the advantage of robots may be due to novelty. Compared to a

tablet or human teacher, the appearance of a robot is usually

novel to children and can easily grab their attention. In a study

in Japan, although elementary schoolers were initially very

interested in interacting with a robot English tutor, after 1 week

children interacted less frequently (25). To determine the

motivational benefits of robots, researchers should explore inter-

action between robots and children for an extended time.

Research on motivation and engagement favors the use of

robots in early language education. Although we must further

examine whether children’s engagement lasts, studies on CRI

generally agree that learning with a social robot is exciting for

children. However, the picture differs for learning outcomes.

LEARNING OUTCOMES

Research on vocabulary learning and language production pro-

vides a good ground for discussing learning outcomes of robot-

assisted language lessons. Research in both domains has identi-

fied positive learning outcomes in robot-assisted language les-

sons, but the impact of robot language tutors varies across

studies.

Vocabulary Learning

Vocabulary learning may be the most common topic in the field

of CRI (19, 20, 26, 27). Researchers seem to agree that a social
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robot can teach new words to children successfully. In one

study, English-speaking 15- to 23-month-olds learned words

with a robot that had a built-in touchscreen (26). The same pat-

tern is also apparent in L2 acquisition: 3- to 5-year-old English

speakers learned Spanish words over eight play sessions in

which they were engaged in a tablet-based learning activity with

a robot (14). In another study, Japanese-speaking 3- to 6-year-

olds learned English verbs by teaching the words to the huma-

noid robot. These children identified corresponding pictures

more successfully for the verbs they taught the robot than for

the verbs they learned from a human experimenter, both on the

day of the experiment and 3 to 5 weeks later (21). Although it

remains unclear whether their learning improved due to the

presence of the robot or because children taught the words to

another agent, the study demonstrated the unique role robots

can play in vocabulary learning.

Social robots may also help vocabulary development in chil-

dren with ASD. Researchers in Iran developed a robot-assisted

intervention to teach English words to Persian-speaking 7- to 9-

year-olds with ASD. English test scores increased and were

maintained after 2 weeks (28). However, in another study, after

a 6-week intervention with a robot that involved imitation and

games, English-speaking preschoolers with ASD and speech

deficiency improved their receptive and expressive communica-

tion skills but did not improve their vocabulary (29).

Social robots have also helped children with hearing impair-

ments. Researchers modified hands of a robot to sign Turkish

Sign Language (TSL; 30). Six- to 16-year-old typically develop-

ing children and children with hearing impairments, as well as

adults, understood and remembered TSL words generated by the

robot and accurately matched the robot’s sign gesture with the

corresponding image. In another study by the same research

group, 7- to 11-year-olds with beginner-level TSL skills learned

more words when they interacted physically with the robot than

when they watched the robot on a screen; 9- to 16-year-olds with

advanced TSL skills learned equally well in both situations (31).

The physical embodiment of robots may have different effects,

depending on learners’ language proficiency. The effectiveness

of robots as sign language tutors has only been studied experi-

mentally for TSL, though some have begun to examine their use

in teaching other sign languages (e.g., Persian Sign Language;

32).

Young children can learn words from a robot. However, this

does not necessarily mean that robots are more effective than

other devices or humans in teaching language. In a 4-week

reading program in Korean, 4-year-old native speakers learned

stories either by interacting with a robot or by watching the sto-

ries on an electronic book. Children in both groups improved

their vocabulary knowledge (27). In another study in which Eng-

lish-speaking 4- to 6-year-olds learned made-up words, children

learned equally well from a robot, a human teacher, and a tablet

(20). In yet another study of 4- to 6-year-olds, Italian-speaking

children learned English words either with a robot or another

child (33). And in a study with Japanese-speaking 4- and

5-year-olds, learning made-up words from a robot was not as

effective as learning from a human (34).

To our knowledge, no study has found robots to be more effec-

tive at teaching words than other digital devices or human

teachers, except for the sign language study in which beginners

benefited from the physical presence of a robot (31). Sign lan-

guage may be a promising direction because performing actions

is a unique strength of robots. With regard to vocabulary learn-

ing, although further research may change the picture, robots

may not confer more advantages than other mediums. However,

the implications differ for language production.

Language Production

Social robots have been used to improve children’s ability to

produce language, for example, in storytelling skills (19, 27). In

the study mentioned previously (27), Korean-speaking 4-year-

olds learned vocabulary equally well with a robot and with an

electronic book. However, only children who interacted with the

robot improved their abilities to tell original stories, retell stories

they learned, and recognize and pronounce written words. In

addition, in another study, English-speaking 4- to 6-year-olds’

own stories became longer and richer when the robot adjusted

the lesson’s complexity to children’s language level (19).

Social robots can also elicit speech in children with ASD (22,

29). In the aforementioned 6-week intervention study, English-

speaking preschoolers with ASD and speech deficiency pro-

duced more spontaneous speech after playing with a robot,

although the study did not compare teaching by other devices or

human teachers (29). Another study with English-speaking 4- to

12-year-olds with high-functioning ASD was more thorough

(22): Children interacted in various combinations with adults, a

touchscreen computer game, and a dinosaur robot. When inter-

acting with the robot and an adult, children produced more

utterances (toward the robot and the adult) than when they inter-

acted with two adults or with the computer and one adult. These

results suggest that, for children with ASD, a robot can be a

more effective learning companion than computers or human

adults.

For language production, some studies have demonstrated the

benefit of robot companions over other digital devices. Social

robots may be especially beneficial for individuals with ASD

who face communication difficulties because practicing commu-

nication can be less intimidating with a robot than with another

person (28, 35). We suggest that using robots in fostering lan-

guage production is an important direction for research. Now,

we turn to other research topics that should be explored.

LOOKING AHEAD

Research demonstrates that children are motivated to learn with

a robot, but based on findings, we cannot claim that robot lan-

guage tutors are particularly effective. Nonetheless, insufficient
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evidence supporting the unique benefits of robot tutors should

not be taken as definitive for two reasons: the dearth of empiri-

cal research and the advances of technology.

First, research may not have found robots to be more effective

learning companions than other options because too few studies

have been done. Studies on CRI are often descriptive and

exploratory, and do not follow the scientific standards in other

disciplines. Many lack a proper control group to evaluate

whether a robot is more effective at teaching language than other

options. Most studies have tested a small group of children and

focused on whether children liked the robot, without evaluating

learning outcomes. No research has examined long-term benefits

of robot tutors. Furthermore, reports on CRI research often lack

critical information (e.g., age of participants), making it difficult

to evaluate the findings properly (36). Scholars in fields such as

developmental psychology have examined language learning for

decades, and incorporating their insights into designing and

reporting experiments on CRI would be helpful, as would com-

municating with educators who use robots.

Second, we must consider advances in the hardware and soft-

ware of robots. The technical features of robots that have been

studied so far fail to meet the full potential of social robots,

many of which may have completely different features within a

few years. For example, developing a reliable system for recog-

nizing children’s speech automatically is a challenge because of

factors such as the ungrammaticality of children’s utterances

and rapid developmental changes in the phonetic characteristics

of children’s speech. Currently available systems seem unreli-

able with children’s speech, but different ways to improve the

system have been suggested (37). When children’s speech can

be recognized reliably, robots can provide lessons that are more

adaptive and interactive.

Furthermore, social robots may be more beneficial in teaching

specific aspects of language (27) or specific groups of people

(22). In addition to vocabulary learning and language produc-

tion, other aspects of language (e.g., pronunciation) should also

be explored (but see 16). Another topic worth investigating is

the role of robots, which includes but is not limited to tutor (14),

care receiver (21), and teaching assistant (15). Manipulating

specific features of robots, such as adaptivity (19) and contin-

gency (38), may also result in more effective learning. Because

it is virtually impossible to draw a conclusion that applies to all

robots, researchers should ask not whether robots are useful for

teaching language but how robot language tutors can be

improved.

Although we have a long way to go in researching CRI, some

promising attempts have been made. L2TOR is a multisite pro-

ject that aims to develop an autonomous humanoid robot for

teaching L2 vocabulary (English, Dutch, and German) to 5-year-

olds in three countries (Turkey, the Netherlands, and Germany;

39, 40), and that considers important points discussed in this

article. First, the robot tutor will be compared directly to a

tablet. Second, the target words are math and spatial concepts,

many of which have conventional gestures robots can perform.

Finally, the robot tutor will be evaluated over several weeks to

examine long-term benefits in learning. Unlike most studies,

L2TOR involves not only roboticists, but also developmental

psychologists and linguists. Research on robot-assisted language

learning is still at an early stage; strong interdisciplinary collab-

oration can help advance the field.

CONCLUSION

We have provided a concise, critical review of research on using

social robots in early language education. Research suggests

that robots may supplement a need that cannot be met solely by

human teachers. However, when considering whether robots can

substitute for other devices or human teachers, no study indi-

cates that they are more effective than humans—though robots

can be more effective than other digital devices. The shortage of

evidence supporting the unique benefits of social robots should

be viewed as an opportunity for researchers. We hope this arti-

cle encourages interdisciplinary collaboration among experts on

this important topic.
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Social robots for education: A review
Tony Belpaeme1,2*, James Kennedy2, Aditi Ramachandran3, Brian Scassellati3, Fumihide Tanaka4

Social robots can be used in education as tutors or peer learners. They have been shown to be effective at increasing 
cognitive and affective outcomes and have achieved outcomes similar to those of human tutoring on restricted 
tasks. This is largely because of their physical presence, which traditional learning technologies lack. We review the 
potential of social robots in education, discuss the technical challenges, and consider how the robot’s appearance 
and behavior affect learning outcomes.

INTRODUCTION
Virtual pedagogical agents and intelligent tutoring systems (ITSs) 
have been used for many years to deliver education, with compre-
hensive reviews available for each field (1, 2). The use of social 
robots has recently been explored in the educational domain, with 
the expectation of similarly positive benefits for learners (3–5). A 
recent survey of long-term human-robot interaction (HRI) high-
lighted the increasing popularity of using social robots in educa-
tional environments (6), and restricted surveys have previously been 
conducted in this domain (7, 8).

In this paper, we present a review of social robots used in educa-
tion. The scope was limited to robots that were intended to deliver 
the learning experience through social interaction with learners, as 
opposed to robots that were used as pedagogical tools for science, 
technology, engineering, and math (STEM) education. We identi-
fied three key research questions: How effective are robot tutors at 
achieving learning outcomes? What is the contribution made by the 
robot’s appearance and behavior? And what are the potential roles 
of a robot in an educational setting? We support our review with 
data gleaned from a statistical meta-analysis of published literature. 
We aim to provide a platform for researchers to build on by high-
lighting the expected outcomes of using robots to deliver education 
and by suggesting directions for future research.

Benefits of social robots as tutoring agents
The need for technological support in education is driven by demo-
graphic and economic factors. Shrinking school budgets, growing 
numbers of students per classroom, and the demand for greater 
personalization of curricula for children with diverse needs are 
fueling research into technology-based support that augments the 
efforts of parents and teachers. Most commonly, these systems take 
the form of a software system that provides one-on-one tutoring 
support. Social interaction enhances learning between humans, in 
terms of both cognitive and affective outcomes (9, 10). Research has 
suggested that some of these behavioral influences also translate to 
interactions between robots and humans (3, 11). Although robots 
that do not exhibit social behavior can be used as educational tools 
to teach students about technology [such as in (12)], we limited our 
review to robots designed specifically to support education through 
social interactions.

Because virtual agents (presented on laptops, tablets, or phones) 
can offer some of the same capabilities but without the expense of 

additional hardware, the need for maintenance, and the challenges 
of distribution and installation, the use of a robot in an educational 
setting must be explicitly justified. Compared with virtual agents, 
physically embodied robots offer three advantages: (i) they can be 
used for curricula or populations that require engagement with the 
physical world, (ii) users show more social behaviors that are bene-
ficial for learning when engaging with a physically embodied system, 
and (iii) users show increased learning gains when interacting with 
physically embodied systems over virtual agents.

Robots are a natural choice when the material to be taught 
requires direct physical manipulation of the world. For example, 
tutoring physical skills, such as handwriting (13) or basketball 
free throws (14), may be more challenging with a virtual agent, 
and this approach is also taken in many rehabilitation- or therapy- 
focused applications (15). In addition, certain populations may 
require a physically embodied system. Robots have already been 
proposed to aid individuals with visual impairments (16) and for 
typically developing children under the age of two (17) who show 
only minimal learning gains when provided with educational con-
tent via screens (18).

In addition, often there is an expectation for robot tutors to be 
able to move through dynamic and populated spaces and manipu-
late the physical environment. Although not always needed in the 
context of education, there are some scenarios where the learning 
experience benefits from the robot being able to manipulate objects 
and move autonomously, such as when supporting physical experi-
mentation (19) or moving to the learner rather than the learner 
moving to the robot. These challenges are not exclusive to social 
robotics and robot tutors, but the added elements of having the robot 
operate near and with (young) learners add complexities that are 
often disregarded in navigation and manipulation.

Physical robots are also more likely to elicit from users social 
behaviors that are beneficial to learning (20). Robots can be more 
engaging and enjoyable than a virtual agent in cooperative tasks 
(21–23) and are often perceived more positively (22, 24, 25). Im-
portantly for tutoring systems, physically present robots yield sig-
nificantly more compliance to its requests, even when those requests 
are challenging, than a video representation of the same robot (26).

Last, physical robots have enhanced learning and affected later 
behavioral choice more substantially than virtual agents. Compared 
with instructions from virtual characters, videos of robots, or audio- 
only lessons, robots have produced more rapid learning in cognitive 
puzzles (27). Similar results have been demonstrated when coaching 
users to select healthier snacks (24) and when helping users continue 
a 6-week weight-loss program (28). A comprehensive review (25) con-
cluded that the physical presence of a robot led to positive perceptions 
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and increased task performance when compared with virtual agents 
or robots displayed on screens.

Technical challenges of building robot tutors
There are a number of challenges in using technology to support 
education. Using a social robot adds to this set of challenges because 
of the robot’s presence in the social and physical environment and 
because of the expectations the robot creates in the user. The social 
element of the interaction is especially difficult to automate: Although 
robot tutors can operate autonomously in restricted contexts, fully 
autonomous social tutoring behavior in unconstrained environments 
remains elusive.

Perceiving the social world is a first step toward being able to act 
appropriately. Robot tutors should be able to not only correctly in-
terpret the user’s responses to the educational content offered but 
also interpret the rapid and nuanced social cues that indicate task 
engagement, confusion, and attention. Although automatic speech 
recognition and social signal processing have improved in recent 
years, sufficient progress has not been made for all populations. 
Speech recognition for younger users, for example, is still insuffi-
ciently robust for most interactions (29). Instead, alternative input 
technologies, such as a touch-screen tablets or wearable sensors, are 
used to read responses from the learner and can be used as a proxy 
to detect engagement and to track the performance of the student 
(30–32). Robots can also use explicit models of disengagement in a 
given context (33) and strategies, such as activity switching, to sus-
tain engagement over the interaction (34). Computational vision has 
made great strides in recent years but is still limited when dealing 
with the range of environments and social expressions typically found 
in educational and domestic settings. Although advanced sensing 
technologies for reading gesture, posture, and gaze (35) have found 
their way into tutoring robots, most social robot tutors continue to 
be limited by the degree to which they can accurately interpret the 
learner’s social behavior.

Armed with whatever social signals can be read from the student, 
the robot must choose an action that advances the long-term goals 
of the educational program. However, this can often be a difficult 
choice, even for experienced human instructors. Should the instructor 
press on and attempt another problem, advance to a more challenging 
problem, review how to solve the current problem, offer a hint, or 
even offer a brief break from instruction? There are often conflicting 
educational theories in human-based instruction, and whether or not 
these same theories hold when considering robot instructors is an 
open question. These choices are also present in ITSs, but the explicit 
agentic nature of robots often introduces additional options and, at 
times, complications. Choosing an appropriate emotional support 
strategy based on the affective state of the child (36), assisting with 
a meta-cognitive learning strategy (37), deciding when to take a break 
(31), and encouraging appropriate help-seeking behavior (4) have 
all been shown to increase student learning gains. Combining these 
actions with appropriate gestures (38), appropriate and congruent 
gaze behavior (39), expressive behaviors and attention-guiding 
behaviors (11), and timely nonverbal behaviors (3) also positively 
affects student recall and learning. However, merely increasing the 
amount of social behavior for a robot does not lead to increased 
learning gains: Certain studies have found that social behavior may 
be distracting (40, 41). Instead, the social behavior of the robot must 
be carefully designed in conjunction with the interaction context 
and task at hand to enhance the educational interaction.

Last, substantial research has focused on personalizing interac-
tions to the specific user. Within the ITS community, computational 
techniques such as dynamic Bayesian networks, fuzzy decision trees, 
and hidden Markov models are used to model student knowledge 
and learning. Similar to on-screen tutoring systems, robot tutors use 
these same techniques to help tailor the complexity of problems to 
the capabilities of the student, providing more complex problems 
only when easier problems have been mastered (42–44). In addition 
to the selection of personalized content, robotic tutoring systems 
often provide additional personalization to support individual learn-
ing styles and interaction preferences. Even straightforward forms 
of personalization, such as using a child’s name or referencing per-
sonal details within an educational setting, can enhance user percep-
tion of the interaction and are important factors in maintaining 
engagement within learning interactions (45, 46). Other affective 
personalization strategies have been explored to maintain engage-
ment during a learning interaction by using reinforcement learning 
to select the robot’s affective responses to the behavior of children 
(47). A field study showed that students who interacted with a robot 
that simultaneously demonstrated three types of personalization 
(nonverbal behavior, verbal behavior, and adaptive content pro-
gression) showed increased learning gains and sustained engagement 
when compared with students interacting with a nonpersonalized 
robot (48) Although progress has been made in constituent tech-
nologies of robot tutors—from perception to action selection and 
production of behaviors that promote learning—the integration of 
these technologies and balancing their use to elicit prosocial behavior 
and consistent learning still remain open challenges.

REVIEW
To support our review, we used a meta-analysis of the literature 
on robots for education. In this, three key questions framed the 
meta-analysis and dictated which information was extracted:

1. Efficacy. What are the cognitive and affective outcomes when 
robots are used in education?

2. Embodiment. What is the impact of using a physically em-
bodied robot when compared with alternative technologies?

3. Interaction role. What are the different roles the robot can 
take in an educational context?

For the meta-analysis, we used published studies extracted from 
the Google Scholar, Microsoft Academic Search, and CiteSeerX 
databases by using the following search terms: robot tutor, robot 
tutors, socially assistive robotics (with manual filtering of those 
relevant to education), robot teacher, robot assisted language 
learning, and robot assisted learning. The earliest published work 
appeared in 1992, and the survey cutoff date was May 2017. In 
addition, proceedings of prominent social HRI journals and con-
ferences were manually searched for relevant material: Interna-
tional Conference on Human-Robot Interaction, International 
Journal of Social Robotics, Journal of Human-Robot Interaction, 
International Conference on Social Robotics, and the Interna-
tional Symposium on Robot and Human Interactive Communica-
tion (RO-MAN).

The selection of papers was based on four additional criteria:
1) Novel experimental evaluations or analyses should be presented.
2) The robot should be used as the teacher (i.e., the robot is an 

agent in the interaction) rather than the robot being used as an ed-
ucational prop or a learner with no intention to educate [e.g., (49)].
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3) The work must have included a physical robot, with an educa-
tive intent. For example, studies considering “coaches” that sought 
to improve motivation and compliance, but did not engage in edu-
cation [e.g., (50)], were not included, whereas those that provided 
tutoring and feedback were included [e.g., (15)].

4) Only full papers were included. Extended abstracts were omit-
ted because these often contained preliminary findings, rather than 
complete results and full analyses.

We withheld 101 papers for analysis and excluded 12 papers for 
various reasons (e.g., the paper repeated results from an earlier pub-
lication). The analyzed papers together contain 309 study results (51).

To compare outcomes of the different studies, we first divided 
the outcomes of an intervention into either affective or cognitive. 
Cognitive outcomes focus on one or more of the following compe-
tencies: knowledge, comprehension, application, analysis, synthesis, 
and evaluation (52–54). Affective outcomes refer to qualities that are 
not learning outcomes per se, for example, the learner being atten-
tive, receptive, responsive, reflective, or inquisitive (53). The meta- 
analysis contained 99 (33.6%) data points on cognitive learning 
outcomes and 196 (66.4%) data points on affective learning out-
comes; 14 study results did not contain a comparative experiment 
on learning outcomes.

Cognitive outcomes are typically measured through pre- and 
posttests of student knowledge, whereas affective outcomes are 
more varied and can include self-reported measures and observa-
tions by the experimenters. Table 1 contains the most common 
methods for measuring cognitive and affective outcomes reported 
in the literature.

Most studies focused on children (179 data points; 58% of the 
sample; mean age, 8.2 years; SD, 3.56), whereas adults (≥18 years 
old) were a lesser focus of research in robot tutoring (98 data points; 
32% of the sample; mean age, 30.5; SD, 17.5). For 29 studies (9%), 

both children and adults were used, or the age of the participants was 
not specified.

If the results reported an effect size expressed as Cohen’s d, then 
this was used unaltered. In cases where the effect size was not reported 
or if it was expressed in a measure other than Cohen’s d, then an 
online calculator (55) [see also (56)] was used if enough statistical 
information was present in the paper (typically participant numbers, 
means, and SDs are sufficient).

We captured the following data gleaned from the publications: 
the study design, the number of conditions, the number of partici-
pants per condition, whether participants were children or adults, 
participant ages (mean and SD), the robot used, the country in which 
the study was run, whether the study used a within or between design, 
the reported outcomes (affective or cognitive, with details on what 
was measured exactly), the descriptive statistics (where available 
mean, SD, t, and F values), the effect size as Cohen’s d, whether the 
study involved one robot teaching one person or one robot teaching 
many, the role of the robot (presenter, teaching assistant, teacher, 
peer, or tutor), and the topic under study (embodiment of the robot, 
social character of the robot, the role of the robot, or other).

The studies in our sample reported more on affective outcomes 
than cognitive outcomes (Fig. 1A). This is due to the relative ease 
with which a range of affective outcomes can be assessed by using 
questionnaires and observational studies, whereas cognitive outcomes 
require administering a controlled knowledge assessment before and 
after the interaction with the robot, of which typically only one is 
reported per study.

Figure 2B shows the countries where studies were run. Robots for 
learning research, perhaps unsurprisingly, happen predominantly 
in East Asia (Japan, South Korea, and Taiwan), Europe, and the 
United States. An exception is the research in Iran on the use of 
robots to teach English in class settings.

Table 1. Common measures for determining cognitive and affective outcomes in robots for learning.  

Cognitive Learning gain, measured as difference between pre- and posttest score

Administer posttest either immediately after exposure to robot or with delay

Correct for varying initial knowledge, e.g., using normalized learning gain (77)

Difference in completion time of test

Number of attempts needed for correct response

Affective Persistence, measured as number of attempts made or time spent with robot

Number of interactions with the system, such as utterances or responses

Coding emotional expressions of the learner, can be automated using face analysis software (47)

Godspeed questionnaire, measuring the user’s perception of robots (78)

Tripod survey, measuring the learner’s perspective on teaching, environment, and engagement (79)

Immediacy, measuring psychological availability of the robot teacher (3, 10)

Evolution of time between answers, e.g., to indicate fatigue (31)

Coding of video recordings of participants responses

Coding or automated recording of eye gaze behavior (to code attention, for example)

Subjective rating of the robot’s teaching and the learning experience (15)

Foreign language anxiety questionnaire (80)

KindSAR interactivity index, quantitative measure of children’s interactions with a robot (81)

Basic empathy scale, self-report of empathy (82)

Free-form feedback or interviews
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Extracting meaningful statistical data from the published studies 
is not straightforward. Of the 309 results reported in 101 pub-
lished studies, only 81 results contained enough data to calculate 
an effect size, highlighting the need for more rigorous reporting of 
data in HRI.

Efficacy of robots in education
The efficacy of robots in education is of primary interest, and here, 
we discuss the outcomes that might be expected when using a robot 
in education. The aim is to provide a high-level overview of the 
effect size that might be expected when comparing robots with a 
variety of control conditions, grouping a range of educational 
scenarios with many varying factors between studies (see Fig. 3). 
More specific analyses split by individual factors will be explored 
in subsequent sections.

Learning effects are divided into cognitive and affective out-
comes. Across all studies included in the meta-review, we have 
37 results that compared the robot with an alternative, such as 
an ITS, an on-screen avatar, or human tutoring. Of these, the aggre-
gated mean cognitive outcome effect size (Cohen’s d weighted by N) 
of robot tutoring is 0.70 [95% confidence interval (CI), 0.66 to 0.75] 
from 18 data points, with a mean of N = 16.9 participants per data 
point. The aggregated mean affective outcome effect size (Cohen’s d 
weighted by N) is 0.59 (95% CI, 0.51 to 0.66) from 19 data points, 
with a mean of N = 24.4 students per data point. Many studies using 
robots do not consider learning in comparison with an alternative, 
such as computer-based or human tutoring, but instead against 
other versions of the same robot with different behaviors. The 

limited number of studies that did compare a robot against an alter-
native offers a positive picture of the contribution to learning made 
by social robots, with a medium effect size for affective and cogni-
tive outcomes. Furthermore, positive affective outcomes did not 
imply positive cognitive outcomes, or vice versa. In some studies, 
introducing a robot improved affective outcomes while not nec-
essarily leading to significant cognitive gains [e.g. (57)].

Human tutors provide a gold standard benchmark for tutor-
ing interactions. Trained tutors are able to adapt to learner needs 
and modify strategies to maximize learning (58). Previous work 
(59) has suggested that human tutors produce a mean cognitive 
outcome effect size (Cohen’s d) of 0.79, so the results observed 
when using a robot are in a similar region. However, social robots 
are typically deployed in restricted scenarios: short, well-defined 
lessons delivered with limited adaptation to individual learners or 
flexibility in curriculum. There is no suggestion yet that robots 
have the capability to tutor in a general sense as well as a human 
can. Comparisons between robots and humans are rare in the liter-
ature, so no meta-analysis data were available to compare the 
cognitive learning effect size.
Robot appearance
Because the positive learning outcomes are driven by the physical 
presence of the robot, the question remains of what exactly it is 
about the robot’s appearance that promotes learning. A wide range 
of robots have been used in the surveyed studies, from small toy-
like robots to full-sized android robots. Figure 2A shows the most 
used robots in the published studies.

The most popular robot in the studies we analyzed is the Nao 
robot, a 54-cm-tall humanoid by Softbank Robotics Europe available 
as having 14, 21, or 25 degrees of freedom (see Fig. 4B). The two 
latter versions of Nao have arms, legs, a torso, and a head. They can 
walk, gesture, and pan and tilt their head. Nao has a rich sensor suite 
and an on-board computational core, allowing the robot to be fully 
autonomous. The dominance of Nao for HRI can be attributed to its 
wide availability, appealing appearance, accessible price point, tech-
nical robustness, and ease of programming. Hence, Nao has become 
an almost de facto platform for many studies in robots for learning. 
Another robot popular as a tutor is the Keepon robot, a consumer- 
grade version of the Keepon Pro research robot. Keepon is a 25-cm-tall 
snowman-shaped robot with a yellow foam exterior without arms 
and legs (see Fig. 4C). It has four degrees of freedom to make it pan, 
roll, tilt, and bop. Originally sold as a novelty for children, it can be 
used as a research platform after some modification. Nao and Keepon 
offer two extremes in the design space of social robots, and hence, it 
is interesting to compare learning outcomes for both.

Comparing Keepon with Nao, the respective cognitive learning 
gain is d = 0.56 (N = 10; 95% CI, 0.532 to 0.58) and d = 0.76 (N = 8; 
95% CI, 0.52 to 1.01); therefore, both show a medium-sized effect. 
However, we note that direct comparisons between different robots 
are difficult with the available data, because no studies used the same 
experimental design, the same curriculum, and the same student 
population with multiple robots. Furthermore, different robots have 
tended to be used at different times, becoming popular in studies 
when that particular hardware model was first made available and 
decreasing in usage over time. Because the complexity of the exper-
imental protocols has tended to increase, direct comparison is not 
possible at this point in time.

What is clear from surveying the different robot types is that all 
robots have a distinctly social character [except for the Heathkit 
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HERO robot used in (60)]. All robots have humanoid features—such 
as a head, eyes, a mouth, arms, or legs—setting the expectation that the 
robot has the ability to engage on a social level. Although there are no 
data on whether the social appearance of the robot is a requirement 
for effective tutoring, there is evidence that the social and agentic 
nature of the robots promotes secondary responses conducive to 
learning (61, 62). The choice of robot very often depends on practical 
considerations and whether the learners feel comfortable around the 
robot. The weighted average height of the robots is 62 cm; the shortest 
robot in use is the Keepon at 25 cm, and the tallest is the RoboThespian 
humanoid at 175 cm. Shorter robots are often preferred when teach-
ing young children.
Robot behavior
To be effective educational agents, the behavior of social robots must 
be tailored to support various aspects of learning across different 
learners and diverse educational contexts. Several studies focused on 
understanding critical aspects of educational interactions to which 
robots should respond, as well as determining both what behaviors 
social robots can use and when to deliver these behaviors to affect 
learning outcomes.

Our meta-review shows that almost any strategy or social behavior 
of the robot aimed at increasing learning outcomes has a positive 
effect. We identified the influence of robot behaviors on cognitive 
outcomes (d = 0.69; N = 12; 95% CI, 0.56 to 0.83) and affective out-
comes (d = 0.70; N = 32; 95% CI, 0.62 to 0.77).

Similar to findings in the ITS community, robots that personalize 
what content to provide based on user performance during an inter-
action can increase cognitive learning gains (43, 44). In addition to 
the adaptive delivery of learning material, social robots can offer 
socially supportive behaviors and personalized support for learners 
within an educational context. Personalized social support, such as 
using a child’s name or referring to previous interactions (45, 46), is 
the low-hanging fruit of social interaction. More complex prosocial 
behavior, such as attention-guiding (11), displaying congruent gaze 
behavior (39), nonverbal immediacy (3), or showing empathy with 
the learner (36), not only has a positive impact on affective outcomes 
but also results in increased learning.

However, just as human tutors must at times sit quietly and allow 
students the opportunity to concentrate on problem solving, robot 
tutors must also limit their social behavior at appropriate times based 
on the cognitive load and engagement of the student (40). The social 
behavior of the robot must be carefully designed in conjunction with 
the interaction context and task at hand to enhance the educational 
interaction and avoid student distraction.

It is possible that the positive cognitive and affective learning out-
comes of robot tutors are not directly caused by the robot having a 
physical presence, but rather the physical presence of the robot pro-
motes social behaviors in the learner that, in turn, foster learning and 
create a positive learning experience. Robots have been shown to have 
a positive impact on compliance (26), engagement (21–23), and con-
formity (20), which, in turn, are conducive to achieving learning gains. 
Hence, a perhaps valuable research direction is to explore what it is 
about social robots that affects the first-order outcomes of engage-
ment, persuasion, and compliance.

Robot role
Social robots for education include a variety of robots having differ-
ent roles. Beyond the typical role of a teacher or a tutor, robots can 
also support learning through peer-to-peer relationships and can 
support skill consolidation and mastery by acting as a novice. In this 
section, we provide an overview of the different roles a robot can 
adopt and what their educational benefits are.
Robot as tutor or teacher
As a tutor or teacher, robots provide direct curriculum support 
through hints, tutorials, and supervision. These types of educational 
robots, including teaching assistant robots (63), have the longest 
history of research and development, often targeting curricular 
domains for young children. Early field studies placed robots into 
classrooms to observe whether they would have any qualitative 
impact on the learners’ attitude and progress, but current research 
tends toward controlled experimental trials in both laboratory 
settings and classrooms (64).

d)

Cognitive outcomes

–1 0 1 2 3

N
um

be
r o

f s
tu

di
es

8

6

4

2

0

d)
–1 0 1 2 3

N
um

be
r o

f s
tu

di
es

6

4

2

0

Fig. 3. Histograms of effect sizes (Cohen’s d) for all cognitive and affective 
outcomes of robot tutors in the meta-analysis. These combine comparisons 
between robots and alternative educational technologies but also comparisons 
between different implementations of the robot and its tutoring behavior. In the 
large majority of results, adding a robot or adding supportive behavior to the robot 
improves outcomes.

Robovie
4%

Nao
48%

Wakamaru
5%

Dragonbot
4%

A

Other
26%

iCat
4%

Keepon
6%

Bandit
4%

Australia
1%

USA
26%

B Japan
12%

U.K.
12%

South
Korea
10%

Germany
5%

Portugal
4%

Iran
3%

Sweden
2%

Italy
1%

Spain
2%

Switzerland
4%

Taiwan
2%

Singapore
1%

Netherlands
7%

Turkey
5%

Israel
3%

Denmark
1%

Fig. 2. Diversity of robots in education. (A) Types of robots used in the studies. 
(B) Nations where the research studies were run.

C
R

E
D

IT
S:

 A
D

A
PT

E
D

 B
Y

 A
. K

IT
TE

R
M

A
N

/S
C

IE
N

C
E 

RO
B

O
TI

C
S

 by guest on S
eptem

ber 5, 2018
http://robotics.sciencem

ag.org/
D

ow
nloaded from

 



Belpaeme et al., Sci. Robot. 3, eaat5954 (2018)     15 August 2018

S C I E N C E  R O B O T I C S  |  R E V I E W

6 of 9

A commercial tutor robot called IROBI (Yujin Robotics) was 
released in the early 2000s. Designed to teach English, IROBI was 
shown to enhance both concentration on learning activities and 
academic performance compared with other teaching technology, 
such as audio material and a web-based application (65).

The focus on younger children links robot education research with 
other scientific areas, such as language development and develop-
mental psychology (66). On the basis of the earlier work that studied 
socialization between toddlers and robots in a nursery school (67), 
a fully autonomous robot was deployed in classrooms. It was shown 
that the vocabulary skills of 18- to 24-month-old toddlers improved 
significantly (68). Much of the work in which the robot is used as a 
tutor focuses on one-to-one interactions, because these offer the 
greatest potential for personalized education.

In some cases, the robot is used as a novel channel through 
which a lecture is delivered. In these cases, the robot is not so much 
interacting with the learners but acts as a teacher or an assistant for 
the teacher (69). The value of the robot in this case lies in improving 
attention and motivation in the learners, while the delivery and 
assessment is done by the human teacher. Here, the delivery is often 
one to many, with the robot addressing an entire group of learners 
(33, 63, 69).
Robot as peer
Robots can also be peers or learning companions for humans. Not 
only does a peer have the potential of being less intimidating than a 
tutor or teacher, peer-to-peer interactions can have significant 
advantages over tutor-to-student interactions. Robovie was the first 
fully autonomous robot to be introduced into an elementary school 
(70). It was an English-speaking robot targeting two grades (first 
and sixth) of Japanese children. Through field trials conducted over 
2 weeks, improvements in English language skills were observed in 
some children. In one case, longer periods of attention on learning 
tasks, faster responses, and more accurate responses were shown with 
a peer robot compared with an identical-looking tutor robot (19). A 
long-term primary school study showed that a peer-like humanoid 
robot able to personalize the interaction could increase child learn-

ing of novel subjects (48). Often, the robot is presented as a more 
knowledgeable peer, guiding the student along a learning trajectory 
that is neither too easy nor too challenging. However, the role of 
those robots sometimes becomes ambiguous (tutor versus peer), and 
it is difficult to place one above the other in general. Learning com-
panions (71), which offer motivational support but otherwise are 
not tutoring, are also successful cases of a peer-like robot.
Robot as novice
Considerable educational benefits can also be obtained from a robot 
that takes the role of a novice, allowing the student to take on the 
role of an instructor that typically improves confidence while, at the 
same time, establishing learning outcomes. This is an instance of 
learning by teaching, which is widely known in human education, 
also referred to as the protégé effect (72). This process involves the 
learner making an effort to teach the robot, which has a direct 
impact on their own learning outcomes.

The care-receiving robot (CRR) was the first robot designed 
with the concept of a teachable robot for education (73). A small 
humanoid robot introduced into English classes improved the 
vocabulary learning of 3- to 6-year-old Japanese children (5). The 
robot was designed to make deliberate errors in English vocabulary 
but could be corrected through instruction by the children. In addi-
tion, CRR was shown to engage children more than alternative tech-
nology, which eventually led to the release of a commercial product 
based on the principle of a robot as a novice (74).

This novice role can also be used to teach motor skills. The CoWriter 
project explored the use of a teachable robot to help children improve 
their handwriting skills (13). A small humanoid robot in conjunction 
with a touch tablet helped children who struggled with handwriting 
to improve their fine motor skills. Here, the children taught the robot, 
who initially had very poor handwriting, and in the process of doing 
so, the children reflected on their own writing and showed im-
proved motor skills (13). This suggests that presenting robots as 
novices has potential to develop meta-cognitive skills in learners, 
because the learners are committing to instructing the learning ma-
terial, requiring a higher level of understanding of the material and an 
understanding of the internal representations of their robot partner.

In our meta-analysis, the robot was predominantly used as a 
tutor (48%), followed by a role as teacher (38%). In only 9% of 
studies was the robot presented as a peer or novice (Fig. 1B). 
The robot was often used to offer one-to-one interactions (65%), 
with the robot used in a one-to-many teaching scenario in only 30% 
of the studies (Fig. 1C). In 5%, the robot had mixed interactions, 
whereby, for example, it first taught more than one student and 
then had one-on-one interactions during a quiz.

DISCUSSION
Although an increasing number of studies confirm the promise of 
social robots for education and tutoring, this Review also lays bare a 
number of challenges for the field. Robots for learning, and social 
robotics in general, require a tightly integrated endeavor. Introducing 
these technologies into educational practice involves solving tech-
nical challenges and changing educational practice.

With regard to the technical challenges, building a fluent and 
contingent interaction between social robots and learners requires 
the seamless integration of a range of processes in artificial intelli-
gence and robotics. Starting with the input to the system, the robot 
needs a sufficiently correct interpretation of the social environment 

 B A

 D C

Fig. 4. Illustrative examples of social robots for learning. (A) iCat robot teach-
ing young children to play chess (76). (B) Nao robot supporting a child to improve 
her handwriting (13). (C) Keepon robot tutoring an adult in a puzzle game (27). 
(D) Pepper robot providing motivation during English classes for Japanese 
children (74).
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for it to respond appropriately. This requires significant progress in 
constituent technical fields, such as speech recognition and visual 
social signal processing, before the robot can access the social envi-
ronment. Speech recognition, for example, is still insufficiently 
robust to allow the robot to understand spoken utterances from 
young children. Although these shortcomings can be resolved by 
using alternative input media, such as touch screens, this does place 
a considerable constraint on the natural flow of the interaction. For 
robots to be autonomous, they must make decisions about which 
actions to take to scaffold learning. Action selection is a challenging 
domain at best and becomes more difficult when dealing with a 
pedagogical environment, because the robot must have an under-
standing of the learner’s ability and progress to allow it to choose 
appropriate actions. Finally, the generation of verbal and nonverbal 
output remains a challenge, with the orchestrated timing of verbal 
and nonverbal actions a prime example. In summary, social interac-
tion requires the seamless functioning of a wide range of cognitive 
mechanisms. Building artificial social interaction requires the artifi-
cial equivalent of these cognitive mechanisms and their interfaces, 
which is why artificial social interaction is perhaps one of the most 
formidable challenges in artificial intelligence and robotics.

Introducing social robots in the school curriculum also poses a 
logistical challenge. The generation of content for social robots for 
learning is nontrivial, requiring tailor-made material that is likely to 
be resource-intensive to produce. Currently, the value of the robot 
lies in tutoring very specific skills, such as mathematics or hand-
writing, and it is unlikely that robots can take up the wide range of 
roles a teacher has, such as pedagogical and carer roles. For the time 
being, robots are mainly deployed in elementary school settings. Al-
though some studies have shown the efficacy of tutoring adolescents 
and adults, it is unclear whether the approaches that work well 
for younger children transfer to tutoring older learners.

Introducing robots might also carry risks. For example, studies 
of ITS have shown that children often do not make the best use of 
on-demand support and either rely too much on the help function or 
avoid using help altogether, both resulting in suboptimal learning. 
Although strategies have been explored to mitigate this particular 
problem in robots (4), there might be other problems specific to 
social robots that still need to be identified and for which solutions 
will be needed.

Social robots have, in the broadest sense, the potential to become 
part of the educational infrastructure, just as paper, white boards, and 
computer tablets have. Next to the functional dimension, robots 
also offer unique personal and social dimensions. A social robot has 
the potential to deliver a learning experience tailored to the learner, 
supporting and challenging students in ways unavailable in current 
resource-limited educational environments. Robots can free up pre-
cious time for human teachers, allowing the teacher to focus on 
what people still do best: providing a comprehensive, empathic, and 
rewarding educational experience.

Next to the practical considerations of introducing robots in edu-
cation, there are also ethical issues. How far do we want the educa-
tion of our children to be delegated to machines, and social robots 
in particular? Overall, learners are positive about their experience with 
robots for learning, but parents and teaching staff adopt a more 
cautious attitude (75). There is much to gain from using robots, but 
what do we stand to lose? Might robots lead to an impoverished 
learning experience where what is technologically possible is prior-
itized over what is actually needed by the learner?

Notwithstanding, robots show great promise when teaching 
restricted topics, with effect sizes on cognitive outcomes almost 
matching those of human tutoring. This is remarkable, because our 
meta-analysis gathered results from a wide range of countries using 
different robot types, teaching approaches, and deployment contexts. 
Although the use of robots in educational settings is limited by tech-
nical and logistical challenges for now, the benefits of physical 
embodiment may lift robots above competing learning technolo-
gies, and classrooms of the future will likely feature robots that 
assist a human teacher.
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ABSTRACT
We conducted a study with 25 children to investigate the efective-
ness of a robot measuring and encouraging production of spatial
concepts in a second language compared to a human experimenter.
Productive vocabulary is often not measured in second language
learning, due to the diiculty of both learning and assessing pro-
ductive learning gains. We hypothesized that a robot peer may help
assessing productive vocabulary. Previous studies on foreign lan-
guage learning have found that robots can help to reduce language
anxiety, leading to improved results. In our study we found that a
robot is able to reach a similar performance to the experimenter
in getting children to produce, despite the person’s advantages
in social ability, and discuss the extent to which a robot may be
suitable for this task.
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methodologies → Natural language processing; Cognitive robot-
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1 INTRODUCTION
Learning the language of a new home region is vital for migrant
children. It is beneicial for them to integrate with their peers, and
necessary to prevent them from falling behind in school. Children
need the opportunity to practice their language skills, but it may
be diicult if no one at home is able to speak the language of the
host region. Finding qualiied teachers or tutors that know both the
new language and the language of children’s old homeland can also
be challenging. With robots we may be able to support children’s
language learning needs.

When learning a second language (L2), it is diicult to master
vocabulary both receptively and productively. L2 learners may ind
themselves capable of understanding the L2, while still struggling
to produce L2 words. Indeed, previous research has shown that
receptive vocabulary tends to be bigger than productive vocabulary
in irst language (L1) [8, 11], and that L2 learners obtain lower
scores on productive tests as compared to receptive tests [14]. Thus,
people are able to recognize more words than they can produce,
both in their L1 and L2. This has been formalised into a hierarchy
for word knowledge by Laufer et al. [9], based on knowing the
words passively or actively and in being able to recognize them
or recall them. The hierarchy is as follows, from easiest to most
diicult: passive recognition→ active recognition→ passive recall
→ active recall. These are deined as follows:

• Passive recognition - The student is able to select the L1 word
from a choice of words when provided the word in L2.



Figure 1: A child interacting with the robot in our study. The
agent ś in this case a robot ś stands opposite from the child.
An interactive table displays an image of a teddy bear and a
chair. The child must use a word from a second language to
describe the position of the bear in relation to the chair.

• Active recognition - The student is able to select the L2 word
from a choice of words when provided the word in L1.

• Passive recall - The student is able to give the meaning of a
word in L1 when provided the word in L2.

• Active recall - The student is able to give the L2 word when
provided the word in L1.

This poses a challenge for L2 vocabulary interventions in which
the trainer wants to assess the trainee’s learning gains: L2 learners
have diiculty learning the words productively (i.e. learning to
produce foreign words), and will struggle to actively recall newly
learned L2 words. There are several tests to assess an L2 learner’s
productive vocabulary, including assessments in which the par-
ticipant has to describe pictures (e.g., the Expressive Vocabulary
Test [18], the Expressive One-Word Picture Vocabulary Test [5],
or the Clinical Evaluation of Language Fundamentals Test [17]),
writing tests in which the learner has to ill in the blank (e.g., the
Productive Vocabulary Levels Test [10]), or, for very young children,
parental or teacher reports [4].

Inmany situations, it may not be possible to use one of these tests.
For example, when the words learned concern abstract concepts,
which cannot be easily depicted, it is not possible to use a picture
test. If the learner is illiterate, one cannot use a writing test. Parents
or teachers may struggle to report the child’s L2 if they do not
speak that language themselves. To further complicate the issue,
producing L2 words may be intimidating for L2 learners. Even if
the learner is able to produce the word, they may not produce it
due to anxiety of pronouncing the word incorrectly [13].

A social robot may help overcome some of the issues described
above in assessing L2 learner’s vocabulary. While not being able to
solve by itself the issue of vocabulary being more diicult to learn
productively than receptively, a social robot may help in innovating
novel ways to assess L2 vocabulary, or in reducing L2 anxiety in

L2 vocabulary test settings. A robot may be less intimidating than
an adult assessor, especially for young children, encouraging more
speech production. This study evaluates whether school children
may produce more L2 words in a productive L2 vocabulary test
when playing with a social robot than with an adult. Below, we
discuss relevant robot-assisted language learning (RALL) studies
before detailing our study.

2 PREVIOUS WORK
RALL has been found to be efective in reducing foreign language
anxiety (FLA), and teaching robots are able to improve oral skills of
young students learning English as a foreign language [1]. Alemi
et al. [2] performed a study using a robot teaching assistant. In the
study, Persian-speaking students in Iran were taught English. A sur-
vey of the students showed that those who learned from the robot
were signiicantly less anxious compared to the control group that
did not have the robot. While a number of factors were thought to
contribute to this reduction in anxiety, the authors claimed a major
reason to be intentional mistakes the robot made. The mistakes not
only gave the students a chance to correct the robot, but also made
them less afraid of making errors of their own.

When looking at speaking skills, the focus can not just be on
vocabulary gains, but pronunciation as well. Lee et al. [12] con-
ducted a series of lessons to help Korean children from grades 3
to 5 (roughly 8 to 10 years old) learn English. In South Korea chil-
dren start learning English from grade 3. As part of a lesson series
they were given a pronunciation training with a robot, that used a
lexicon that included often confused phonemes, so that the robot
could correct the child’s pronunciation. It was reported that the
children’s speaking skills improved signiicantly with a large efect
size when measured by a teacher. As well as the improvement in
speaking skills all three afective factors ś interest, conidence and
motivation ś all improved signiicantly.

Instances of robots acting as care-receivers also occur in RALL. In
a study by Tanaka and Matsuzoe [16], Japanese children were given
the role of teaching English verbs to a NAO robot. The children had
to guide the robot’s arm to act out the target verbs, e.g. brushing
teeth. In a comprehension post-test the children answered correctly
more often with words they had taught the robot than those learnt
during a regular verb-learning game. While the robot only learned
from ‘Direct’ teaching, where the child was guiding the motion
of the robot, there was a high frequency of verbal teaching using
English.

We can see that there are many instances where RALL is able to
assist in teaching an L2 to students. Many of these show a reduction
in FLA and increase in conidence and willingness to learn in the
students. In all these cases, however, they use the robot to teach,
whether directly in the role of teacher or acting as a care receiver or
assistant. Robots were not used in assessment, and in most cases the
tests performed were aimed at measuring the comprehension of the
L2 words that were being taught. We want to explore the possibility
of using a robot to assess the L2 production of children. Due to the
reported reductions in anxiety and increase in conidence when
using a robot, we may see an increase in the amount of production.



3 STUDY DESIGN
This study was conducted at a local school with English-speaking 5-
to 6-year-old children. We decided to teach spatial language, more
speciically spatial prepositions, because while those concepts are
more abstract than physical objects, we can still represent them
using images. Spatial language itself is also particularly challenging
to L2 learners as the meaning can often difer depending on con-
text and the referent. Every morning, ive children were randomly
selected to participate in the study for that day and assigned a
condition, balanced across gender. These ive children were irst
given a French lesson before playing our production quiz game
on an interactive table [3] individually throughout the rest of the
day (Figure 1). An agent (robot or experimenter depending on our
condition) is placed opposite to the child and gives instructions
and encouragement to the children. The interactive table displays
an image of a teddy bear and a chair. The child would have to use
one of the French words taught to describe the position of the bear
relative to the chair.

As well as the teacher three experimenters were involved in the
study:

(1) Lead Experimenter - The lead experimenter acted as the in-
teraction point for the children outside of the one to one
sessions. Either the lead experimenter or the wizard was
required to be in the presence of the child while outside
their classroom. The lead experimenter was certiied in the
children’s health and well being, and was there to ensure the
health and safety of the children as required by the school.

(2) Wizard Experimenter - The wizard experimenter controlled
the robot remotely via a laptop interface. The wizard experi-
menter was also certiied in the children’s health and well
being, but had minimal interaction with the children so as
to minimise interference during the study.

(3) Blind Experimenter - The blind experimenter facilitated the
interactions before the main study began, provided the com-
prehension test and acted as the agent in the child-human
condition. The blind experimenter was unaware of the pur-
pose of the study to reduce inluencing the outcome.

3.1 Hypothesis
With our study we wanted to test the following hypothesis:

H The presence of a robot will allow children to produce more
spatial words verbally in an L2 than when working with a
human experimenter.

3.2 Teaching
The children were taught ive French words: Nounours (Teddy Bear),
chaise (chair), devant (in front of), sur (on), sous (under). Of these,
the irst two were supporting words and the last three were the
target words for the study. The content of the lesson was created
and taught by a professional French teacher, with a goal of enabling
the children to produce these words after one lesson. We decided to
use a professional teacher as we did not want a robot teacher that
would also inluence our results. It has also been shown that human
teachers can still outperform a robot teacher [7]. The lead experi-
menter acted as a teacher’s assistant. The children were taught in
groups of ive. The lesson was designed to last 30 minutes.

The teacher started the lesson by introducing the children to the
support words. At all stages the children were encouraged to repeat
any French words they heard. The children were taught a song that
used the three target words and hand gestures to go along with
them. After singing, the children would position themselves relative
to the chair based on the words announced by the teacher. The
children were then each given a teddy bear and repeated the process
with the bear. The children then played a game of ‘Telephone’. In
this game one child was irst given one of the target words, and
each child would whisper the word to the next child down the line
until the last child. The last child would announce to the rest of
the group the word they heard. The game was repeated several
times with the children re-organised into a diferent order so that
the announcing child changed each time. This was followed by a
game of ‘Corners’. In each corner of the lesson area, a teddy was
placed in a position relative to a chair that referred to one of the
target words. The children were then encouraged to sing and move
around until the teacher would stop them, and say one of the target
words. The children then had to move to the relevant corner and
say the word three times. Variants of this game were then played in
teams with the chairs lined up, and then individually. Finally each
child was told to say one of the target words and then go stand by
the correct chair. The lesson wrapped up with one more repetition
of the song they had been taught near the beginning.

During the interaction we also established any prior knowledge
in the target language. They were split into the following categories:

(1) No Exposure - The children have not been exposed to any
French, other than potentially those used in popular culture
e.g. C’est la vie.

(2) Beginner - The child has potentially received some lessons
in French and knows simple phrases that do not include our
target words e.g. Je m’appelle John.

(3) Intermediate - The child has knowledge of French, including
our target words.

(4) Advanced - The child has an intricate knowledge of French,
and is able to produce words with a high capability or are
luent.

Children of intermediate or advanced knowledge were excluded
from the data analysis. 25 children took part in our study of which
three were excluded from the analysis of results, leaving 22 children.

3.3 Individual Interactions
Upon completing another familiarity task and a 10 minute activity
with the robotśthat required the child to describe the position of
objects to the robot in Englishśa comprehension test was adminis-
tered by a blind experimenter who was unaware of the purpose of
the study (Figure 2). This served as a small refresher of what the
children had learned earlier in the day, as well as allows us to estab-
lish a baseline for the eicacy of the lesson. For the comprehension
test there were 6 sheets with 3 images each (representing the 3
target words), placed on the left, in the centre or on the right. To-
gether, the 6 sheets covered all possible permutations of the 3 target
words (devant, sur, sous) with each of the 3 positions. The images
were similar but not the same as the ones used for the production
quiz questions. For each sheet the experimenter asked the child to
point at the picture that matches the statement (see below). If the



Figure 2: A child being administered the comprehension test
before moving onto the main production quiz.

Figure 3: The ‘wizard’ experimenter was positioned behind
the child to minimise interaction between them.

child pointed to the wrong picture they were allowed to try again
until they pointed to the correct image. We repeated each target
word twice to account for guessing and to ensure they weren’t just
picking based on location on the question sheet. The statements
and their order were the same for every child:

(1) Le nounours est sous la chaise.
(2) Le nounours est devant la chaise.
(3) Le nounours est sur la chaise.
(4) Le nounours est devant la chaise.
(5) Le nounours est sur la chaise.
(6) Le nounours est sous la chaise.
The child then played the production quiz with either the robot

or the blind experimenter based on the group they were in (child-
robot or child-human). In both conditions, the production quiz

was displayed on the sandtray. The robot was controlled through
a Wizard-of-Oz interface, with the ’wizard’ sat behind the child,
out of sight, so as to minimise efects on the child (Figure 3). The
rules of the game were explained by the agent (blind experimenter
or robot). The child was sat in front of the sandtray upon which
the production quiz game was displayed. The agent sat opposite
the child. The sandtray displayed an image of the teddy bear in a
position relative to the chair, and the agent or child must answer
łOù est le nounours?" (Where is the teddy bear?). The agent was
to give the answer in the form łsur/sous/devant la chaise", but any
answer given by the child that included one of the target words ‘sur’,
‘sous’ or ‘devant’ was accepted. Each correct answer scored a point.
If either the question was answered correctly or both the child and
the agent answered incorrectly then the production quiz moved
onto the next question. If the child did not answer after a short
period then the agent would give encouragement in proceeding
levels:

(1) Encourage the child to guess e.g. łJust have a guess".
(2) Targeted encouragement, such as asking them to remember

the lesson from the morning.
(3) The agent will attempt the question.

• If the childwas ahead on points then the agent (adult/robot)
would answer correctly so as to keep up an appearance of
a challenging opponent in the game.

• If the child was level or behind the agent (adult/robot)
then the agent would answer incorrectly to demonstrate
a willingness to answer even if wrong.

If the child still did not have a guess after all stages then the game
proceeded as if they had answered incorrectly. The agent began the
production quiz after explaining how to play by answering the irst
question correctly. There were nine subsequent questions which
we expected the child to answer, three for each target word.

4 RESULTS
4.1 Participants
25 children took part in our study of which three were excluded
from our analysis of results leaving us with 22 children. 11 Chil-
dren were in the Human Condition (4 Female) and 11 in the Robot
Condition (6 Female). There were 11 5 year olds (6 Female) and 11
6 year olds (4 Female). Of these children two had an L1 other than
English (1 Female), but their English level was high enough to still
participate.

4.2 Comprehension
We scored the comprehension test by taking the maximum attempts
per question (3) and subtracting the number of attempts they took
to get the correct answer. This meant each question was scored
between 0 and 2, giving a maximum possible score of 12 on the
comprehension test. Themean score for the comprehension test was
8.5 (SD=1.92). In the Human condition the children averaged 8.27
(SD=2.20) at the comprehension test while in the Robot condition
the children averaged 8.72 (SD=1.68). Using a Welch Two Sample t-
test, no signiicant diference between the two conditions was found
(t= 0.55, df =18.72 p=0.59). This shows that the groups between our
two conditions were roughly equal in ability before beginning the



No. Spatial Words Quiz Score

Human Robot Human Robot

0.0

2.5

5.0

7.5

10.0

12.5

Condition

A
m

o
u

n
t

Figure 4: Analysis of L2 spatial words used during the pro-
duction quiz. Left: spatial words used without additional
prompting to attempt the question; right: number of correct
words said by the children during the production quiz. In
both cases no signiicant diference was found between the
robot and adult conditions. Error bars are showing the stan-
dard deviation.

production quiz. The scores remained consistent throughout the
test, with no learning efect seen when the irst half and the second
half of the comprehension test were compared (irst half: mean=4.5,
SD=1.26; second half: mean=4 SD=0.93; t=1.50, df = 38.51, p=0.14).

4.3 Production
Children in the child-human condition scored M=6.64 (SD=1.43)
out of 9 on the production quiz and M=6.18 (SD=2.18) in the child-
robot condition. Using a Welch Two Sample t-test no signiicant
diference between the two conditions was found (t=-0.58, df =17.27,
p=0.57).

We also analysed the total number of spatial vocabulary used in
L2 (Figure 4). Due to a break in protocol, children were sometimes
prompted to attempt a question again instead of moving on in the
production quiz. As such our analysis is on words used without
being prompted for an additional attempt. In the Robot condition,
the children averaged M=9.45 (SD=2.46) spatial words, compared
to M=9.36 (SD=1.91) in the Human condition. Using a Welch Two
Sample t-test no signiicant diference was found (t=0.10, df=18.4,
p=0.92).

Finally we analysed the amount and level of encouragement
given (see levels in Section 3.3). While encoding encouragement
given to the children we added a fourth level for analysis of the
results:

(4) Encouragement is given that changes or disrupts the task,
e.g. telling the child that the current question is the same as
a previous one.

Themean amount of encouragement givenwasM=12.36 (SD=7.46)
in the Human condition and M=13.09 (SD=7.78) in the Robot condi-
tion. No signiicant diference was found between the conditions
(p=0.83). However we see a signiicant diference in the average
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Figure 5: Analysis between participants of the average max-
imum level of encouragement reached across conditions. A
signiicant diference is seen between the two conditions,
Human and Robot. Error bars are showing the standard de-
viation.
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Figure 6: A comparison between the score in the production
quiz and the score on the comprehension test. No signiicant
correlation was found.

maximum level of encouragement per question across the two con-
ditions (Robot: M=1.12, SD=0.57. Adult: M=2.09, SD=1.09, p=0.02).
This is strongly inluenced by the amount of level 4 encouragement
given by the adult, of which we see 33 instances across 10 children.
We see a signiicant diference between the average amount of level
4 encouragement given per child between the amount given in
the irst half of the study compared to the second showing an in-
crease in deviation from the protocol over time (First Half: M=1.25,
SD=.0.88. Second Half: M=4.25, SD=2.64, p=0.04).

4.4 Comprehension and Production
The data we collected also provided us with an opportunity to test
the predictions of Laufer et al. [9], a key foundation for our research.



By looking at the children’s scores on comprehension (passive
recognition) and production (active recall) we should be able to
see evidence of a hierarchy, where comprehension is required for
production.

Across both conditions the children had an average score on
the production quiz of 6.41 (SD=1.82) out of 9 and is signiicantly
above chance (p=0.03). A positive but non-signiicant correlation
was found between the comprehension test score and their produc-
tion quiz score (Pearson’s r=0.29, p=0.19). The lack of a signiicant
correlation suggests that abilities in comprehension and production
are not directly related.

We marked a child as having achieved comprehension on a par-
ticular word if they required less than four attempts across the two
relevant questions in the comprehension test. For example if we
were looking at whether a child could comprehend the word ‘sur’
we would look at the number of attempts they took for questions
three and ive. If a child takes two attempts on question three and
one attempt on question ive their total number of attempts for
‘sur’ would be three. We would mark this child as being able to
comprehend ‘sur’. We marked a child as being able to produce a
word if they scored at least two points in the production quiz on
the three relevant questions. Using Guttman’s Coeicient of Repro-
ducibility (reported in Table 1), we were unable to ind a hierarchy.
A hierarchy would show that comprehension is needed for pro-
duction. Guttman’s Coeicient measures whether such a hierarchy
exists based on the number of deviations from that hierarchy. A
coeicient of over 0.9 is expected to display such a hierarchy.

Sur Sous Devant

No. Deviations 5 3 4
Guttman’s Coeicient λ4 0.11 0.57 0.56

Table 1: Table detailing the number of deviations from the
expected hierarchy and the Guttman’s Coeicient of repro-
ducibility. In the case of all three words, we fail to meet the
reliability expectation of 0.9

5 DISCUSSION
5.1 Efectiveness of the robot to support L2

production
While this study does not show statistical improvement to a child’s
ability to produce by using a robot over a person, it does show
a similar performance in this task, with no signiicant diference
between the two conditions being found. It may still be desirable to
use a robot to allow standardization and automation of assessment.
With a minimal amount of support being provided by an agent, only
a narrow set of phrases can be given ś otherwise the nature of the
task could be changed from production. This can make interactions
very repetitive for the assessor. Though the scores were higher than
expected it still proved to be a challenging task for the children.
With the minimal amount of support available to an experimenter
it could be emotionally stressful to be unable to intervene when a
child is inding the task diicult.

The scores from the production quiz are higher than we expected.
From the literature we expected L2 production to be diicult for
the children, and our expert tutor believed that it would take two
to three sessions for most children to produce at all. The observed
prowess of the children may be partially explained by the design of
the lessons, directly aimed at encouraging the children to produce
the target words for this study. It should be noted that most pro-
ductions were only single words. Only two children produced any
of the support words (nounours ś teddy bear, and chaise ś chair).

Several factors may contribute to the high performance of the
experimenter. Even within the context of a limited set of responses
a person is able to provide much better cues and encouragement
based on reading the child. These kind of social skills are still a
gold standard to which robotics researchers strive. Though this
experiment was conducted using a ‘wizard’, their position and the
time delay in actions for the robot prevented this ine grained social
interaction. Some of the cues provided by the experimenter were not
programmed into the robot but should be added into its repertoire

(1) Direct phonetic cues - Giving part of the word e.g. the starting
s.

(2) Indirect phonetic cues - Giving clues to the word about how
it sounds e.g. łIt’s the one with a strange sound in it"

(3) Rhythmic cues - Giving the syllables of the word e.g. łDuh-
dum". This may work well for the small target vocabulary,
like ours, where this could refer to a single word, but may
be less efective in larger vocabularies.

(4) Gestural cues - Movements with the hands that mimic ges-
tures used by the teacher in the lesson.

Despite the more limited social skills of this implementation
of the robot, it still achieved a similar performance level to a per-
son. This may be the expected reduction of anxiety, that previous
research has shown, balancing the limited social behaviours.

However we also saw a large amount of encouragement given
to the children by the blind experimenter that was outside of the
original protocol, that could be deemed to have afected the scores
of the children in an undesirable way. While in the irst half the
amount of these encouragements by the experimenter remained
low, there was a sharp increase in the latter half. This could be
caused by forgetting the protocol over the days of the study or just
growing more lax in its use, or even the emotional stress that is put
on a person by the children’s diiculties.

The presence of a wizard in the room may also have been a
contributing factor. The presence of a person, even when not in
view, may have prevented the robot from reducing anxiety as much
as it could have done, as the child might be aware someone else
is listening in. We minimized the afect of the wizard by ensuring
there was no reason for them to interact with the children either
before the study. Analysis of the videos showed that the majority
of children never turned towards the wizard at any point during
the study, and focused on the robot. So we believe the impact of
the wizard’s presence was minimal.

Finally, it must be noted that the school where we performed
the study cultivated a much friendlier relationship between adults
in the school and the students than is typically seen. This may
have made the children feel more comfortable and conident in the
presence of our experimenter, reducing anxiety. Future work will



focus on broadening this study to multiple schools to see whether
our results can be replicated in diferent settings.

5.2 Relative diiculty of comprehension versus
production

The lack of correlation shown between the production quiz score
and the number of attempts on the comprehension test (Figure 6)
shows that there was no direct relation between comprehension and
production vocabularies. However when we look at the possibility
of a hierarchy from comprehension to production we do not ind
evidence to support a hierarchy. This could have had several causes.
While we were hoping to ind support within our data, we were
not directly testing for this hierarchy. Laufer et al. [9] looked at
students 16 years and older at high school and university who had
been studying their L2 as part of a national curriculum for between 6
to 9 years. Ours is based on a single lesson focused entirely on being
able to say the target words. The younger children in our study may
also have been more receptive to learning words productively, as
they are still increasing their phonological vocabulary. These skills
have been shown to have a correlation with word vocabulary [6].
These factors could account for an increase in deviations from the
previously established hierarchy.

6 CONCLUSION
We hypothesized that a robot could surpass human performance in
encouraging the production of spatial language: this hypothesis is
not supported by our study; however, the robot and the facilitator’s
performance were very similar, with no signiicant diference be-
tween the two conditions being found. This was despite the greater
social ability of the human experimenter. This may be explained
by the previous research that shows that robots can make people
less anxious in foreign language learning scenarios. Future work
expanding the robot’s social ability may improve the robot’s ability
to assess and support a student’s learning.

Measuring the production skills of a child at this level is a repeti-
tive and lengthy task. An autonomous robot that is able to measure
the production level of a child could be used as a tool to alleviate
these factors, enabling more accurate data collection for both re-
search and assessment purposes. Currently we are planning on
expanding this work to more schools while increasing the social
skills of the robot.
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Abstract
In this paper, a pipeline is suggested for measuring child
engagement in a robot tutoring task, together with a pi-
lot experiment for verification. Smiling, gaze direction and
posture are taken as indicators for engagement. A pilot ex-
periment is proposed to test the performance of the model.
This will be a robot tutoring task based on the child game
“I spy with my little eye” during which children with the age
of five learn English names for animals [6]. In this pilot ex-
periment, the children are provided breaks when they are
dis-engaged, to re-engage the children. Afterwards, the
children will be asked to rate the perception of the robot,
and it is expected that this rating will be higher than a robot
without engagement detection.
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Introduction
In order to make tutor robots more effective, robots should
be able to adapt to a user. In a study done by Leyzberg et
al., [10] where students had to solve a grid-based logic
puzzle, it was found that personalized tutoring improved the
students’ performance. Ramachandran et al. [12] found that
providing personal breaks based on the number of errors
during a task in a robot tutoring session improved learning
in children. Improving the effectiveness of a robot tutoring
task can be done in several ways. One way is to keep track
of a child’s progress over time, by registering the words that
a child learnt [6, 12]. In a previous experiment of De Wit
et al. [6] was found that adaptive tutoring did not have a
significant effect on learning gain, but the use of gestures
did have a significant effect. An important finding, however,
was that engagement seemed to lower at the end of the
interaction, in all conditions. With this in mind, another way
is to improve the quality of the time a child spents with the
robot. This can be done by adjusting the robots behavior
such that it creates a better environment for interaction and
tutoring, based on the child’s engagement [14].

A robot that can detect a child’s (lack of) engagement on-
line during the interaction and respond to this appropriately
could improve the quality of tutoring by re-engaging the
child when so desired. It has been found that eye-gaze
is a good indicator of engagement [8], and eye-gaze is
proposed as a metric for engagement in human robot in-
teraction [15, 1]. Body posture and head position are also
identified as indicators for engagement [1], head pose is
also used for realtime attention assessment [9]. Another
predictor for engagement is smiling [5, 15]. Serholt et al.
[15] found that smiles were most common after positive
feedback. Measuring smiles can be done by using a multi-
layer convolutional neural network trained on facial expres-
sions [2].

In this paper, a pipeline is proposed to measure engage-
ment based on smiling, posture and gaze of a child during
a robot tutoring task; such that an online prediction can be
generated given a frontal video recording. In order to verify
whether the pipeline works, a pilot experiment is suggested
based on the experiment done by de Wit et al. [6].

This project is embedded in the L2TOR project. The L2TOR
project (‘el tutor’) aims to design a social robot that supports
the teaching of a second language to preschool children.
This platform, which runs on a NAO humanoid robot, re-
quires that the robot is able to work together with young
children (age 5), on a peer level, and can provide relevant
feedback.

Methods
The aim of this project is to construct and train a model to
do online engagement prediction. This model will consist of
three different neural networks (one for each feature), with
a combined output resulting in a prediction. Furthermore, a
method is developed to re-engage the child when the child
seems disengaged. This method will then be tested and
verified in a pilot experiment based on de Wit et al. [6], in
a NAO humanoid robot. In the current L2TOR experiments
the robot does not account for the child’s engagement. By
accounting for the engagement of a child with the robot, the
behavior of the robot can be more matched to the child’s
behavioral state, by for example providing a break when
the engagement seems to drop. Engagement will be mea-
sured by combining smiling, posture and gaze predictions.
Two datasets will be used for engagement prediction: a
dataset of a previous L2TOR study [6] and the EmoReact
dataset [11]. The L2TOR dataset contains frontal video
clips of subjects performing a language learning task with
the robot. This dataset has been annotated with engage-
ment observations, in the range low, medium, high. In each



frame the face and the upper body of the child is visible.

The EmoReact dataset contains images annotated with
emotional states of children between the ages 4 and 14.
There are in total 17 states annotated. A subset will be
used such that only 4 and 5 year old children are consid-
ered. The L2TOR dataset provides the engagement obser-
vations and the EmoReact dataset images with emotional
expressions of children, useful for detecting smiles. The
smiling prediction will be done using a convolutional neural
network based on the model proposed by Arriaga et al. [2].

OpenPose [4] will be used to extract postures from the
L2TOR dataset, this information is then, together with the
engagement labels, used to train a model that can classify
engagement. In order to do gaze prediction, the L2TOR
data will be processed to identify both the position of the
robot and the tablet (the tablet is part of the tutoring experi-
ments). To perform gaze prediction a pretrained model pro-
vided by Recasens et al. [13] is used. This model provides
the gaze direction of a child given the location of the face
of the child in the video. Localisation of the face of the child
will be done using OpenCV [3]. The three different neural
networks’ outputs are followed by an LSTM layer [7] –to
make sure that temporal relations are learned– necessary
for measuring engagement. Once this model is trained, it
can be used online during an experiment and provide en-
gagement predictions.

In the pilot experiment to evaluate the effectiveness of the
model, participants (children) will learn six English animal
words during a game of “I spy with my little eye”. During the
task a NAO humanoid robot will provide an animal name in
English, after which the child has to select the correct ani-
mal on a tablet. In this pilot experiment, the robot will offer
breaks during the experiment based on the engagement of
the child, after this break the session continues. We expect

that the engagement will increase after the break, based on
the experiment of Ramachandran [12].

Conclusion
In this paper a model for online measuring of children’s en-
gagement in a robot tutoring task based on smiling, gaze
and posture is proposed. A valid model for online measur-
ing of engagement is not available yet, while such a model
could influence learning in robot tutoring and can stimulate
the developments of robot tutoring systems. The model and
methods can be adjusted to work with other domains as
well, outside the scope of robot tutoring, enhancing mea-
suring of engagement in human robot interaction. The pro-
posed model is currently being developed, and the expec-
tation is that preliminary results of both the model and the
evaluation pilot will be presented at the CRI-IDC Workshop.
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Playful exploration of a robot’s gesture production
and recognition abilities
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Feature extraction
To detect similarity between gestures regardless of variations in the speed or size of 
the motion, we extract the gist of the gesture, based on the inflection points in the 
motion’s trajectory [1]. We then find the nearest extreme point of the hand’s position 
(Figure 3) and map this to a quadrant that is relative to the person’s shoulder (Figure 4). 
This results in a description of a gesture that consists of a sequence of salient points
from the motion’s trajectory.

A robot’s ability to communicate non-verbally can increase understanding between human and robot, and can help to maintain 
an engaging interaction. However, gestures in most studies with robots tend to rely on the designers’ frame of reference, and 
their perspective on the robot’s physical limitations. We propose a system, based on a gesture guessing game, where the robot 
learns many different examples of gestures from human players, which it can then replicate during subsequent interactions. 
Because players attempt to guess the meaning of the robot’s gestures, the robot is able to identify those examples that best 
represent the target objects, given its limited expressive abilities. A first iteration of this exploratory study is set to take place 
with a SoftBank NAO robot, at the NEMO science museum in Amsterdam.

Gesture recognition
Gesture recognition is currently implemented with a k-nearest neighbors approach, 
where the similarity between gestures is measured by aligning them using the 
Needleman-Wunsch algorithm with a custom scoring matrix.

Gesture generation
Recorded examples of gestures for each object are clustered based on their similarity. 
Clusters may thus represent different strategies or variations within the gestures. The 
robot picks the next gesture to perform based on the weights assigned to each 
cluster and to individual examples within the cluster (through exploration and 
exploitation). Depending on whether the player guesses the object correctly or not, 
the weights are either increased or decreased.

Figure 1: Example of the robot’s turn to guess.

Figure 3: Inflection points (green) 
and peaks (red) of a motion.

Figure 4: Quadrants of the hand 
position relative to the shoulder.

Figure 5: Example of clustered 
gestures with weights.

[1] Maria Eugenia Cabrera and Juan Wachs. A Human-Centered approach to One-Shot Gesture Learning. Frontiers in Robotics and AI 4 (2017).

Figure 2: Example of the player’s turn to guess.
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Abstract
The study of the fine-grained social dynamics between children is a methodological chal-

lenge, yet a good understanding of how social interaction between children unfolds is impor-

tant not only to Developmental and Social Psychology, but recently has become relevant to

the neighbouring field of Human-Robot Interaction (HRI). Indeed, child-robot interactions

are increasingly being explored in domains which require longer-term interactions, such as

healthcare and education. For a robot to behave in an appropriate manner over longer time

scales, its behaviours have to be contingent and meaningful to the unfolding relationship.

Recognising, interpreting and generating sustained and engaging social behaviours is as

such an important—and essentially, open—research question. We believe that the recent

progress of machine learning opens new opportunities in terms of both analysis and synthe-

sis of complex social dynamics. To support these approaches, we introduce in this article a

novel, open dataset of child social interactions, designed with data-driven research method-

ologies in mind. Our data acquisition methodology relies on an engaging, methodologically

sound, but purposefully underspecified free-play interaction. By doing so, we capture a rich

set of behavioural patterns occurring in natural social interactions between children. The

resulting dataset, called the PInSoRo dataset, comprises 45+ hours of hand-coded record-

ings of social interactions between 45 child-child pairs and 30 child-robot pairs. In addition to

annotations of social constructs, the dataset includes fully calibrated video recordings, 3D

recordings of the faces, skeletal informations, full audio recordings, as well as game

interactions.

Introduction

Studying social interactions

Studying social interactions requires a social situation that effectively elicits interactions

between the participants. Such a situation is typically scaffolded by a social task, and conse-

quently, the nature of this task influences in fundamental ways the kind of interactions that
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might be observed and analysed. In particular, the socio-cognitive tasks commonly found in

both the experimental psychology and human-robot interaction (HRI) literature often have a

narrow focus: because they aim at studying one (or a few) specific social or cognitive skills in

isolation and in a controlled manner, these tasks are typically conceptually simple and highly

constrained (for instance, object hand-over tasks; perspective-taking tasks; etc.). While these

focused endeavours are important and necessary, they do not adequately reflect the complexity

and dynamics of real-world, natural interactions (as discussed by Baxter et al. in [1], in the

context of HRI). Consequently, we need to investigate richer interactions, scaffolded by socio-

cognitive tasks that:

• are long enough and varied enough to elicit a large range of interaction situations;

• foster rich multi-modal interactions, such as simultaneous speech, gesture, and gaze

behaviours;

• are not over-specified, in order to maximise natural, non-contrived behaviours;

• evidence complex social dynamics, such as rhythmic coupling, joint attention, implicit turn-

taking;

• include a level of non-determinism and unpredictability.

The challenge lies in designing a social task that exhibits these features while maintaining
essential scientific properties (repeatability; replicability; robust metrics) as well as good practi-

cal properties (not requiring unique or otherwise very costly experimental environments; not

requiring very specific hardware or robotic platform; easy deployment; short enough experi-

mental sessions to allow for large groups of participants).

Looking specifically at social interactions amongst children, we present in the next section

our take on this challenge, and we introduce a novel task of free play. The task is designed to

elicit rich, complex, varied social interactions while supporting rigorous scientific methodolo-

gies, and is well suited for studying both child-child and child-robot interactions.

Social play

Our interaction paradigm is based on free and playful interactions (hereafter, free play) in

what we call a sandboxed environment. In other words, while the interaction is free (partici-

pants are not directed to perform any particular task beyond playing), the activity is both scaf-
folded and constrained by the setup mediating the interaction (a large interactive table), in a

similar way to children freely playing with sand within the boundaries of a sandpit. Conse-

quently, while participants engage in open-ended and non-directed activity, the play situation

is framed to be easily reproducible as well as practical to record and analyse.

This initial description frames the socio-cognitive interactions that might be observed and

studied: playful, dyadic, face-to-face interactions. While gestures and manipulations (including

joint manipulations) play an important role in this paradigm, the participants do not typically

move much during the interaction. Because it builds on play, this paradigm is also primarily

targeted to practitioners in the field of child-child or child-robot social interactions.

The choice of a playful interaction is supported by the wealth of social situations and social

behaviours that play elicits (see for instance parts 3 and 4 of [2]). Most of the research in this

field builds on the early work of Parten who established five stages of play [3], corresponding

to different stages of development, and accordingly associated with typical age ranges: (a) soli-
tary (independent) play (age 2-3): child playing separately from others, with no reference to

what others are doing; (b) onlooker play (age 2.5-3.5): child watching others play; may engage

The PInSoRo dataset of child-child and child-robot social dynamics
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in conversation but not engage in doing; true focus on the children at play; (c) parallel play
(also called adjacent play, social co-action, age 2.5-3.5): children playing with similar objects,

clearly beside others but not with them; (d) associative play (age 3-4): child playing with others

without organization of play activity; initiating or responding to interaction with peers; (e)
cooperative play (age 4+): coordinating one’s behavior with that of a peer; everyone has a role,

with the emergence of a sense of belonging to a group; beginning of “team work.”

These five stages of play have been extensively discussed and refined over the last century,

yet remain remarkably widely accepted. It must be noted that the age ranges are only indica-

tive. In particular, most of the early behaviours still occur at times by older children.

Machine learning, robots and social behaviours

The data-driven study of social mechanisms is still an emerging field, and only limited litera-

ture is available.

The use of interaction datasets to teach artificial agents (robots) how to socially behave has

been previously explored, and can be considered as the extension of the traditional learning

from demonstration (LfD) paradigms to social interactions [4, 5]. However, existing research

focuses on low-level identification or generation of brief, isolated behaviours, including social

gestures [6] and gazing behaviours [7].

Based on a human-human interaction dataset, Liu et al. [8] have investigated machine

learning approaches to learn longer interaction sequences. Using unsupervised learning, they

train a robot to act as a shop-keeper, generating both speech and socially acceptable motions.

Their approach remains task-specific, and they report only limited success. They however

emphasise the “life-likeness” of the generated behaviours.

This burgeoning interest in the research community for the data-driven study of social

responses is however impaired by the lack of structured research efforts. In particular, there is

only limited availability of large and open datasets of social interactions, suitable for machine-

learning applications.

One such dataset is the Multimodal Dyadic Behavior Dataset (MMDB, [9]). It comprises of

160 sessions of 3 to 5 minute child-adult interactions. During these interactions, the experi-

menter plays with toddlers (1.5 to 2.5 years old) in a semi-structured manner. The dataset

includes video streams of the faces and the room, audio, physiological data (electrodermal

activity) as well as manual annotations of specific behaviours (like gaze to the examiner, laugh-

ter, pointing). This dataset focuses on very young children during short, adult-driven interac-

tions. As such, it does not include episodes of naturally-occurring social interactions between

peers, and the diversity of said interactions is limited. Besides, the lack of intrinsic and extrinsic

camera calibration information in the dataset prevent the automatic extraction and labeling of

key interaction features (like mutual gaze).

Another recent dataset, the Tower Game Dataset [10], focuses specifically on rich dyadic

social interactions. The dataset comprises of 39 adults recorded over a total of 112 annotated

sessions of 3 min in average. The participants are instructed to jointly construct a tower using

wooden blocks. Interestingly, the participants are not allowed to talk to maximise the amount

of non-verbal communication. The skeletons and faces of the participants are recorded, and

the dataset is manually annotated with so-called Essential Social Interaction Predicates (ESIPs):

rhythmic coupling (entrainment or attunement), mimicry (behavioral matching), movement

simultaneity, kinematic turn taking patterns, joint attention. This dataset does not appear to

be publicly available on-line.

The UE-HRI dataset [11] is another recently published (2017) dataset of social interactions,

focusing solely on human-robot interactions. 54 adult participants were recorded (duration

The PInSoRo dataset of child-child and child-robot social dynamics
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M = 7.7min) during spontaneous dialogues with a Pepper robot. The interactions took place

in a public space, and include both one-to-one and multi-party interactions. The resulting

dataset includes audio and video recordings from the robot perspective, as well as manual

annotations of the levels of engagement. It is publicly available.

PInSoRo, our dataset, shares some of the aims of the Tower Game and UE-HRI datasets,

with however significant differences. Contrary to these two datasets, our target population are

children. We also put a strong focus on naturally occurring, real-world social behaviours. Fur-

thermore, as presented in the following sections, we record much longer interactions (up to 40

minutes) of free play interactions, capturing a wider range of socio-cognitive behaviours. We

did not place any constraints on the permissible communication modalities, and the record-

ings were manually annotated with a focus on social constructs.

Material and methods

The free-play sandbox task

As previously introduced, the free-play sandbox task is based on face-to-face free-play interac-

tions, mediated by a large, horizontal touchscreen. Pairs of children (or alternatively, one child

and one robot) are invited to freely draw and interact with items displayed on an interactive

table, without any explicit goals set by the experimenter (Fig 1). The task is designed so that

children can engage in open-ended and non-directive play. Yet, it is sufficiently constrained to

Fig 1. The free-play social interactions sandbox: Two children or one child and one robot (as pictured here) interacted in a free-play situation, by

drawing and manipulating items on a touchscreen. Children were facing each other and sit on cushions. Each child wore a bright sports bib, either

purple or yellow, to facilitate later identification.

https://doi.org/10.1371/journal.pone.0205999.g001

The PInSoRo dataset of child-child and child-robot social dynamics
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be suitable for recording, and allows the reproduction of social behaviour by an artificial agent

in comparable conditions.

Specifically, the free-play sandbox follows the sandtray paradigm [12]: a large touchscreen

(60cm × 33cm, with multitouch support) is used as an interactive surface. The two players, fac-

ing each other, play together, moving interactive items or drawing on the surface if they wish

so (Fig 2). The background image depicts a generic empty environment, with different sym-

bolic colours (water, grass, beach, bushes. . .). By drawing on top of the background picture,

the children can change the environment to their liking. The players do not have any particular

task to complete, they are simply invited to freely play. They can play for as long as they wish.

However, for practical reasons, we had to limit the sessions to a maximum of 40 minutes.

Even though the children do typically move a little, the task is fundamentally a face-to-face,

spatially delimited, interaction, and as such simplifies the data collection. In fact, the children’s

faces were successfully detected in 98% of the over 2 million frames recorded during the PIn-

SoRo dataset acquisition campaign.

Experimental conditions. The PInSoRo dataset aims to establish two experimental base-

lines for the free-play sandbox task: the ‘human social interactions’ baseline on one hand

(child–child condition), an ‘asocial’ baseline on the other hand (child–non-social robot condi-

tion). These two baselines aim to characterise the qualitative and quantitative bounds of the

spectrum of social interactions and dynamics that can be observed in this situation.

In the child-child condition, a diverse set of social interactions and social dynamics were

expected to be observed, ranging from little social interactions (for instance, with shy children)

to strong, positive interactions (for instance, good friends), to hostility (children who do not

get along very well).

Fig 2. Example of a possible game situation. Game items (animals, characters. . .) can be dragged over the whole play area, while the background

picture can be painted over by picking a colour. In this example, the top player is played by a robot.

https://doi.org/10.1371/journal.pone.0205999.g002

The PInSoRo dataset of child-child and child-robot social dynamics
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In the asocial condition, one child was replaced by an autonomous robot. The robot was

purposefully programmed to be asocial. It autonomously played with the game items as a child

would (although it did not perform any drawing action), but avoided all social interactions: no

social gaze, no verbal interaction, no reaction to child-initiated game actions.

From the perspective of social psychology, this condition provides a baseline for the social

interactions and dynamics at play (or the lack thereof) when the social communication chan-

nel is severed between the agents, while maintaining a similar social setting (face-to-face inter-

action; free-play activity).

From the perspective of human-robot interaction and artificial intelligence in general, the

child–‘asocial robot’ condition provides a baseline to contrast with for yet-to-be-created richer

social and behavioural AI policies.

Hardware apparatus. The interactive table was based on a 27” Samsung All-In-One com-

puter (quad core i7-3770T, 8GB RAM) running Ubuntu Linux and equipped with a fast 1TB

SSD hard-drive. The computer was held horizontally in a custom aluminium frame standing

26cm above the floor. All the cameras were connected to the computer via USB-3. The com-

puter performed all the data acquisition using ROS Kinetic (http://www.ros.org/). The same

computer was also running the game interface on its touch-enabled screen (60cm × 33cm),

making the whole system standalone and easy to deploy.

The children’s faces were recorded using two short range (0.2m to 1.2m) Intel RealSense

SR300 RGB-D cameras placed at the corners of the touchscreen (Fig 1) and tilted to face the

children. The cameras were rigidly mounted on custom 3D-printed brackets. This enabled a

precise measurement of their 6D pose relative to the touchscreen (extrinsic calibration).

Audio was recorded from the same SR300 cameras (one mono audio stream was recorded

for each child, from the camera facing him or her).

Finally, a third RGB camera (the RGB stream of a Microsoft Kinect One, the environment
camera in Fig 1) recorded the whole interaction setting. This third video stream was intended

to support human coders while annotating the interaction, and was not precisely calibrated.

In the child-robot condition, a Softbank Robotics’ Nao robot was used. The robot remained

in standing position during the entire play interaction. The actual starting position of the

robot with respect to the interactive table was recalibrated before each session by flashing a 2D

fiducial marker on the touchscreen, from which the robot could compute its physical location.

Software apparatus. The software-side of the free-play sandbox is entirely open-source

(source code: https://github.com/freeplay-sandbox/). It was implemented using two main

frameworks: Qt QML (http://doc.qt.io/qt-5/qtquick-index.html) for the user interface (UI) of

the game (Fig 2), and the Robot Operating System (ROS) for the modular implementation of

the data processing and behaviour generation pipelines, as well as for the recordings of the var-

ious datastreams (Fig 4). The graphical interface interacts with the decisional pipeline over a

bidirectional QML-ROS bridge that was developed for that purpose (source code available

from the same link).

Fig 3 presents the complete software architecture of the sandbox as used in the child-robot

condition (in the child-child condition, robot-related modules were simply not started).

Robot control. As previously described, one child was replaced by a robot in the child-

robot condition. Our software stack allowed for the robot to be used in two modes of opera-

tions: either autonomous (selecting actions based on pre-programmed play policies), or con-

trolled by a human operator (so-called Wizard-of-Oz mode of operation).

For the purpose of the PInSoRo dataset, the robot behaviour was fully autonomous, yet

coded to be purposefully asocial (no social gaze, no verbal interaction, no reaction to child-ini-

tiated game actions). The simple action policy that we implemented consisted in the robot

choosing a random game item (in its reach), and moving that item to a predefined zone on the

The PInSoRo dataset of child-child and child-robot social dynamics
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map (e.g. if the robot could reach the crocodile figure, it would attempt to drag it to a blue, i.e.

water, zone). The robot did not physically drag the item on the touchscreen: it relied on a A�

motion planner to find an adequate path, sent the resulting path to the touchscreen GUI to

animate the displacement of the item, and moved its arm in a synchronized fashion using the

inverse kinematics solver provided with the robot’s software development kit (SDK).

In the Wizard-of-Oz mode of operation, the experimenter would remotely control the

robot through a tablet application developed for this purpose (Figs 3–11). The tablet exactly

mirrored the game state, and the experimenter dragged the game items on the tablet as would

the child on the touchscreen. On release, the robot would again mimic the dragging motion on

the touchscreen, moving an object to a new location. This mode of operation, while useful to

conduct controlled studies, was not used for the dataset acquisition.

Experiment manager. We developed as well a dedicated web-based interface (usually

accessed from a tablet) for the experimenter to manage the whole experiment and data acquisi-

tion procedure (Figs 3–10). This interface ensured that all the required software modules

were running; it allowed the experimenter to check the status of each of them and, if needed,

to start/stop/restart any of them. It also helped managing the data collection campaign by

Fig 3. Software architecture of the free-play sandbox (data flows from orange dots to blue dots). Left nodes interact with the interactive table hardware (game

interface (1) and camera drivers (2)). The green nodes in the centre implement the behaviour of the robot (play policy (3) and robot behaviours (4)). Several helper

nodes are available to provide for instance a segmentation of the children drawings into zones (5) or A� motion planning for the robot to move in-game items (6).

Nodes are implemented in Python (except for the game interface, developed in QML) and inter-process communication relies on ROS. 6D poses are managed and

exchanged via ROS TF.

https://doi.org/10.1371/journal.pone.0205999.g003
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Fig 4. The free-play sandbox, viewed at runtime within ROS RViz. Simple computer vision was used to segment the background drawings into zones

(visible on the right panel). The poses and bounding boxes of the interactive items were broadcast as well, and turned into an occupancy map, used to

plan the robot’s arm motion. The individual pictured in this figure has given written informed consent (as outlined in PLOS consent form) to appear.

https://doi.org/10.1371/journal.pone.0205999.g004

Fig 5. The coding scheme used for annotating social interactions occurring during free-play episodes. Three main

axis were studied: task engagement, social engagement and social attitude.

https://doi.org/10.1371/journal.pone.0205999.g005
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providing a convenient interface to record the participants’ demographics, resetting the game

interface after each session, and automatically enforcing the acquisition protocol (presented in

Table 1).

Coding of the social interactions

Our aim is to provide insights on the social dynamics, and as such we annotated the dataset

using a combination of three coding schemes for social interactions that reuse and adapt estab-

lished social scales. Our resulting coding scheme (Fig 5) looked specifically at three axis: the

level of task engagement (that distinguishes between focused, task oriented behaviours, and dis-
engaged—yet sometimes highly social – behaviours); the level of social engagement (reusing

Parten’s stages of play, but at a fine temporal granularity); the social attitude (that encoded atti-

tudes like supportive, aggressive, dominant, annoyed, etc).

Task engagement. The first axis of our coding scheme aimed at making a broad distinc-

tion between ‘on-task’ behaviours (even though the free-play sandbox did not explicitly require

the children to perform a specific task, they were still engaged in an underlying task: to play

with the game) and ‘off-task’ behaviours. We called ‘on-task’ behaviours goal oriented: they

encompassed considered, planned actions (that might be social or not). Aimless behaviours

(with respect to the task) encompassed opposite behaviours: being silly, chatting about unre-

lated matters, having a good laugh, etc. These Aimless behaviours were in fact often highly

social, and played an important role in establishing trust and cooperation between the peers.

In that sense, we considered them as as important as on-task behaviours.

Social engagement: Parten’s stages of play at micro-level. In our scheme, we character-

ised Social engagement by building upon Parten’s stages of play [3]. These five stages of play

Fig 6. 2D skeletons, including facial landmarks and hand details are automatically extracted using the OpenPose

library [18].

https://doi.org/10.1371/journal.pone.0205999.g006
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are normally used to characterise rather long sequences (at least several minutes) of social

interactions. In our coding scheme, we applied them at the level of each of the micro-

sequences of the interactions: one child is drawing and the other is observing was labelled as

solitary play for the former child, on-looker behaviour for the later; the two children discuss

what to do next: this sequence was annotated as a cooperative behaviour; etc.

We chose this fine-grained coding of social engagement to enable proper analyses of the

internal dynamics of a long sequence of social interaction.

Social attitude. The constructs related to the social attitude of the children derived from

the Social Communication Coding System (SCCS) proposed by Olswang et al. [13]. The SCCS

consists in 6 mutually exclusive constructs characterising social communication (hostile; pro-
social; assertive; passive; adult seeking; irrelevant) and were specifically created to characterise

children’s communication in a classroom setting.

We transposed these constructs from the communication domain to the general beha-

vioural domain, keeping the pro-social, hostile (whose scope we broadened in adversarial),
assertive (i.e. dominant), and passive constructs. In our scheme, the adult seeking and irrelevant
constructs belong to Task Engagement axis.

Finally, we added the construct Frustrated to describe children who are reluctant or refuse

to engage in a specific phase of interaction because of a perceived lack of fairness or attention

from their peer, or because they fail at achieving a particular task (like a drawing).

Fig 7. Screenshot of the dedicated tool developed for rapid annotation of the social interactions. The annotators used a secondary screen (tablet)

with buttons (layout similar to Fig 5) to record the social constructs. Figure edited for legibility (timeline enlarged) and to mask out one of the children’

face. The right individual pictured in this figure has given written informed consent (as outlined in PLOS consent form) to appear.

https://doi.org/10.1371/journal.pone.0205999.g007
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Protocol

We adhered to the acquisition protocol described in Table 1 with all participants. To ease later

identification, each child was also given a different and brightly coloured sports bib to wear.

Importantly, during the Greetings stage, we showed the robot both moving and speaking

(for instance, “Hello, I’m Nao. Today I’ll be playing with you. Exciting!” while waving at the

children). This was of particular importance in the child-robot condition, as it set the chil-

dren’s expectations in term of the capabilities of the robot: the robot could in principle speak,

move, and even behave in a social way.

Also, the game interface of the free-play sandbox offered a tutorial mode, used to ensure the

children know how to manipulate items on a touchscreen and draw. In our experience, this

never was an issue for children.

Data collection

Table 2 lists the raw datastreams that were collected during the game. By relying on ROS for

the data acquisition (and in particular the rosbag tool), we ensured all the datastreams were

synchronised, timestamped, and, where appropriate, came with calibration information (for

the cameras mainly). For the PInSoRo dataset, cameras were configured to stream in qHD res-

olution (960×540 pixels) in an attempt to balance high enough resolution with tractable file

size. It resulted in bag files weighting�1GB per minute.

Besides audio and video streams, user interactions with the game were monitored and

recorded as well. The background drawings produced by the children were recorded. They

Fig 8. Density distribution of the durations of the interactions for the two conditions. Interactions in the child-robot condition were generally shorter than the

child-child interactions. Interactions in the child-child condition followed a bi-modal distribution, with one mode centered around minute 15 (similar to the child-

robot one) and one, much longer mode, at minute 37.

https://doi.org/10.1371/journal.pone.0205999.g008
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were also segmented according to their colours, and the contours of resulting regions were

extracted and recorded. The positions of all manipulable game items were recorded (as ROS

TF frames), as well as every touch on the touchscreen.

Data post-processing

Table 3 summarises the post-processed datastreams that are made available alongside the raw

datastreams.

Audio processing. Audio features were automatically extracted using the OpenSMILE

toolkit [14]. We used a 33ms-wide time windows in order to match the cameras FPS. We

extracted the INTERSPEECH 2009 Emotion Challenge standardised features [15]. These are a

range of prosodic, spectral and voice quality features that are arguably the most common fea-

tures we might want to use for emotion recognition [16]. For a full list, please see [15]. As no

reliable speech recognition engine for children voice could be found [17], audio recordings

were not automatically transcribed.

Facial landmarks, action-units, skeletons, gaze. Offline post-processing was performed

on the images obtained from the cameras. We relied on the CMU OpenPose library [18] to

extract for each child the upper-body skeleton (18 points), 70 facial landmarks including the

pupil position, as well as the hands’ skeleton (Fig 6).

This skeletal information was extracted from the RGB streams of each of the three cameras,

for every frame. It is stored alongside the main data in an easy-to-parse JSON file.

For each frame, 17 action units, with accompanying confidence levels, were also extracted

using the OpenFace library [19]. The action-units recognised by OpenFace and provided

Fig 9. Repartition of annotations over the dataset (in total duration of recordings annotated with a given construct). The three classes of constructs (task

engagement, social engagement, social attitude) and the two conditions (child-child and child-robot) are plotted separately.

https://doi.org/10.1371/journal.pone.0205999.g009
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Fig 10. Mean time (and standard deviation) that each construct has been annotated in each recording. The large standard deviations reflect the broad range of

group dynamics captured in the dataset.

https://doi.org/10.1371/journal.pone.0205999.g010

Fig 11. Percentage of observations for each constructs with respect the children’s age.

https://doi.org/10.1371/journal.pone.0205999.g011
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alongside the data are AU01, AU02, AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14,

AU15, AU17, AU20, AU23, AU25, AU26, AU28 and AU45 (classification following https://

www.cs.cmu.edu/~face/facs.htm).

Gaze was also estimated, using two techniques. First, head pose estimation was performed

following [20], and used to estimate gaze pose. While this technique is effective to segment

pose at a coarse level (i.e. gaze on interactive table vs. gaze on other child/robot vs. gaze on

experimenter), it offers limited accuracy when tracking the precise gaze location on the surface

of the interactive table (due to not tracking the eye pupils).

We complemented head pose estimation with a neural network (a simple 7-layers, fully

connected, multi-layer perceptron with ReLU activations and 64 units per layer), implemented

Table 1. Data acquisition protocol.

Greetings (about 5 min)
• explain the purpose of the study: showing robots how children play

• briefly present a Nao robot: the robot stands up, gives a short message (Today I’ll be watching you playing in the

child-child condition;Today I’ll be playing with you in the child-robot condition), and sits down.

• place children on cushions

• complete demographics on the tablet

• remind the children that they can withdraw at anytime

Gaze tracking task (40 sec)
children are instructed to closely watch a small picture of a rocket that moves randomly on the screen. Recorded

data is used to train a eye-tracker post-hoc.

Tutorial (1-2 min)
explain how to interact with the game, ensure the children are confident with the manipulation/drawing.

Free-play task (up to 40 min)

• initial prompt: “Just to remind you, you can use the animals or draw. Whatever you like. If you run out of ideas,
there’s also an ideas box. For example, the first one is a zoo. You could draw a zoo or tell a story. When you get
bored or don’t want to play anymore, just let me know.”

• let children play

• once they wish to stop, stop recording

Debriefing (about 2 min)
• answer possible questions from the children

• give small reward (e.g. stickers) as a thank you

https://doi.org/10.1371/journal.pone.0205999.t001

Table 2. List of raw datastreams available in the PInSoRo dataset. Each datastream is timestamped with a synchro-

nised clock to facilitate later analysis.

Domain Type Details

child 1 audio 16kHz, mono, semi-directional

face (RGB) qHD (960×540), 30Hz

face (depth) VGA (640×480), 30Hz

child 2 audio 16kHz, mono, semi-directional

face (RGB) qHD (960×540), 30Hz

face (depth) VGA (640×480), 30Hz

environment RGB qHD (960×540), 29.7Hz

game interactions background drawing (RGB) 4Hz

finger touches 6 points multi-touch, 10Hz

game items pose TF frames, 10Hz

other static transforms between touchscreen and facial cameras

cameras calibration informations

https://doi.org/10.1371/journal.pone.0205999.t002
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with the Caffe framework (source available here: https://github.com/severin-lemaignan/

visual_tracking_caffe).

The network trained from a ground truth mapping between the children’ faces and 2D gaze

coordinates. Training data is obtained by asking the children to follow a target on the screen

for a short period of time before starting the main free play activity (see protocol, Table 1). The

position of the target provides the ground truth (x, y) coordinates of the gaze on the screen.

For each frame, the network is then fed a feature vector comprising 32 facial and skeletal (x, y)

points of interest relevant to gaze estimation (namely, the 2D location of the pupils, eye con-

tours, eyebrows, nose, neck, shoulders and ears). The training dataset comprises 80% of the

fully randomized dataset (123711 frames) and the testing dataset the remaining 20% (30927

frames). Using this technique, we measured a gaze location error of 12.8% on our test data

between the ground truth location of the target on the screen and the estimated gaze location

(i.e. ±9cm over the 70cm-wide touchscreen). The same pre-trained network is then used to

provide gaze estimation during the remainder of the free play activity.

Video coding. The coding was performed post-hoc with the help of a dedicated annota-

tion tool (Fig 7) which is part of the free-play sandbox toolbox. This tool can replay and ran-

domly seek in the three video streams, synchronised with the recorded state of the game

(including the drawings as they were created). An interactive timeline displaying the annota-

tions is also displayed.

The annotation tool offers a remote interface for the annotator (made of large buttons, and

visually similar to Fig 5) that is typically displayed on a tablet and allow the simultaneous cod-

ing of the behaviours of the two children. Usual video coding practices (double-coding of a

portion of the dataset and calculation of an inter-judge agreement score) were followed.

Results—The PInSoRo dataset

Using the free-play sandbox methodology, we have acquired a large dataset of social interac-

tions between either pairs of children or one child and one robot. The data collection took

place over a period of 3 months during Spring 2017.

In total, 120 children were recorded for a total duration of 45 hours and 48 minutes of data

collection. These 120 children (see demographics in Table 4; sample drawn from local schools)

were randomly assigned to one of two conditions: the child-child condition (90 children, 45

pairs) and a child-robot condition (30 children). The sample sizes were balanced in favour of

the child-child condition as the social dynamics that we ultimately want to capture are much

richer in this condition.

Table 3. List of post-processed datastreams available in the PInSoRo dataset. With the exception of social annota-

tions, all the data was automatically computed from the raw datastreams at 30Hz.

Domain Type Details

children face 70 facial landmarks (2D)

17 facial action-units

head pose estimation (TF frame)

gaze estimation (TF frame)

skeleton 18 points body pose (2D)

20 points hand tracking (2D, only when visible)

audio INTERSPEECH’s 16 low-level descriptors

annotations timestamped annotations of social behaviours and remarkable events

https://doi.org/10.1371/journal.pone.0205999.t003
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In both conditions, and after a short tutorial, the children were simply invited to freely play

with the sandbox, for as long as they wished (with a cap at 40 min; cf. protocol in Table 1).

In the child-child condition, 45 free-play interactions (i.e. 90 children) were recorded with

a mean duration M = 24.15 min (standard deviation SD = 11.25 min). In the child-robot con-

dition, 30 children were recorded, M = 19.18 min (SD = 10 min).

Fig 8 presents the density distributions of the durations of the interactions for the two base-

lines. The distributions show that (1) the vast majority of children engaged easily and for non-

trivial amounts of time with the task; (2) the task led to a wide range of levels of commitment,

which is desirable: it supports the claim that the free-play sandbox is an effective paradigm to

observe a range of different social behaviours; (3) many long interactions (>30 min) were

observed, which is especially desirable to study social dynamics.

The distribution of the child-robot interaction durations shows that these interactions are

generally shorter. This was expected as the robot’s asocial behaviour was designed to be less

engaging. Often, the child and the robot were found to be playing side-by-side—in some case

for rather long periods of time—without interacting at all (solitary play).

Over the whole dataset, the children faces were detected on 98% of the images, which vali-

dates the positioning of the camera with respect to the children to record facial features.

Annotations

Five expert annotators performed the dataset annotation. Each annotator received one hour of

training by the experimenters, and were compensated for their work.

In total, 13289 annotations of social dynamics were produced, resulting in an average of

149 annotations per record (SD = 136), which equates to an average of 4.2 annotations/min

(SD = 2.1), and an average duration of annotated episodes of 48.8 sec (SD = 33.3). Fig 9 shows

the repartition of the annotation corpus over the different constructs presented in Fig 5. Fig 10

shows the mean annotation time and standard deviation per recording for each construct.

Overall, 23% of the dataset was double-coded. Inter-coder agreement was found to be

51.8% (SD = 16.8) for task engagement annotations; 46.1% (SD = 24.2) for social engagement;

56.6% (SD = 22.9) for social attitude.

These values are relatively low (only partial agreement amongst coders). This was expected,

as annotating social interactions beyond surface behaviours is indeed generally difficult. The

observable, objective behaviours are typically the result of a superposition of the complex and

non-observable underlying cognitive and emotional states. As such, these deeper socio-cogni-

tive states can only be indirectly observed, and their labelling is typically error prone.

However, this is not anticipated to be a major issue for data-driven analyses, as machine

learning algorithms are typically trained to estimate probability distributions. As such, diver-

gences in human interpretations of a given social episode will simply be reflected in the proba-

bility distribution of the learnt model.

When looking at social behaviours with respect to age groups, expected behavioural trends

are observed (Fig 11): adult seeking goes down when children get older; more cooperative play

Table 4. Descriptive statistics for the children.

Condition Age Mean Age SD # girls # boys

Whole group 6.4 1.3 55 65

Child-child 6.3 1.4 42 48

Child-robot 6.9 0.9 12 18

https://doi.org/10.1371/journal.pone.0205999.t004
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is observed with older children, while more parallel play takes place with younger ones. In con-

strast, the social attitudes appear evenly distributed amongst age groups.

Dataset availability and data protection

All data has been collected by researchers at the University of Plymouth, under a protocol

approved by the university ethics committee. The parents of the participants explicitly con-

sented in writing to sharing of their child’s video and audio with the research community. The

data does not contain any identifying information, except the participant’s images. The child’s

age and gender are also available. The parents of the children in this manuscript have given

written informed consent (as outlined in PLOS consent form) to publish these case details.

The dataset is freely available to any interested researcher. Due to ethical and data protec-

tion regulations, the dataset is however made available in two forms: a public, Creative Com-

mons licensed, version that does not include any video material of the children (no video nor

audio streams), and hosted on the Zenodo open-data platform: https://zenodo.org/record/

1043508. The complete version that includes all video streams is freely available as well, but

interested researchers must first fill a data protection form. The detail of the procedure are

available online: https://freeplay-sandbox.github.io/application.

Discussion of the free-play sandbox

The free-play sandbox elicits a loosely structured form of play: the actual play situations are

not known beforehand and might change several times during the interaction; the game

actions, even though based on one primary interaction modality (touches on the interactive

table), are varied and unlimited (especially when considering the drawings); the social interac-

tions between participants are multi-modal (speech, body postures, gestures, facial expres-

sions, etc.) and unconstrained. This loose structure creates a fecund environment for children

to express a range of complex, dynamics, natural social behaviours that are not tied to an

overly constructed social situation. The diversity of the social behaviours that we have been

able to capture can indeed been seen in Figs 9 and 11.

Yet, the interaction is nonetheless structured. First, the physical bounds of the interactive

table limit the play area to a well defined and relatively small area. As a consequence, children

are mostly static (they are sitting in front of the table) and their primary form of physical inter-

action is based on 2D manipulations on a screen.

Second, the game items themselves (visible in Fig 2) structure the game scenarios. They are

iconic characters (animals or children) with strong semantics associated to them (such as

‘crocodiles like water and eat children’). The game background, with its recognizable zones,

also elicit a particular type of games (like building a zoo or pretending to explore the

savannah).

These elements of structure (along with other, like the children demographics) arguably

limit how general the PInSoRo dataset is. However, it also enable the free-play

sandbox paradigm to retain key properties that makes it a practical and effective scientific tool:

because the game builds on simple and universal play mechanics (drawings, pretend play with

characters), the paradigm is essentially cross-cultural; because the sandbox is physically

bounded and relatively small, it can be easily transported and practically deployed in a range

of environments (schools, exhibitions, etc.); because the whole apparatus is well defined and

relatively easy to duplicate (it essentially consists in one single touchscreen computer), the

free-play sandbox facilitates the replication of studies while preserving ecological validity.

Compared to existing datasets of social interactions (the Multimodal Dyadic Behavior Data-
set, the Tower Game dataset and the UE-HRI dataset), PInSoRo is much larger, with more than
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45 hours of data, compared to 10.6, 5.6 and 6.9 hours respectively. PInSoRo is fully multi-

modal whereas the Tower Game dataset does not include verbal interactions, and the UE-HRI
dataset focuses instead of spoken interactions. Compared to the Multimodal Dyadic Behavior
Dataset, PInSoRo captures a broader range of social situations, with fully calibrated data-

streams, enabling a broad range of automated data processing and machine learning applica-

tions. Finally, PInSoRo is also unique for being the first (open) dataset capturing long
sequences (up to 40 minutes) of ecologically valid social interactions amongst children or

between children and robots.

Conclusion—Towards the machine learning of

social interactions?

We presented in this article the PInSoRo dataset, a large and open dataset of loosely con-

strained social interactions between children and robots. By relying on prolonged free-play

episodes, we captured a rich set of naturally-occurring social interactions taking place between

pairs of children or pairs of children and robots. We recorded an extensive set of calibrated

and synchronised multimodal datastreams which can be used to mine and analyse the social

behaviours of children. As such, this data provides a novel playground for the data-driven

investigation and modelling of the social and developmental psychology of children.

The PInSoRo dataset also holds considerable promise for the automatic training of models

of social behaviours, including implicit social dynamics (like rhythmic coupling, turn-taking),

social attitudes, or engagement interpretation. As such, we foresee that the dataset might play

an instrumental role in enabling artificial systems (and in particular, social robots) to recog-

nise, interpret, and possibly, generate, socially congruent signals and behaviours whenever

interacting with children. Whether such models can help uncover some of the implicit precur-

sors of social behaviours, and is so, whether the same models, learnt from children data, can as

well be used to interpret adult social behaviours, are open—and stimulating—questions that

this dataset might contribute to answer.
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UNDERWORLDS: Cascading Situation Assessment for Robots

Séverin Lemaignan1, Yoan Sallami2, Christopher Wallbridge3,
Aurélie Clodic2, Tony Belpaeme3, and Rachid Alami2

Abstract— We introduce UNDERWORLDS, a novel lightweight
framework for cascading spatio-temporal situation assessment
in robotics. UNDERWORLDS allows programmers to represent
the robot’s environment as real-time distributed data struc-
tures, containing both scene graphs (for representation of
3D geometries) and timelines (for representation of temporal
events). UNDERWORLDS supports cascading representations: the
environment is viewed as a set of worlds that can each have
different spatial and temporal granularities, and may inherit
from each other. UNDERWORLDS also provides a set of high-
level client libraries and tools to introspect and manipulate the
environment models.

This article presents the design and architecture of this
open-source tool, and explores some applications, along with
examples of use.

I. INTRODUCTION

UNDERWORLDS is a distributed and lightweight open-
source framework1 that enables robot programmers to build
and refine spatial and temporal models of the environment
surrounding a robot in real-time. UNDERWORLDS makes it
possible to share these world models amongst the software
components running on the robot. Additionally, UNDER-
WORLDS enables users to represent and manipulate multi-
ple alternatives to the current, perceived world model in
a distributed manner. For instance, the world with some
objects filtered out; the world ‘viewed’ from the perspective
of another agent; a hypothetical world resulting from the
simulated application of a plan, etc.

A. Distributed Situation Assessment

Anchoring perceptions in a symbolic model suitable for
decision-making requires perception abilities and their sym-
bolic interpretation. We call physical situation assessment
the cognitive skill that a robot exhibits when it represents
and assesses the nature and content of its surroundings and
monitors its evolution.

Numerous approaches exist, like amodal (in the sense of
modality-independent) proxies [1], grounded amodal repre-
sentations [2], semantic maps [3], [4], [5] or affordance-
based planning and object classification [6], [7].

UNDERWORLDS is specifically inspired by geometric and
temporal reasoners like SPARK (SPAtial Reasoning & Knowl-
edge) [8] or TOASTER (Tracking Of Agents and Spatio-

1Author is with Bristol Robotics Lab, University of the West of England,
Bristol, United Kingdom severin.lemaignan@brl.ac.uk,
2Authors are with LAAS-CNRS, Université de Toulouse, CNRS,
Toulouse, France firstname.surname@laas.fr, 3Authors
are with CRNS, Plymouth University, Plymouth, United Kingdom
firstname.surname@plymouth.ac.uk

1https://github.com/underworlds-robot/underworlds

TEmporal Reasoning) [9]. SPARK acts as a situation as-
sessment reasoner that generates symbolic knowledge from
the geometry of the environment with respect to relations
between objects, robots and humans. It also takes into
account the different perspective that each agent has on
the environment. SPARK embeds a modality-independent
geometric model of the environment that serves both as basis
for the fusion of the perception modalities and as bridge with
the symbolic layer [10]. This geometric model is built from
3D CAD models of the objects, furniture and robots, and
full body, rigged models of humans. It is updated at run-time
by the robot’s sensors. Likewise, UNDERWORLDS embeds a
grounded amodal model of the environment, updated online
from the robot’s sensors (sensor fusion).

However, SPARK is a monolithic module that does not
support sharing its internal 3D model with other external
components. In contrast, UNDERWORLDS focuses on offering
a shared and distributed representation of the environment
within the robot’s software architecture. This also distin-
guishes UNDERWORLDS from complex cognitive toolkits like
KnowRob (as found in OpenEASE [11]). While these tools
maintain a spatio-temporal model of the world, this model is
internal and not meant to be made widely accessible to other
external processes. UNDERWORLDS focuses instead on re-
usability and sharing of distributed spatio-temporal models.
As such, UNDERWORLDS can be seen as a middleware for
spatio-temporal world models and, contrary to KnowRob,
it does not provide any intrinsic high-level processing or
reasoning capability. Such reasoning skills are implemented
in loosely-coupled clients (see Section III hereafter).

Work on distributed scene graphs [12] has been previously
applied to robotics to provide a shared 3D representation
of the robot’s environment (for instance, the Robot Scene
Graph [13] or the Deep State Representation proposed
in [14]). UNDERWORLDS offers a similar distribution mech-
anism for 3D scene graphs and extends it to temporal repre-
sentations. Besides, UNDERWORLDS further extends this line
of work by providing the ability to create, manipulate and
share multiple alternative worlds. As an example, these could
correspond to filtered or hypothetical views on the initial,
perceived model of the environment.

B. Representing Alternative States of the World

The components which make use of spatial and temporal
models of the environment are usually found in the inter-
mediate layers of robotic architectures, between the low-
level perceptual layers, and the high-level decisional layers.
They include modules like geometric reasoners (that compute



spatial and topological relations between objects), motion
planners or action recognition modules.

These components exhibit different needs in terms of
representation, like different nominal spatial and/or tempo-
ral resolutions. For instance, a 3D motion planner would
typically use coarse 3D models of surrounding objects to
lower the computational load while planning, while a module
assessing the visibility of objects might need high-resolution
models for accurate 3D visibility testing. This requirement
of multiple task-specific representations has been framed as
the need for deep representations by Beetz [15].

Traditional robotic middlewares, like ROS, are not par-
ticularly well suited to deal with these different needs:
full geometric data can be represented, but is not first-
class citizen: a basic task like displaying a 3D mesh at an
arbitrary position is not particularly easy to perform with
ROS, requiring the combination of static Collada meshes,
a URDF kinematic description, TF broadcasters, and a 3D
visualisation tool like RViz. Critically, simultaneously repre-
senting and reasoning on alternative states of the environment
is not directly feasible.

Representing alternative states is however often highly
desirable. For instance, software components manipulating
environment models typically perform better if the models
are physically consistent. However, low-level perception in-
accuracies often introduce hard-to-avoid physical inconsis-
tencies (like detected objects floating in the air, or wrongly
inset into other objects). Therefore, a post-process stage
(for instance, using a physics simulation engine) is needed
to move the objects seen by the robot into physically-
correct positions. Implemented with a classical approach
(for instance, using ROS TF frames), we would repre-
sent an object book with two frames: the original frame
(e.g.,book frame raw) and a second one computed by the
physics engine (e.g.,book frame corrected). Such an
approach leads to the robot’s 3D model being cluttered with
multiple frames and does not scale well.

Another example pertains to geometric task planning:
a geometric task planner typically needs to reason over
hypothetical future states of the environment (“What happens
if I move this glass onto that pile of books?”). The planner
generates many possible future states, which in turn might
require further processing (for instance, running a physics
simulation). Such a tool would benefit a flexible representa-
tion system, where models are derived from each other, with
partial modifications and different timescales.

A third example relates to human-robot interaction sce-
narios where perspective taking is important (a prototypical
example being the game ‘I spy with my little eye’, as
implemented in [16]). Perspective taking is a cognitive skill
that relies on the ability for an agent to take someone else’s
point of view to estimate what they see from their perspec-
tives. Perspective taking has previously been implemented
in robotics by temporarily placing virtual cameras at eye
locations for each of the humans tracked by the robot [17].
While acceptable for simple cases, such an approach does
not maintain truly independent spatio-temporal models of

the environment for each agent, and in particular, it does not
permit the representation of proper false-belief situations. On
the contrary, separate, independent world models as imple-
mented by UNDERWORLDS effectively support such a skill,
which is an important precursor to research and implement
human’s mind modelling (i.e., a theory of mind) [18].

Lastly, geometric pre-supposition accommodation makes
another interesting case for alternative worlds representation.
Pre-supposition accommodation originally comes from lin-
guistics, where it describes the mechanism by which context
is adjusted [...] to accept [...] a sentence that imposes certain
requirements on the context in which it is processed [19]. In
the context of spatio-temporal representations, we call pre-
supposition accommodation the ability of an agent to adjust
its model so that it matches some contextual constraint.
For instance, if A tells B to “catch the red balloon behind
you”, B might create a representation of an imaginary red
balloon, placed behind her, even without actually observing
the balloon: B accommodates the pre-supposition of a red
balloon being present behind herself. Endowing robots with
this capability has been touched upon by Mavridis et al.
within their multi-modal Grounded Situation Model [2].
However, to the best of our knowledge, a general framework
which would enable robots to accommodate spatial and
temporal pre-suppositions by deriving imaginary worlds from
existing ones has not been proposed so far.

UNDERWORLDS addresses this need and the main con-
tribution of this work is a generic approach to represent
and share multiple parallel representations of the world.
UNDERWORLDS does so by allowing clients to clone existing
worlds, modify them, and re-share them, without the cost of
duplicating geometric data (as explained in section II). By
organising clients in a network (Figure 1), worlds can be
made dependent on each other, resulting in a loosely-coupled
modular approach to spatio-temporal world representation
that we call cascading situation assessment.

II. DESIGN AND ARCHITECTURE

A. Software architecture

Figure 1 depicts a typical UNDERWORLDS topology: a
graph (that happens to be an acyclic graph on Figure 1, but
does not have to be in the general case) of worlds, with
clients connecting the worlds to each others.

1) Clients: Software components implementing accessing
UNDERWORLDS worlds are called clients. Clients can both
read and write onto the worlds they are connected to,
and automatically see updates broadcast by other clients
connected to the same world. To ensure data consistency,
worlds can have many simultaneous readers, but only one
writer at a given time.

UNDERWORLDS provides several standard clients (like a
3D visualisation tool or a physics engine simulator). Clients
are however typically written by the end users, depending
on the needs of one’s specific architecture.

2) Worlds: Worlds are effectively distributed data struc-
tures composed of a scene graph representing the 3D ge-
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Fig. 1. Schema of a possible UNDERWORLDS network: eight clients (user-
written & architecture specific; in blue) are sharing environment models
through four independent worlds (made from joint spatial and temporal
models). This architecture enables successive and modular refinement of
the models (cascading situation assessment), effectively adapted to each
client’s needs.

ometry of the environment, and a timeline storing temporal
events.

While each world is technically independent from all the
others, dependencies (and therefore, coupling) arise between
worlds from the clients’ connections. For instance, filters
effectively create a dependency between worlds. On Fig-
ure 1, the Physics-based position correction client creates a
dependency between the world base (which represents here
the result of raw sensor fusion) and the world corrected
which would be a physically-consistent copy of base. As a
result, an UNDERWORLDS network can also be seen as a de-
pendency graph between worlds (where cyclic dependencies
are permissible).

This architecture enables what we call cascading situation
assessment: independent software components (the clients)
build, refine and share successive models of the environment
by a combination of filtering/transformations steps and model
branching. A change performed by one client (for instance, a
face tracker updates the pose of the human head) may thereby

cascade to each of the downstream, dependent worlds.
3) Scenes: Worlds contain both a geometric model and

a temporal model. The geometric model is represented as
a scene graph. The scene graph has a unique root node, to
which a tree of other nodes is parented.

Nodes in an UNDERWORLDS scene graph have three pos-
sible types: objects that represent concrete physical objects
(typically with one or several associated 3D meshes); entities
that represent abstract entities like reference frames or groups
of objects; perspectives that represent viewpoints of the
scene (like cameras or human gaze).

Every node has a unique ID, a parent, a 3D transformation
relative to the parent and an optional name. Object nodes
optionally store as well pointers to their associated meshes.
Importantly, mesh data (or other geometric datasets like
point clouds) are not stored within the nodes themselves.
UNDERWORLDS represents geometric data as immutable
data, identified by their hash value (preventing de facto data
duplication). Nodes only store the hash corresponding to the
desired geometric data, and the actual data is pulled from
the server by the clients whenever they actually need it (for
rendering for instance).

4) Timelines: Complementing the spatial representation
encapsulated in the scene graph, each world also stores the
world’s timeline. This data structure is shared and synchro-
nised amongst the clients in the same way as the scene
graph. Clients can record and query both events (duration-
less states) and situations in the timeline, i.e., states with a
start time and a (possibly open-ended) end time.

B. Distributed spatio-temporal models

UNDERWORLDS is not a monolithic piece of software.
Instead, it stands for both a network of interconnected
clients which manipulate spatial and temporal models of the
robot environment (for instance, a motion planner, a object
detection module, a human skeleton tracker, etc.), and for
a client library that makes it possible to interface existing
software components with the network.

Critically, the network is essentially hidden to the client:
from the user perspective, the environment model is manip-
ulated as a local data structure (see Listing 1). Modifications
to the model are asynchronously synchronised with a central
server (the underworlded daemon) and broadcast to every
other client connected to the same world.

As previously mentioned, worlds are composite data struc-
tures comprised of a scene graph and a timeline. These
data structures are synchronised using Google’s gRPC mes-
sage passing framework2, ensuring high throughput, relia-
bility and cross-platform/cross-language support. The UN-
DERWORLDS API is specifically discussed hereafter, in sec-
tion III-A.

UNDERWORLDS is meant to broadcast complex environ-
ment representations (typically including large geometric
datasets, like meshes) in real-time. UNDERWORLDS itself
does not perform many CPU intensive tasks (CPU intensive

2http://www.grpc.io/



processing tasks – sensor fusion, physics simulation, etc.–
are performed by the clients themselves) and as such, the
performance bottleneck is essentially the network’s data
throughput. In that regard, one of the simple yet critical
optimisations performed by UNDERWORLDS is automatic
caching of mesh data. Mesh data are not transmitted when
nodes are updated; only a hash value of the mesh data. The
client can then request the full data whenever it is actually
needed.

C. Time and space complexity analysis

UNDERWORLDS is fundamentally about distributing two
datastructures: a scene graph (with nodes representing spatial
entities) and a timeline (where events are stored as a flat list).
Typical time and space complexities arise from these datas-
tructures. In typical usage scenarios (where the number of
nodes or events remain under a few hundred relatively small),
the computational load to manipulate these datastructures
is however dominated by the actual processings performed
by the clients with the data. In the current implementation,
scene graphs and timelines are stored in-memory. Were
they required, serialization and persistent storage are not
anticipated to be difficult to implement.

More interesting is the time complexity of distributing
changes across an UNDERWORLDS network. With n the
number of worlds and m the number of clients in an
UNDERWORLDS network, the worst-case (when every world
is a parameter of every client) time complexity of creating
or updating a node and propagating the change across the
network is O(n × m) (this effectively corresponds to the
UNDERWORLDS server performing n×m requests to notify
clients of the update). The space complexity is the same (as
clients own a full copy of the worlds they monitor), except
for mesh data whose space and time complexities are O(1)
(only the server stores the mesh data).

In the common case of one client performing a full update
of a single world (with p nodes) at each time step, the
complexity of propagating these changes across the network
would be O(p×m). Figure 2 shows measured propagation
time for one change across up to 20 cascading worlds.

III. API & CLIENTS

A. API

As mentioned, UNDERWORLDS uses Google’s gRPC as
message passing protocol. The protocol is explicitly defined
(using the protocol buffers3 interface definition language),
and bindings to various languages and platforms can be
automatically generated from the protocol definition file (as
of Jan 2018, gRPC can generate bindings for C, C++, C#,
Node.js, PHP, Ruby, Python, Go and Java, on Windows, Mac,
Linux and Android). The cross-platform/cross-language sup-
port of gRPC is especially welcome in the academic context,
as it offers ease and flexibility to plug a variety of pre-
existing components into an UNDERWORLDS network.

3https://developers.google.com/protocol-buffers/

Fig. 2. Propagation times of one change (node creation) across n worlds.
The test is performed by running n−1 pass-through filters that monitor one
world and replicate any changes into the next world. Durations measured
over 20 runs, performed on a 8 core machine.

However, the gRPC message passing layer is low-level
with respect to the typical use of UNDERWORLDS (manip-
ulation of asynchronous, distributed spatio-temporal models
of the robot environment). In particular, the asynchronous
fetching (and conversely, remote updating) of nodes and
time-related objects is typically hidden from the user, and
managed instead by the UNDERWORLDS client library.

UNDERWORLDS currently offers such a high-level client
library for Python only (a C++ library is under development).
Listing 1 gives a complete example of an UNDERWORLDS
client performing simple filtering: the client continuously
listens for changes in an input world, removes some objects
(in this case, items whose volume is below a threshold), and
forwards all other changes to an output world, effectively
making the output world a copy of the input world with all
smaller objects removed.

1 import underworlds
2
3 # by default, connect to the server on localhost
4 with underworlds.Context("small_object_filter") as ctx:
5
6 in_world = ctx.worlds["world1"]
7 out_world = ctx.worlds["world2"]
8
9 while True:

10
11 in_world.scene.waitforchanges()
12
13 for node in in_world.scene.nodes:
14 if node.volume > THRESHOLD:
15 out_world.scene.nodes.update(node)

Listing 1: Example of a simple yet complete UNDERWORLDS
filter, written in Python: the client connects to the UNDER-
WORLDS network, blocks until the world world1 changes,
and only propagate nodes that match the condition to the
world world2.

B. Standard Clients

The UNDERWORLDS package provides several standard
clients to perform common tasks on UNDERWORLDS net-
works.



Fig. 3. Screenshot of the uwds view 3D visualisation and manipulation
client. In this particular example, the 3D meshes have been pre-loaded using
uwds load. Their positions are then updated at run-time using the robot’s
sensors and proprioception (joint state).

1) 3D Visualisation and manipulation: Interestingly,
while UNDERWORLDS deals with 3D geometries and scenes,
it does represent 3D entities purely as data structures; no
visual representation is involved (and as such, the UNDER-
WORLDS server and core libraries do not depend on any
graphics library like OpenGL). However, for all practical
purposes, the ability to visualise the content of a scene is
desirable. UNDERWORLDS provides a standard client, uwds
view, that performs real-time 3D rendering of worlds, using
OpenGL (Figure 3).

This tool also supports basic object manipulations (trans-
lations, rotations), that are broadcast to the other UNDER-
WORLDS clients connected to the same world.

Assets loading: Often, objects manipulated by the robot
have known meshes with corresponding CAD models that
can be conveniently pre-loaded. In these cases, UNDER-
WORLDS provides a tool, uwds load, that loads a mesh
into a UNDERWORLDS network (and optionally, creates a
node) from a large range of 3D formats (including Collada,
FBX, OBJ, Blender)4.

2) Physics simulation: When perception modules provide
objects localisation, the physical consistency of the locations
is not typically enforced. For instance, objects that are
supposed to lay on a table might be slightly above (or inset
into) the table; or when dropping an item into a box, the
robot can not update the location of the item anymore as it
becomes occluded.

These issues can be alleviated by relying on a physics
simulation to stabilise the position of objects: natural physics
(including gravity) are simulated for a short amount of time
(up to one second) ahead of time, and the objects’ positions
are updated accordingly. To this end, UNDERWORLDS pro-

4The underlying import capability is provided by the ASSIMP library.
http://assimp.sourceforge.net/

Fig. 4. Screenshot of the network topology introspection tool, with
arbitrary examples of worlds (represented as boxes) and clients (ellipses).
CLients are connected to the worlds either as readers or providers of data.
UNDERWORLDS introspection features make it possible to also visualise
when clients were last active.

vide a standard filter, the physics filter, based on the
Bullet RT physics simulation and the pybullet5 library.
It generates an output world that mirrors its input world
after a specific duration of physics simulation, the physical
properties of objects (including mass, friction, inertia) being
provided from standard URDF descriptions.

3) Introspection and debugging: UNDERWORLDS pro-
vides a range of tools to inspect a running network. Graphical
tools (uwds explorer and uwds timeline, see Fig-
ure 4) provide a user-friendly overview of the system’s graph
with the connections between the clients and the worlds, as
well as their activity.

Specialised command-line tools are also available to list
the worlds and their content (uwds ls) at run-time, or
to display detailed information for a specific node (uwds
show).

4) Interface with ROS: UNDERWORLDS is meant to inte-
grate as easily as possible into existing robot architectures,
and interfaces transparently with ROS’ TF frame system
through the uwds tf client.

The uwds tf client continuously monitors the ROS TF
tree, and mirrors TF frames as nodes in the desired UN-
DERWORLDS world. A node is first created if none matches
a given TF frame, and its transformation is subsequently
updated, mirroring the TF frame. A regular expression can
be provided to only mirror a subset of the TF tree into
UNDERWORLDS.

Currently, the process is unidirectional: the uwds tf
client performs TF to UNDERWORLDS updates, but not the
reverse.

C. Spatial Reasoning and Perspective Taking

Spatial reasoning [20] is a field in its own right, and has
been used for natural language processing for applications
such as direction recognition [21], [22] or language ground-
ing [23]. Other examples in human-robot interaction include

5https://pybullet.org/



Ros et al. [17], [16] which has recently been integrated
into a full architecture for autonomous human-robot inter-
action [10].

UNDERWORLDS provides an exemplary client
(spatial relations) to compute both allo-centric
(independent of the viewpoint like isIn or isOn) and
ego-centric (i.e., viewer-dependent, like inFrontOf or
leftOf) spatial relations between objects. Other libraries,
like QSRLib [24], that implement computational models of
Qualitative Spatial Relations, could be trivially combined
with UNDERWORLDS to provide more advanced geometric
analysis. Future developments will also include the results
of the more basic research on spatio-temporal reasoning for
robotics, led by de Leng and Heintz [25].

UNDERWORLDS also implements an efficient algorithm to
assess object visibility from a specific viewpoint (i.e., from
a given perspective node). The algorithm (color picking)
enables fast (single pass) computation of the visibility of
every object in the scene, while providing control regard-
ing how many pixels should be actually visible for the
object to be considered globally visible. The command-
line tool uwds visibility returns the list of visible
objects from the point of view of each camera in a given
world, and UNDERWORLDS also provides the helper class
VisibilityMonitor to programmatically access visibil-
ity information.

When integrated into a filter node, visibility computation
allows easy creation of new worlds representing the esti-
mated perspectives of the different agents.

IV. APPLICATION EXAMPLE: PERSPECTIVE-AWARE
JOINT ACTIONS

UNDERWORLDS is being used within the large European
project MuMMER6 for service robots to compute visibility
and knowledge about objects, places and agents within a mall
environment.

We present here a simplified scenario, yet representative
of situations which are processed in real-time by MuMMER
robots: two humans and a robot are looking at a table and
have to coordinate joint actions (pick and place). One object
on the table (the green box in Figure 5) is only visible to
one human and the robot, but hidden to the second human.
The robot needs to take into account this fact to generate
appropriate and legible joint manipulation actions. Figure 5
illustrates the topology of the UNDERWORLDS network that
we use to this end.

A first client, static env provider, provides the envi-
ronment models and allows to build a first ENV world
where static objects, furnitures and walls are present. Then,
three worlds cascade through three (independent) clients:
robots state monitor augments ENV with the robot state
(using underneath the ROS robot state publisher node)
and broadcast a new world ENV ROBOTS. objects monitor
then recognises and adds the dynamic objects (using
ar track alvar7). humans monitor finally detects and

6http://www.mummer-project.eu
7http://wiki.ros.org/ar_track_alvar
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Fig. 5. Schema of the UNDERWORLDS architecture used in the
MuMMER project. Clients read and generate the worlds ENV →
ENV ROBOT → . . .→ HUMAN* PERSPECTIVE. The last two worlds
HUMAN{1,2} PERSPECTIVE represent the immediate visual perspective
of each of the humans, as well as their past visual perceptions. As such,
they are the visual memories of the humans, that the robot can rely on when
making decisions.

continuously updates the humans poses (using [26]). It
broadcasts a world called BASE that contains as a result the
static environment, the robots, the dynamic objects and the
detected humans.

The world BASE goes through a physics filter client (as
explained in section III-B.2) to obtain the STABLE world
where all elements are present with physically-consistent lo-
cations. This physically-correct world is used by the compu-
tation of spatial relations client to compute spatial relations
such as onTop, isIn or isAbove (see Section III-C).

The world STABLE is also used by a perspectives filter
client to compute the different visual perspectives of each
agent (in our case: human 1, human 2 and the robot itself).



In addition to a 3D rendering of the input world from the
perspective of the agent, it aggregates the history of what
was visible to the agent at a given point in time. As such, it
does not only offer a snapshot of the agent visual perspective
at the current time but also acts as the visual memory of each
agent.

With this network, the robot can easily compute that an
object on the table is only seen by the human 1 and not the
human 2; additionally, if human 1 moves in a position where
the object is not visible anymore to him, the perspective filter
will maintain the knowledge that the human had seen it (and
keep the last position where it has been seen).

UNDERWORLDS makes it possible to implement such
a geometric reasoning pipeline in a fully decoupled way,
and each intermediary world can be easily introspected at
run-time. This example shows how UNDERWORLDS facili-
tates the implementation and debugging of complex spatio-
temporal reasoning pipelines.

We are currently deploying a similar network in the frame-
work of the European project MuMMER where a Pepper
robot handles interactive situations in a large shopping centre
in Finland. One of the situation is a guiding task where
Pepper help people to find their route by pointing them
landmarks and explaining them how to reach a destination.
To be effective, this helping behaviour needs to be aware
of the visual perspective of the human. UNDERWORLDS
facilitates the implementation of such a spatio-temporal rea-
soning pipeline, where perception and high-level reasoning
(including complex, human-aware reasoning) have to be
tightly integrated. Because of the decoupling of each of the
clients in the network, UNDERWORLDS also practically sup-
ports software development spread across multiple partners
in different countries, with different expertise.

V. DISCUSSION AND CONCLUSION

A. Relation to existing robotic middleware

Like traditional robotic middleware, UNDERWORLDS of-
fers a form of distributed computation based on message
passing. However, it distinguishes itself from existing mid-
dlewares (including ROS extensions like DyKnow [27]) in
significant ways. Most importantly, UNDERWORLDS pur-
posefully does not offer any general capability to distribute
computation and data streams amongst independent com-
ponents: it focusses specifically on distributing environment
models, both spatial (geometric models) and temporal (events
and situations). In that sense, UNDERWORLDS really is a
distributed datastructure that addresses the specific needs
of spatio-temporal modelling, including the modelling of
hypothetical, alternative world models, something that tra-
ditional middlewares like ROS do not address adequately.
Second, and as presented above, UNDERWORLDS offers
specific mechanisms for the representation and manipulation
of alternative world models that are not directly achievable
with traditional tools.

While using standard middleware as underlying transport
for UNDERWORLDS would be technically feasible and rel-
atively easy to implement, it does not offer any clear ad-

vantage over lighter and dedicated message passing libraries
like ZeroMQ or gRPC (the later being the one used by
UNDERWORLDS).

B. Future work

As illustrated in section IV, UNDERWORLDS is already
deployed and used on the field. Several features are however
still under development.

1) Representation capabilities: as presented in section II,
the current version of UNDERWORLDS allows to represent
objects, abstract entities like groups and perspectives. Fields
are also part of the UNDERWORLDS design, but are not
yet implemented. Fields are commonly used to represent
continuously-valued spatial entities. Fields might or might
not be spatially bounded. Examples include the working
space of a robot arm (spatially bounded), the field of view
of a camera (spatially bounded), proxemics (potentially un-
bounded). We plan to represent fields in UNDERWORLDS
using the memory-efficient octomaps [28] or NDT-OM
maps [29]. Similarly to geometric data,these datastructures
will not be directly stored with the nodes (nodes will refer to
them through handles), but unlike geometric data, they will
not be treated as immutable datasets by the server, permitting
real-time updates.

Representation of uncertainty: currently node positions
are stored as 4 × 4 transformation matrices, relative to the
node parent. This representation is efficient, and conveniently
matches traditional representation systems (including ROS
TF frames or OpenGL transformations). However, the ex-
plicit management of uncertainties is instrumental to many
robotic applications, and we plan to add full support for
position uncertainties to UNDERWORLDS. We plan to add
this support by adding a pose covariance matrix to the nodes,
and equipping the different UNDERWORLDS helper tools with
corresponding support (like covariance ellipses visualisation
in uwds view).

2) Implementation and Integration: we plan to continue
to improve the integration of UNDERWORLDS into existing
software architectures. A short-term goal is to provide ex-
cellent C++ support, with a high-level, user-friendly C++
client library. This is critical for a broader adoption of
UNDERWORLDS within the robot community. Support for
other languages might follow, depending on demands and
open-source contributions.

C. Conclusion

We have introduced UNDERWORLDS, a novel framework
for shared and composable spatio-temporal representations of
a robot’s world. The key contributions of our approach are:
a composite data structure for environment representation
within a robotic software architecture, made of a scene graph
and a timeline; a mechanism to efficiently and transparently
share this data structure amongst a set of clients (the software
modules of the robot); a cascading architecture permitting the
explicit of representation of alternative states of the world
while maintaining a network of dependencies.



We have additionally presented a concrete instantiation of
a system relying on UNDERWORLDS for its representation
needs, and we have sketched future directions of develop-
ment.

We believe this work can practically support existing
robotic architectures with state-of-the-art spatio-temporal
representation capabilities. We also hope that this line of
research can lead to a better understanding of the represen-
tation needs of modern robotic systems, and participate to
the emergence of a possible common representation platform
for robots, building on previous formalisation efforts like the
RSG-DSL domain specific language [30].
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People are known to change their behavior and decisions in order to conform

to others, even for obviously incorrect facts. Due to recent developments in

artificial intelligence and robotics, robots increasingly are found in human en-

vironments and there they form a novel social presence. It is as yet unclear if

and to what extent these social robots are able to exert similar peer pressure.

This study uses the Asch paradigm which shows how participants conform to

others while performing a visual judgment task. We first replicate the finding

that adults are influenced by their peers, but show that they resist social pres-

sure from a group of small humanoid robots. Next, we repeat the study with 7

to 9-year old children and show that children do conform to the robots. This

raises opportunities as well as concerns for the use of social robots with young

and vulnerable cross-sections of society; while conforming can be beneficial,

the potential for misuse and the potential impact of erroneous performance
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cannot be ignored.

One-sentence summary

Children show increased yielding to social pressure exerted by a group of robots, adults however

resist being influenced by our robots.

Introduction

Social robots represent a new frontier in the personal robotics industry. These robots are

designed to autonomously interact with people across a variety of different application do-

mains in natural and intuitive ways, using the same repertoire of social signals used by hu-

mans (1–3). Current applications include robotic tour guides in museums (4), therapeutic aids

in care homes (5) and early years childcare (6, 7), and teaching aids in primary school class-

rooms (2, 8, 9), with future applications forecast to be far broader (10). With these future ap-

plications, robots will share the same physical and social space as users, which raises questions

regarding safety, and given the social nature of the robots, the psychosocial impact.

It has been shown that people, particularly the younger age groups, easily form strong bonds

with social robots, so much so that it can cause distress when a robot is mistreated or misbe-

haves (6, 11), even when they are crude approximations to real living organisms (12). Con-

versely, interaction with social robots has also been found to elicit and reinforce healthy social

behaviors in children with autism spectrum disorder (13–15) as well as promote and augment

social behavior and bonding between group members in care homes (5). An open question

is whether these social bonds offer robots other affordances such as the ability to exert social

influence (16), and whether people yield to these.

The computers as social actors (CASA) hypothesis (17–19) states that people naturally and

unconsciously treat computers and other forms of media in a manner that is fundamentally
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social, attributing human-like qualities to technology. It has had a notable impact in the fields

of Human-Computer Interaction (HCI) and Human-Robot Interaction (HRI). Assuming that

the CASA hypothesis holds true, it predicts that people, regardless of their age, are sensitive to

(and submit to) social influences exerted by social robots and (crucially) that this is automatic

and involuntary (18). We tested this prediction by replicating the influential paradigm to study

normative social conformity devised by Solomon Asch (20–22).

Computers as social actors

Reeves and Nass concluded from a number of social psychology experiments that “individu-

als’ interactions with computers, television, and new media are fundamentally social and nat-

ural, just like interactions in real life.” (17, p. 5). The CASA hypothesis is part of the Media

Equation hypothesis (17), an overarching theory which additionally implies that people process

experiences mediated by technology in the same way as they process unmediated experiences.

Describing an unconscious and automatic response, the CASA hypothesis seems to apply to

everyone regardless of expertise.

The studies conducted by Reeves and Nass show that people treat technology like people,

using the same social rules, expectations, beliefs and behaviors towards technology as they

would with other people, according them social behaviors (e.g., politeness, reciprocity), at-

tributing human characteristics to them (e.g., gender), reacting to them as they would to human

interaction partners, and so on (18, 19). Nass and colleagues found that when a computer asks

a user to evaluate itself, the user will give more positive feedback than when the user does the

evaluation on a different computer (23). They also found that people showed gender stereotypes

toward computers with male and female voice (24). Rules of attraction seem to hold as well.

Users were shown to like electronic partners better when they have the same personality as the

user (17).
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Peer-driven normative conformity and the Asch paradigm

Conformity describes the behavior of an individual who is complying with group norms. In

the field of social psychology, two main varieties of conformity are considered: informational

social conformity and normative social conformity. The former depicts the influence of others’

responses as a source of information on one’s own judgment when a task is ambiguous and the

correct answer not straightforward. The latter describes an influence of others on judgments in

a task with unambiguous stimuli where the correct answers are clear. Participants are lead to

give incorrect responses complying publicly with an erroneous majority in order to be accepted.

The well-established and most influential paradigm to study normative social influence was

devised by Solomon Asch in 1951 (20). In his classic conformity experiments, individual partic-

ipants were unknowingly grouped with multiple confederates and instructed to judge the length

of a target line compared to three comparison lines, only one of which has the same length as

the target line (Fig. 1D). For each such comparison, all the participants verbally reported one

after the other which comparison line they perceived to match the target line, with the subject

verbalizing their answer before the last of the confederates. On two-thirds of the trials the con-

federates unanimously announced an incorrect judgment (critical trials, n= 12) while providing

the correct response on the remaining trials (neutral trials, n = 6). The participants followed the

group response, complying publicly and submitting to group pressure in 32% of trials (in 68%

of critical trials they responded correctly; one fourth of the participants were completely in-

dependent and resisted the group pressure in all critical trials) (20). Asch conducted his first

experiment with male college students and a majority group of varying size.

Many replications and alterations of this standard experiment have been conducted to iden-

tify factors that influence conformity. Size, immediacy, unanimity, and personal importance of

the group, the ambiguity and public announcement of responses, gender, and age are among

these factors. Whereas conformity seems to increase with a larger majority, it changes only lit-
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tle from group sizes of four (20, 22). Majority groups that are personally more important to the

participant (e.g. peers, in-group vs. out-group members) (25,26) exert a greater social pressure.

If there is only one dissenter in the majority group who announces the correct or even only a

different answer from the group, conformity decreases drastically (21). It increases as the cor-

rect judgment becomes more ambiguous (e.g., by making the line lengths more similar) (22).

Participants that write down their judgments privately tend to resist group pressure (22). Fe-

male participants were found to endorse the group response slightly more often than male par-

ticipants (27, 28). Age has been reported to reduce susceptibility to social influence (29, 30),

although findings seem to be conflicting (31, 32).

Results

We have tested whether adults (Experiment 1) and children (Experiment 2) exhibit normative

social conformity (16) when conducting a visual discrimination task in the presence of three

humanoid robots (Fig. 1, A–C). We replicated the Asch paradigm to study normative social

conformity. The original group setup formed the basis of our experimental condition. As a

control condition, participants were asked to perform the same task while alone. Decreased

accuracy on the critical trials in the experimental condition compared to the control condition

is evidence for social conformity.

FIGURE 1 ABOUT HERE

Adults

In Experiment 1 we tested the hypothesis that humanoid robots exert normative social pressure

on adults. Participants (N = 60, 34 female, age: range = 18 – 69 years, M = 30.9 years,

SD = 14.2) were randomly assigned to one of three conditions: a control condition (n = 20), a

‘human peer’ condition (n = 20) with three human confederates, and a ‘robot peer’ condition
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(n = 20) in which three humanoid robots replaced the human confederates.

In all conditions, participants, including the confederates in the human-peer condition and

robots in the robot-peer condition, were asked to verbally report which line matched the refer-

ence line. The experimenter decided on the response order.

On each trial we measured whether the real participant’s verbal response was correct. The

experiment was a 3 (condition: control vs. human peer vs. robot peer, between subjects) × 2

(trial type: critical vs. neutral, within subjects) mixed design. If people are influenced by social

peers, line judgment accuracy in the critical (but not the neutral) trials should be lower for the

peer conditions compared to the control condition.

Analysis of Logistic Regression model

There was a significant main effect of condition (χ2(2) = 11.8, P = .003), suggesting that peers

influenced line judgment accuracy. The condition main effect was qualified by an interaction

with trial type, χ2(2) = 11.9, P = .003, indicating that the effect of peers differed for the critical

and neutral trials. Follow-up logistic regressions for the critical and neutral trials separately

indicated that the presence of human peers significantly reduced judgment accuracy on the

critical trials, log-odds = -1.64, SE = 0.30, z =−5.46, P < .00001. No such effect was present

for the robot peers, log-odds = 0.26, SE = 0.37, z = 0.71, P = .48. For the neutral trials,

there were no significant differences between the conditions: control-human, log-odds = -0.30,

SE = 0.31, z =−0.97, P = .33; control-robot, log-odds = -0.03, SE = 0.32, z =−0.09, P = .93.

No other effects approached significance, P > .91. Accuracy patterns can be found in Fig. 2A.

We also found that in the human-peer condition, 83% of the incorrect responses were the same

as the confederate response (χ2(1)= 15.114, P< .001), indicating that participants were indeed

conforming to the group response (Fig. 3).

This replicates the classical findings of Asch (20–22) and confirms recent studies (33). Im-

7



portantly, the drop in judgment accuracy with human peers was present exclusively for the

critical trials, suggesting that the performance drop is not due to domain general anxiety driven

by the presence of peers.

FIGURE 2 ABOUT HERE

Children

Adults do not appear to normatively conform to the humanoid robots used in the study, pro-

viding a challenge to the CASA hypothesis. However, since children are known to be more

susceptible to social influence (29, 30, 34, 35), we evaluate this finding with young children in

Experiment 2. Given the practical challenges of experiments using the original Asch paradigm

involving child confederates, we focused exclusively on the influence of humanoid robot peers

(cf. Section Outlook).

Participants (N = 43, 22 female, age: range = 7 – 9 years, M = 8.5 years, SD = 0.5) were

randomly assigned to either the control (n = 21) or robot-peer (n = 22) condition. The methods

and materials were identical to those from Experiment 1, with the exception that children were

tested at school, rather than in a university lab.

We measured children’s performance at the task when alone and when in the presence of

robots using a 2 (condition: control vs. robot peer, between subjects)× 2 (trial type: critical vs.

neutral, within subjects) experimental setup.

Analysis of Logistic Regression model

The analysis revealed that children are significantly influenced by the presence of robot peers

(significant interaction between the two factors, condition and trial type, χ2(1) = 11.1, P =

.0009). An analysis of the critical and neutral trials separately indicated that line judgment

accuracy was lower in the robot-peer condition than in the control condition for critical trials
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(log-odds = -0.37, SE = 0.12, z =−3.17, P = .002) but not the neutral trials (log-odds = 0.21,

SE = 0.15, z= 1.4, P= .16). No other effects approached significance (all P′s> .30). Accuracy

patterns can be found in Fig. 2B and Table S1. We also found that in the robot-peer condition,

74% of the incorrect responses during the critical trials were identical to the responses provided

by the robots (χ2(1) = 14.785, P < .001), again suggesting that conformity to the majority was

taking place (Fig. 3).

FIGURE 3 ABOUT HERE

Discussion

It appears that adults in our study do not conform to the group of robots, confirming recent

studies (33). Brandstetter et al. used four Nao humanoid robots to investigate informational

and normative social influence in adults. The robots in their experiment were individualized

with outfits and played pre-recorded human voices in order to focus on the appearance of the

robots. Their setup also differed to ours in the length, presentation and number of stimuli. In

33 trials, Brandstetter et al. projected the lines of length up to 110cm onto a projection area and

found that adult participants were influenced by their peers but not by the robots (neither with

ambiguous nor unambiguous stimuli).

Children in our study on the other hand seem to conform to the robots. An alternative ex-

planation for the findings is that children were not influenced or conforming, but rather that the

relative novelty of the situation led to an overall decrease in judgment accuracy. This criticism

holds no ground, as there was no accuracy decrease for the neutral trials. In fact, if anything,

children performed slightly better for such trials (although this finding was not statistically sig-

nificant), again indicating that they followed the suggestions made by the robots.

There is also the possibility that children were conforming to the robots’ responses due to

the authority invested in the robots by the adult experimenter. Even so, this still suggests that
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the robots exert peer pressure and does not invalidate the observations and conclusions. Robots

are likely to be owned by someone, people or organizations, and might as such be proxies for

indirect social peer pressure.

The results of these experiments have both theoretical and practical implications. From a

theoretical perspective, our results counter the notion that is central to the CASA hypothesis

– that all people instinctively and automatically treat computer-based media as social (17, 18).

While in certain tasks, adults do attribute human-like qualities to machines (17), they are capa-

ble of inhibiting the effects of normative influence, something which is not observed for human

peers. We see this as a refinement of the CASA hypothesis, which impacts on the design of

human-machine interaction in general.

Recent studies of online social networks have revealed that user behavior and decision mak-

ing can be altered and manipulated through the selection of presented information (36, 37).

Social robots are yet another social medium through which information may be transferred and

communicated, and if trusted they can assert informational influence (38). The fact that robots

have the power to induce conformity, even just in children, is relevant here and we believe our

results are both timely and critical. In this light, care must be taken when designing the appli-

cations and artificial intelligence of these physically embodied machines, particularly as little is

known about the long-term impact that exposure to social robots can have on the development

of children and vulnerable sections of society (39). More specifically, problems could originate

not only from intentional programming of malicious behavior (e.g. robots that have been de-

signed to deceive) but also from the unintentional presence of biases in artificial systems (40) or

the misinterpretation of autonomously gathered data by a learning system itself. For example,

if robots recommend products, services or preferences, will compliance and thus convergence

be higher than with more traditional advertising methods?

From a practical perspective, given that children do conform to erroneous suggestions made
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by social robots, concerns are raised when using social robots with young people; while con-

forming can be beneficial (41, 42) (for example in health care or education), the potential for

misuse or erroneous use cannot be ignored. This is a salient issue as there is a growing interest

from the private/industrial sector in robots that interact with the general public and in particular

with children. As this industrial market grows, so do the number of children potentially exposed

to the issues outlined here.

A future in which autonomous social robots are used as aids for education professionals

or child therapists is not distant. In these applications the robot is in a position in which the

information provided can significantly impact the individuals they interact with. A discussion

is required on whether protective measures, such as a regulatory framework, should be in place

that minimize the risk to children during social child-robot interaction and what form they might

take as not to adversely impact the promising development of the field.

Outlook

We conducted our experiment with children aged between seven and nine years. To create a

more complete picture of conformity to robots, studies with different age groups, including

older ages, need to be conducted such that the age ranges in which children and adults conform

to robots can be determined.

Conducting the Asch experiment with children is difficult, as all but one of the children need

to be confederates and convincingly act as fellow participants. Most studies on conformity with

children have thus used a different paradigm to study conformity or used special optical setups

giving the participant a different visual experience without the participant realizing (35, 43).

A human-peer condition with children would have allowed a direct comparison between the

results in the human peer condition and in the robot peer condition. The lack thereof, however,

is a limitation of the current study.
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A review of 133 Asch replication studies shows that conformity in adults has decreased since

the 1950s (28). In addition, there is a correlation with a society’s individualistic or collectivist

nature. Compliance on the Asch paradigm is higher in societies with high collectivism, and it

would be interesting to see if children and adults in collectivist cultures are more likely to yield

to robots than individuals from individualistic cultures.

The sample sizes in our study are limited. Although sample sizes reflect commonly used

sample sizes in the field, future studies could have more statistical power through using larger

samples. With the current study, we can not study all possible factors impacting on conformity

to robots. For instance we do not know how the robots are perceived by the participants or how

participants judge the visual acuity of the robots. Allen argued that a greater similarity between

the participant and the confederates will increase the likelihood of the participant perceiving the

confederates as an appropriate reference group and hence will increase the level of conformity

(44). Thus, adults might not form social bonds with small humanoid robots, but only with

larger adult-size robots. Children on the other hand might not want to disagree with the robots

for reasons that are as yet unexplored. All properties of design and behavior of the robots might

potentially be factors that produce an influence on social conformity which need to be explored

in future research.

Materials and Methods

We followed the experimental procedure as outlined by Asch (20–22) and used the same stim-

ulus specification where possible (22). The adult experiments took place within a university

lab setting while the experiments with the children were conducted at a local primary school in

an empty classroom. Rather than presenting the stimuli on card, a TV screen was used. In the

robot-peer condition software remotely orchestrated the response behavior of the three robots

via a wireless network. The confederates, both human and robot, all followed the same pat-
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tern of responses. All responses from participants and confederates were reported vocally and

recorded by the experimenter using pen and paper. Participants (and confederates) were seated

around a table, facing the TV screen (Fig. 1, B and C). For each of the 18 trials (12 critical, 6

neutral) the experimenter recorded the responses in a clockwise direction, beginning with the

confederates and finishing with the participant. This order was constant for the human-peer and

robot-peer conditions as was the seating plan. In the control condition no confederates were

present.

Participants

60 adults took part in the experiment: 28 males (Mage = 30.32 years, SD = 13.76) and 34

females (Mage = 31.48, SD = 14.61). Participants were recruited via the online subject pool

maintained by the School of Psychology at the University of Plymouth and were paid £4. They

were randomly assigned to one of three conditions (control, robot peer, human peer), none

of the participants were excluded (exclusion criterion: not using required vision correction).

As participants were recruited through volunteer sampling, based on our one-way balanced

between subjects design with three groups, the sample had a power level of .78 to detect a

medium to large effect ( f = 0.4) assuming an alpha level of .05.

43 children took part: 21 boys (Mage = 8.47 years, SD = 0.58) and 22 girls (Mage = 8.50,

SD = 0.50). All were pupils at a local primary school in the Plymouth (UK) area and consent

was obtained from both the school and parents. Children were pooled from one of two classes:

Year 3 (aged 7 to 8, n = 21) and Year 4 (aged 8 to 9, n = 22). We have selected this age group as

it is well-studied with respect to conformity, cf. (45), and younger children might not understand

the task, as suggested by (29). Children were randomly assigned to either the control or robot-

peer condition. Children would be excluded if they were not using required vision correction

or if they felt uncomfortable. No children were excluded. The experimental sessions took place
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over the course of a single school day and were located within a spare classroom within the

school. No reward was provided, however at the end of the day a small presentation about

robots was given by the experimenter. A power analysis showed that we had > .71 power to

detect a medium to large effect (d = .8) assuming an alpha level of .05.

Materials

The length and order of the target and comparison lines were identical to the specifications

outlined in original Asch studies (20,22), see Table S2. A 32 inch LCD TV was used to display

the stimuli as opposed to physical cards with printed lines. A laptop was connected to the

screen running custom software to display the stimuli. In the human-peer condition the laptop’s

screen, only visible to the first confederate, also displayed the confederate answer allowing the

first confederate to read this while looking at the TV screen. In the robot-peer condition this

software was also used to orchestrate the behavior of the robots over a WiFi network.

The use of the TV screen introduced a deviation from the original Asch setup. We were

unable to separate the target line and the matching comparison line by 40 inches (101.6 cm) as

the TV screen was not wide enough for this. Instead we held this distance between the target

line and the left hand comparison line constant at 40 cm. The horizontal distance between the

edge of the screen and target line/right hand comparison line was 8.3 cm. All other dimensions

were in accordance with the original experiments (22), see also Fig. S1 and Table S3. A smaller

separation of target line and comparison lines makes the stimuli less ambiguous as it permits

an easier comparison of line lengths, which should have no implications in studying normative

social influence.

Three SoftBank Robotics Nao humanoid robots (Fig. 1A) were used as the confederates in

the robot-peer condition. The Nao is a small 25 degree-of-freedom 58cm tall humanoid robot

designed primarily for human-robot interaction. Each robot was autonomous, running custom
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software that allowed it to be controlled by the software running on the experimenter’s laptop.

This software performed scripted behaviors that were run each time a new trial was displayed.

The robots were seated at the table. In Experiment 1 they were seated on plastic boxes to

elevate their position relative to the adult subjects (see Fig. 1C) to obtain approximately the

same difference in face height between participant and robots across experiments. Only power

cables were connected to the robots. The robots’ head motor joint positions required to gaze at

the TV screen, experimenter and participant were preprogrammed.

Procedure
Experiment 1

Subjects were randomly assigned to one of the three following conditions. In the ‘control’

condition the participants completed the task on their own, providing a baseline measure of

performance. In the ‘human-peer’ condition the participants completed the task with three

human confederates, serving as a replication of the original Asch experiments. In the ‘robot-

peer’ condition the human confederates were replaced by robots.

Upon arrival in the experiment room, the confederates sat down in their agreed positions en-

suring that the participant sat in the last seat (Fig. 1C). Participants (including the confederates)

were briefed and consent was received. In the robot-peer condition, the briefing and obtaining

of consent took place prior to entering the room. The robot’s were already seated around the

table when the participant entered.

Each participant was presented with an information sheet and a consent form. Participants

were informed on the information sheet that they needed to perform a simple visual discrimina-

tion task in which they needed to indicate which of three comparison lines matched the length

of a standard line in 18 such comparisons. They were also informed that all answers would be

recorded on a prepared form.
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An example visual stimulus was then used to provide a tangible instruction of the task.

Participants were then offered the opportunity to ask for clarifications. Except in the control

conditions, the experimenter defined the order of responses, clock-wise beginning with the first

confederate. Following this the experiment began.

In the control condition participants performed the task alone, with only the experimenter

in the room. In the human-peer condition the confederates provided their responses first. The

first confederate was located opposite the participant, allowing the first confederate to see the

laptop screen displaying the confederate answer while gazing toward the TV screen. All the

other confederates followed her response. All robot confederates provided their response first

as well.

Debriefing took place immediately after the experiment finished. Participants in the control

condition were informed that they were in a control condition for the experiment. The nature of

the experiment was also explained to them. Participants in the human- and robot-peer conditions

were informed of the role of the confederates and what the aim of the experiment was: the

measuring of normative social conformity. They also were given a questionnaire to collect

demographic details, data on familiarity with and views of robots, and a personality test. All

participants were requested to maintain confidentiality to avoid biasing future experiments.

Experiment 2

Experiment 2 mainly followed the same experimental procedure as described for Experiment

1. In Experiment 2, child subjects were only subject to the control and robot-peer conditions

to which they were randomly assigned. Children were briefed while sitting at the table in the

experiment room. Parental consent was obtained in advance. The children were not given any

information sheet or questionnaire. The experimenter informed them orally that they needed

to perform an “eye test” in which they needed to indicate which of three comparison lines
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matched the length of a standard line in 18 such comparisons. They were also informed that

all answers would be recorded on a prepared form. From here on, the course of the experiment

was exactly the same as for the robot peer and control condition of Experiment 1, including the

practice trial, the opportunity to ask for clarifications, the order of responses, and debriefing in

the control condition. In the robot-peer condition, children were told during debriefing that the

robots were trying to “trick” them and see whether they would agree with the robots. Children

were also asked not to tell others about the experiment to avoid biasing future experiments.

Presentation of the robots

In the conditions where robots acted as confederates, the robots did not react to the participant

when they entered and sat down. The experimenter outlined the instructions for the visual

discrimination task and provided an example of the visual stimuli. When the lines were shown

on screen the robots all gazed toward the experimenter as if listening to the instructions. The

presentation of the real experimental trials commenced after this. From this stage onward,

the scripted behavior of the robots was initiated each time the experimenter used the laptop to

display the next set of comparison lines on the TV screen: all robots were instructed to gaze

towards the screen, each with a different motor speed randomly selected uniformly from a given

range. The robots paused for a random period between 0.75 and 1.5 seconds and then verbalised

the desired response via an on-board text-to-speech engine. After giving a response, a robot

occasionally looked at the participant for 1.5 seconds and then looked back at the screen. The

purpose of this gaze behavior is to apply a certain amount of social pressure on the participants.

A flow diagram of the scripted robot behaviour during the experimental trials can be found in

Fig. S2.

A large part of this experiment depended on the manner in which the confederates were

presented to the participant, particularly in the case of the robots. As such, care was taken
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to present and treat the robots as individual social entities through the observable behavior,

and how they were treated by the experimenter (i.e. the behavior of the experimenter directed

toward the robots).

To provide the robots with a basic level of animacy, each robot was programmed to exhibit

small behaviors to avoid the robot appearing static. Small motor movements were executed

around the given gaze direction as were movements of the wrist joints and fingers. These motor

commands were executed at random within a given time frame. Blinking behavior was also

introduced through toggling power to the LED eyes at random intervals. Each of the robots was

provided with an individual voice through altering the pitch of the text-to-speech engine. The

eye colour of each robot was also individual. Fiducial markers were placed in the four outer

corners of the screen, to allow to robot to see the screen.

Throughout the experiments, the experimenter’s behavior toward the robots was as similar

as possible to their behavior toward the participant. For example, during the task description,

eye contact was made with both the participant and each individual robot. The robots were also

given and referred to by names: Snap, Crackle and Pop.

In the robot-peer condition, adult subjects were informed in the information sheet that the

aim of the research is to investigate visual discrimination in humans and robots and that each

experiment involved 4 participants (a mixed group of humans and robots). Other than this, the

reasoning for the robots being present was kept unspecified.

Ethics

The research design for this study was reviewed and approved by the Plymouth University

Ethics Committee for the Faculty of Science and Engineering. Adult participants provided

informed consent prior to the experiment and informed consent was provided by the parents of

children prior to the experiments. Full debriefing in all conditions took place immediately after
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the experiment ended.

Supplementary Material

Analysis of Logit (Logistic Regression) model.

Fig. S1. Specifications of visual stimuli presented to the participants.

Fig. S2. Flow diagram of the scripted robot behavior during the experimental trials.

Table S1. Discrimination accuracy across conditions.

Table S2. Specification of standard and comparison line lengths.

Table S3. Dimensions of the stimuli presentation.

Data S1. Text file of adult participant responses in Experiment 1.

Data S2. Text file of child participant responses in Experiment 2.

Further data
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Fig. 1. Overview of the experimental setup and visual stimulus. (A) The SoftBank Robotics

Nao humanoid robot used as confederate. (B) Overview of the participant seating arrangement.

In the control condition only the participant and experimenter were present. Participants’ judg-

ments are collected in a clockwise order beginning with the confederates and ending with the

subject. (C) Illustration of the arrangement in a real setup. (D) Illustration of the visual stimuli

presented to participants via a computer screen. The target line is located on the left and the

three labeled comparison lines are located on the right. Participants say which of these matches

the length of the target line.

Fig. 2. Discrimination accuracy across conditions. (A) The mean accuracy of the adults for

the critical and neutral trials, across each experimental condition (control n = 20, robot peer

n = 20, human peer n = 20). During the critical trials the presence of human peers leads to

a significant decrease in discrimination accuracy due to subjects conforming with the human

confederates. (B) The mean accuracy of the children during the discrimination task (control

n = 21, robot peer n = 22, no human-peer condition). During the critical trials the presence

of the robot-peers lead to a significant decrease in accuracy due to group conformity. Error

bars denote 95% Confidence interval of the mean estimate; likelihood ratio test on logistic

regression, * P < .01; ** P < .001.

Fig. 3. Breakdown of incorrect participant responses. The bars shows the ratio of conform-

ing (i.e. going with the confederates’ response) against non-conforming responses in the critical

trials; for the adults in the human-peer condition (n = 20) and for the children in the robot-peer

condition (n = 22). 83% of all incorrect responses from the adults were found to be conforming

with the group of human confederates while children’s conformity with the robots was 74%.

Two-tailed χ2 test, ** P < .001.
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Abstract

Establishing common ground when attempting to disambiguate spatial
locations is difficult at the best of times, but is even more challenging between
children and robots. Here, we present a study that examined how 94 children
(aged 5-8) communicate spatial locations to other children, adults and robots in
face-to-face interactions. While standard HRI implementations focus on
non-ambiguous statements, we found this only comprised about 20% of children’s
task based utterances. Rather, they rely on brief, iterative, repair statements to
communicate about spatial locations. Our observations offer strong experimental
evidence to inform future dialogue systems for robots interacting with children.

1 Introduction

For children arriving in a new country, learning the language of their new home is an
important part of their integration. Proficiency in the language of the host country is a
vital condition for success at school. Even for children of migrants born in the host
country, this may be an issue if the language used at school cannot be reinforced in the
home. As tailored language classes are expensive and limited in time, we wish to
explore if robot tutors can be used to complement language tutoring. This is
encouraged by robots having been shown to be able to reduce anxiety in a second
language learning when acting as a peer [1]. However there is still much to be
considered when designing a robotic language tutor [5].

Figure 1. A child interacting
with the robot in our study.

While most language tutoring systems
focus on the learning of nouns and verbs, we wish to
study the learning of spatial language instead: the
vocabulary and grammatical constructions serving
the communication of spatial relations. Spatial
language is particularly challenging, as the semantics

are often vague, context dependant and referent dependant. For example, in “the apple
next to the bowl” the spatial referent “next” does not have boolean membership, but
rather has a graded membership depending on the distance between objects and the size
of the objects. A typical assumption in Natural Language Interaction Systems (NLIS) is
that referring expressions (RE) are unambiguous descriptions of object locations and
that a linguistic interaction between a user and a computer system follows a quite
structured and clear interaction flow using unambiguous utterances [8]. This might be
the case for spoken interfaces in banking systems or telephone ordering, but the
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literature in socio-linguistics and dialogue systems show that language is much more
dynamic than NLIS typically allows for, and this is specifically prominent in spatial RE.

Socio-linguistics suggests that people do not tend to use fully specified RE. Instead,
they reduce the cognitive load by under-specifying the description and then rely on a
strategy of repair to correct misunderstanding if necessary [7]. Rather than this being a
one-way communication, it is a fundamentally social process. The person being
addressed is expected to be an active contributor to the process of reaching common
ground. Each participant in the conversation will contribute until a grounding criterion
is met [6], i.e. when each contributor to the communication believes that they have
understood enough for their current purpose. Pickering and Garrod [11] describe this
partial alignment of common ground as the natural way in which we communicate. Full
common ground is only necessary when there is difficulty reaching alignment.

Dialogue management systems have to take into consideration these under specified
statements. One assumption that often made in interaction between two agents is that
what is said by one, is how the other understands it. However this is not always true,
even in human-human interaction [10]. Instead, continuous communication can allow a
system to re-evaluate its belief state of the current environment, and the belief state of
other communicative agents. For spatial tasks they are able to use contextual language
to help with the positioning of an item [2]. Instead of complex statements that try to
pinpoint the exact location in one sentence, a series of much simpler statements is used.

By contrast, implementations of RE generation and understanding for use in
robotics often follow Gricean Maxims [9], such as the Incremental Algorithm [8]. These
algorithms focus on a single statement that eliminates ambiguity. While communicating
clearly and unambiguously about spatial references is one solution to the problem of
communicating about space, more recent systems also incorporate perspective
taking [12], which may alleviate the need for precise but verbose REs. With perspective
taking we do see a more interactive approach. But this process still relies on reaching
full alignment by eliminating ambiguity.

Our present study provides real-world data of children establishing common ground
in the natural course of playing a game. We observed them either interacting with other
children, with adults or with a robot using a Wizard of Oz setup. The study provides
opportunities for the children to use a large set of spatial language, perspective taking
and establishing a common point of reference, whilst being easy to replicate.

2 Study Design

Figure 2.The experimental
setup. A top down view show-
ing the position of the manipu-
lator and describer sitting oppo-
site each other with the “Sandtray”
screen in the middle. The experi-
menter is sitting to the side with a
camera recording the participants.
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We collected data from 94 children
between the ages of 5 and 8. They were assigned
to one of three conditions: child-child, child-adult
or child-robot. For the child-child and child-adult
conditions children from two different schools
were used. They participated during the day
at their school in a room for individual teaching.
In the child-child condition two children
from the same class participated together. In the
child-adult condition a child participated with an
experimenter. Those in the child-robot condition

were recruited from register held by the Babylab at the University of Plymouth.
Following a sandbox paradigm [3], one child and a partner (child, robot or adult) are

sitting on opposite sides of a large touchscreen (Fig. 2). The screen presents a
background with different areas: a castle, a desert, two rivers with bridges, a lake, two
beaches and many bushes or trees.
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One agent, hereafter called the describer, has to guide the other agent, called the
manipulator, to move items on the touchscreen to a desired location. The describer is
provided with a reference map, which is kept hidden from the manipulator, with the
desired position of eight items (Fig. 3).

While it has been shown that pointing can influence the words used [13], the task
could be easily completed without words if gestures were allowed. As we were focused
on the language being used, the describer was instructed not to use pointing gestures. If
children attempted to use pointing they were reminded that this was not allowed.

Figure 3.An example of the
reference map given to a
child to describe. The eight
items (face, crocodile, elephant,
zebra, hippo, lion, giraffe and ball)
are shown in the desired location
that they need to be moved to.
The child describes the position
on his map for an agent to manip-
ulate into the correct position.

The touchscreen presents a background
with different areas (Fig. 3). Eight movable
items have to be moved to specified locations
on the map. The reference maps were designed
to elicit a number of different ways to describe
the position of objects. Some objects were facing
a particular direction, to encourage locutions
like ‘in front of’ or ‘behind’. Features, such as the

bridges and bushes, were repeated so as to require disambiguation. Verbal
disambiguation was also elicited by the relatively small size of the screen, which limits
the effectiveness of joint gaze to identify the correct location for an object.

In the case of the child-child and child-adult conditions, after the first map was
completed, the role of manipulator and describer would be swapped. In the case of the
child-robot condition the child would be invited to describe the second map. The robot
itself would appear to move objects around the touchscreen via the use of a Wizard of
Oz control interface, held by an experimenter. The experimenter is able to move an
object on their interface, the robot would then move its hand to point at the object and
then move its hand to point at the target location, with the object moving with it.

3 Results

For statistical power reasons, we focused our current observation of results on the
child-child interaction (Child-Child=60, Child-Adult=26, Child-Robot=8), while
providing more qualitative observations of the other conditions in the discussion.

We observed an average of 7.12 (SD=7.50) repair statements used per round (one
round consisted of one map with eight objects to be moved). The SD shows large
inter-personal variations. There were comparatively few cases of repair statements
requiring spatial perspective taking (M=0.56 per round). Despite being told not to use
them, there was an average of 2.43 (SD=3.03) pointing gestures used per round.

Figure 4. Break down of on-
task statements. Ambiguous
descriptive statements were a sig-
nificantly higher proportion than
the other statement types.
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We took all the on-task statements
from a sample of 10 child-child sessions,
giving us data from 20 children. The statements
were divided into the following categories:
Ambiguous-Descriptive (statement refers to more
than one location e.g.’the zebra is on a bridge’),
Contextual (statement following from previous
statements, that would make no sense to a third
person entering the conversation e.g. ’the other
one’), Negation(statement indicating that it is an

incorrect location with no further description e.g. ’no’), Non-Ambiguous (statement that
describes only one possible location e.g. ’the crocodile is in the big lake’) and Pointing.

On average Ambiguous-Descriptive statements were used 38.6% of the time,
Contextual in 13.1%, Negation in 9% and Non-Ambiguous in 23.2%. Using a Welch
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two-sample t-test we find that the Ambiguous-Descriptive statements are used
significantly more than any other type of statements, and Cohen’s d test shows a large
effect size in each case (Contextual: t(38) = 4.2, p < .001, d = 1.34; Negation:
t(38) = 7.8, p < .001, d = 2.48; Non-Ambiguous: t(38) = 3.7, p < .001, d = 1.17).

4 Discussion

Our observations show that interactions between children (and between children and
robots) are highly dynamic, fast-paced and relying on the situatedness and embodiment
of the conversation partners [4], very unlike the “walkie-talkie exchanges” typically used
in Human-Robot Interaction. Between children, as soon as the manipulator has enough
information to make a guess they will often start moving the objects, without waiting
until enough information is given as to be non-ambiguous. This has two possible
outcomes: either they guess right, or it causes the describer to generate a repair
statement. It also appears that typically it is easier for the describer to let the
manipulator start moving the objects – knowing that the position they described is
ambiguous – so that they may then generate a short, easily understood, repair, reducing
the cognitive load. In fact we see that the robot’s inability to change course after it has
started moving an object caused frustration to the child describing.

In the child-robot condition there appeared to be a reduction of the repair
statements when the robot moved items incorrectly. This could be caused by many
factors, such as the children feeling more nervous with the robot, the expectations they
have of its abilities and the absence of some basic social cues, such as back channelling
and lack of eye contact, all of which made the interaction laborious.

Pointing was still prevalent, despite it being disallowed and discouraged (even the
experimenter was found pointing or indicating directions). Future work could look at a
different methodology to encourage the combination of gestures and language.

5 Conclusion

Counter to many implementations that seek to eliminate ambiguity entirely, we find
that children tend to use many ambiguous statements when describing the location of
objects. As such the robot, when being given RE, must expect ambiguous statements. It
should not wait for further information, but rather start acting on the information it
has, as this will also assist in the process of description. This also means that the robot
should be prepared to react quickly to repair statements by enabling it to diverge from
its current action to take into account the new information.

This also means the robot should be allowed to be ambiguous in its descriptions. This
may be beneficial to reduce processing requirements for the robot itself, but also may
help reduce the cognitive load for its conversational partner. When doing so, the robot
should monitor closely the reaction of its partner, and be prepared to provide timely
repairs to lead the implicit, interactive disambiguation process.

Our next steps are to implement a more interactive robot to collect more data with
children interacting with the robot. Using this data we will be able to build an effective
framework for natural spatial communication between children and robots.

6 Acknowledgements

This work was supported by the EU H2020 L2TOR project (grant 688014), the EU
H2020 Marie Sklodowska-Curie Actions project DoRoThy (grant 657227) and the EU
FP7 DREAM project (grant 611391).

4/5



References

1. M. Alemi, A. Meghdari, and M. Ghazisaedy. The impact of social robotics on L2
learners’ anxiety and attitude in English vocabulary acquisition. International
Journal of Social Robotics, pages 1–13, 2015.

2. T. Baumann, M. Paetzel, P. Schlesinger, and W. Menzel. Using Affordances to
Shape the Interaction in a Hybrid Spoken Dialog System. In Proceedings of
ESSV, Bielefeld, Germany, Mar. 2013.

3. P. Baxter, R. Wood, and T. Belpaeme. A touchscreen-based’sandtray’to facilitate,
mediate and contextualise human-robot social interaction. In Proceedings of the
seventh annual ACM/IEEE international conference on Human-Robot
Interaction, pages 105–106. ACM, 2012.

4. T. Belpaeme, S. J. Cowley, and K. F. MacDorman. Symbol grounding, volume 21.
John Benjamins Publishing, 2009.

5. T. Belpaeme, P. Vogt, R. van den Berghe, K. Bergmann, T. Göksun, M. de Haas,
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Sümeyye Koşkulu, Cansu Oranç, Idil Franko, 

Aylin C. Küntay, & Tilbe Göksun

How do robot gestures help 
second language learning?



Unique Strengths of Robot Learning Companions

Can act as friendly learning 
partners

Can use different languages 

Can perform gestures
Gestures facilitate language 

learning in children 
(e.g., Hostetter, 2011; Sueyoshi & 
Hardison, 2005; Valenzeno et al., 2003)



Under what conditions are gestures 
beneficial for young learners?



Gestures are created not by gesture experts 
but by roboticists

In some cases, an additional study to make 
sure gestures are “good enough”

But is that really enough? 

Common Practice in Educational Robotics



RQ1: Can children learn L2 words from 
a robot tutor that is performing gestures?

RQ2: Are some robot gestures better than 
other gestures? 
Study 1: Types of gestures

Study 2: Match between words and gestures

Today’s Talk



88 Turkish-speaking preschoolers

One-on-one lesson using a tablet

6 pairs of English adjectives

big-small, tall-short, high-low, wide-narrow

Human tutor vs. Robot tutor

 Iconic Gesture – represents the meaning of the word

 Deictic Gesture – indicates the reference of a word

 On-Screen Highlighter

Study 1: Types of Gestures



On-Screen HighlighterGesture (Iconic or Deictic)



Example: Iconic Gesture Trials



Iconic Gesture vs. Deictic Gesture
(Robot Condition)



Iconic Gesture vs. Deictic Gesture
(Robot Condition)

RQ1. Children learned from the robot tutor
RQ2. Types of gestures did not affect learning



Gesture vs. On-Screen Highlighter 

*
*



Gesture vs. On-Screen Highlighter 

*
*

Unique benefits of gestures were not 
found, but the robot tutor may be
more successful than the human tutor



Step 1: Production Task with Adults

3 English-speaking adults performed gestures for 
53 English words

Step 2: Rating Task with Adults

30 English-speaking adults rated how well the 
gestures represented the words

Study 2: Word-Gesture Match



Step 3: Learning Task with Children

20 Turkish-speaking preschoolers (M = 65.33)

One-on-one lesson without a tablet

5 English verbs
 sliding, falling, climbing, walking, and throwing

Study 2: Word-Gesture Match



Final Set of Gestures

sliding: 3.56 falling: 4.72

climbing: 5.92 walking: 6.14 throwing: 6.28



Experimental Setting



RQ1: Did children learn?



RQ1: Did children learn?



RQ2: Match between word and gesture?

Low Match                                                                 High Match



RQ2: Match between word and gesture?

Low Match                                                                 High Match



Children can learn L2 words from the NAO 
robot

Types of gestures nor match between the 
word and gesture did not seem to matter

Study 1 vs. Study 2
Tablet vs. No tablet

Elementary vs. Advanced Vocab

No translation vs. Translation

Discussion



“Good enough” gestures? 
The contribution of gestures may be simply 

drawing attention and engaging the child

Can even be destructive in some situations? 
(e.g., when children need to focus on screen)

Discussion



Teşekkür ederim!
(Thank you!)



Robotların Jestler ve Geri Bildirim ile Okul Öncesi Dönemde İngilizce Eğitimine 

Katkıları 

 

Sümeyye Koşkulu, Junko Kanero, Cansu Oranç, Tilbe Göksun, Aylin C. Küntay 

 

Sosyal robotlar, okul öncesi dönemde çocukların ikinci dil eğitimine destek olması 

amacıyla sıklıkla kullanılmaya başlanmıştır (Kanero va., 2018). Ancak robotların hangi 

özelliklerinin bu eğitime anlamlı katkıda bulunabileceğine dair yeterli çalışma yoktur. Bu 

araştırma, robotların sözlü (geri bildirim) ve sözlü olmayan (jest) davranışlarının İngilizce 

sözcük öğrenimine etkilerini incelemektedir. 

Çalışma 1’in amacı, robot jestlerinin ve bu jestlerin sözcükleri temsil etme derecesinin 

İngilizce öğrenimine katkılarını araştırmaktır. Çocuklara 5 İngilizce fiil insansı robot NAO 

tarafından kelimeleri farklı derecelerde temsil eden ikonik jestler uygulanarak öğretilmiştir. 

Çocukların kelime bilgileri dersten önce ve sonra alıcı ve ifade edici testler aracılığıyla 

ölçülmüştür. Veri toplama süreci devam eden çalışmaya 4.5-6.5 yaş aralığında 20 çocuk 

katılmıştır. Sonuçlar çocukların alıcı dil skorlarında anlamlı bir artış olduğunu gösterirken 

(t(19) = -2.89, p = .01), ifade edici dil skorlarında sınırda anlamlı bir artış olduğunu 

göstermiştir (t(19) = -1.72, p = .10). Alıcı ve ifade edici dil skorları için yapılan analizler ise 

jest-fiil temsil derecesinin çocukların kelimeleri öğrenmesi açısından farklılık oluşturmadığını 

göstermiştir.  

Çalışma 2’nin amacı insanların verdiği sözel geri bildirimin etkilerinden yola çıkarak 

robot tasarımını bilgilendirmektir. Bu amaçla, Çalışma 1’den üç İngilizce fiil çocuklara 

tanıtılmıştır. Daha sonra söylenen fiili ekrandaki üç animasyon arasından göstermesi istenen 

çocuklar üç gruba ayrılmış ve yanlış seçeneği göstermeleri durumunda her gruba farklı sözel 

geri bildirim verilmiştir: (1) İngilizce cümlenin tekrarı, (2) Seçilen yanlış seçeneğin 

isimlendirilmesi, (3) Doğru seçeneğin gösterilmesi. Son olarak, çocuklara farklı animasyonlar 

gösterilerek öğrendiklerini aktarmaları istenmiştir. Çocukların alıcı kelime bilgileri 

ölçülmüştür. Çalışmaya 3-6 yaş aralığında 78 çocuk katılmıştır. İngilizce bilgisi düşük olan 

çocukların (2) numaralı koşulda (1) numaralı koşula göre kelimeleri daha iyi öğrendikleri 

görülmüştür, F(4, 40) = 2.488, p = .059. 

Bu bulgular robotlar tarafından yürütülen İngilizce derslerinde jestlere ihtiyaç 

duyulduğunu ve jestlerin dolaylı yoldan çocuğun dikkatini çekme ve sürdürme gibi roller 

oynadığını ortaya koymaktadır. Ayrıca çocukların İngilizce kelime bilgisi onlara verilen sözel 

geri bildirimlerden yararlanma biçimlerini etkilemektedir. 

 

Anahtar sözcükler: sosyal robotlar, yabancı dil eğitimi, jestler, geri bildirim 



§ Results for test questions
§ Mixed-effects ANOVA using tutor type (human, robot), gesture

type (iconic, deictic), sex (female, male) as between-subjects and
facilitatory tool (gesture, highlighter) as within-subject variable on
proportion correct

§ Significant effect of facilitatory tool: Highlight > Gesture,
F(1,74) = 6.764, p = .001, partial eta-squared ηp2= .084

• Marginally significant effect of tutor: Robot > Human, F(1,74) =
3.023, p = .086., partial eta-squared ηp2= .039

Figure 2. Proportion correct by tutor, gesture and facilitatory tool
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Human Robot

Participants
§ 5- and 6-year-old Turkish-speaking children

§ Human tutor: n = 41,M = 66.9 months, 22 Females

§ Robot tutor: n = 37,M = 69.9 months, 21 Females

Measures
§ 8 English measurement words: Big-small, long-short, wide-narrow,

high-low

§ Prior knowledge of words in Turkish, but not English

Procedure
§ Children interacted with Human or Robot tutor.

§ Each child experienced highlighter + 1 of the 2 gesture conditions
(4 words per condition, 3 blocks)

§ On-screen highlighter: no gesture, a red rectangle flashed around
the object to draw attention. (Figure 1a)

§ Iconic Gesture: tutor produced an iconic gesture (Figure 1b)

§ Deictic Gesture: tutor pointed (palm-hand) to object on screen
(Figure 1c)

§ Images of objects representing words present on screen in all
conditions (see Figure 1)

§ During test, children asked to point to the object corresponding to
the target measurement word.

§ Generalization of measurement words to new objects assessed at
the end of the session.

Method

Introduction

Using gestures in L2 vocabulary teaching: Human or robot tutors?
Ece Demir-Lira1,2,  Cansu Oranç1, Junko Kanero1, Sümeyye Koskulu1,  İdil Franko1, Zeynep Adıgüzel1, 

Tilbe Göksun1 & Aylin C. Küntay 1

1Koç University, 2University of Iowa

Discussion

Results

§ Gestures facilitate language learning (e.g., Hostetter, 2011; Novack &

Goldin-Meadow, 2015). However, not all studies observed the
facilitatory effects of gestures, and specific conditions under
which gestures aid language learning remain under debate
(Congdon et al., 2018).

§ Robot’s ability to gesture suggested as a strength over other
technological tools (e.g., Kanero et al., 2018).

Study goals
§ We examined whether and how gestures facilitate second-

language (L2) vocabulary learning in children by varying the:
§ Type of facilitatory tool (gesture, on-screen highlighter)
§ Gesture type (deictic, iconic)
§ Tutor (human, robot)

References

§ Gestures did not result in significantly better learning than an
on-screen highlighter, and gesture type had no significant effect
on learning outcomes.

§ Gestures may not be as effective for learners with no prior
knowledge and when task requires attention to visuals in the
learning environment (Congdon et al., 2018).

§ Significant difference between the gesture and on-screen
highlighter conditions suggests that the role of gesture in
word learning different than simply guiding attention (Novack
et al., 2016).

§ Children might learn L2 words better with a robot than with a
human.

§ Possible explanations for the robot tutor advantage, such as
novelty and the less lesson-like, friendlier atmosphere the
robot might have created (Conti et al., 2017; Kanero et al., 2018).

§ Future directions:

§ Remove visuals, provide translations, beat gestures
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§ Results on generalization questions
§ No significant effect of tutor, gesture type, or facilitatory tool on 

performance, all p’s >.10 
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Abstract—It has been suggested that some individuals may 

benefit more from social robots than do others. Using second 

language (L2) as an example, the present study examined how 

individual differences in attitudes toward robots and personality 

traits may be related to learning outcomes. Preliminary results 

with 24 Turkish-speaking adults suggest that negative attitudes 

toward robots, more specifically thoughts and anxiety about the 

negative social impact that robots may have on the society, 

predicted how well adults learned L2 words from a social robot. 

The possible implications of the findings as well as future 

directions are also discussed.  

Keywords—human-robot interaction, second language, 

individual difference, robot-assisted language learning (RALL) 

I. INTRODUCTION 

Individual difference has been a hot topic in psychology 
for the past few decades [1]. Although traditional 
psychological research tends to focus on how humans 
generally think and behave, recent research has demonstrated 
the need for examining each individual because humans 
approach the same cognitive task in vastly different ways (e.g., 
[2]). Second language (L2) learning is no exception, and 
individual differences in various factors such as preference, 
attitudes, and personality must be considered. For example, 
some individuals may prefer to learn L2 through conversation 
with native speakers of the language whereas some others may 
prefer to sit alone at a desk and learn from books. Investigation 
of ways in which individual differences affect the process and 
outcomes of L2 learning is not only scientifically interesting, 
but also provides practical insights into how L2 learning 
experience can be improved by tailoring lessons for each 
individual learner. The current study uses robot-assisted L2 
learning as an example to evaluate how individual differences 
predict the process and outcomes of learning, and discusses the 

possibility of technology facilitating learning by providing 
personalized lessons.  

The use of social robots in education is becoming more and 
more popular due to improvements in their quality and 
affordability. Although no previous research focused 
specifically on the effects of individual differences in robot-
assisted L2 learning, the idea has been suggested. For instance, 
examining word learning in fifth and sixth graders, Kanda, 
Hirano, Eaton, and Ishiguro (2004) found that children with 
some English proficiency or interest in English benefitted 
more from extra learning opportunities provided by social 
robots than did their peers with lower proficiency or interest 
[3]. Robots may be especially helpful for individuals with 
impaired social and communicative skills such as children with 
autism spectrum disorder (ASD). Social interactions with 
humans can sometimes be difficult or stressful for children 
with ASD because humans behave in very complex and 
unpredictable ways. Some researchers claim that robots can be 
good communication partners for those children as they can 
provide simpler and less stressful environments [4].  

Some studies examined the relation between individual 
differences and how a person interacts with a robot. Ivaldi, 
Lefort, Peters, Chetouani, Provasi, and Zibetti (2017) 
examined the patterns of speech and eye gaze in 56 adults 
while they built an object with the humanoid robot iCub [5]. 
The study found that individuals who are high on extroversion 
tend to talk more with the robot, and individuals with a 
negative attitude towards robots tend to look less at the robot’s 
face and more at the robot’s hands. Tapus, Ţăpuş, and Matarić 
(2008) found that participants who were high on introversion 
interacted more with an introverted robot than an extroverted 
robot whereas participants who were high on extroversion 
interacted more with an extraverted robot than an introverted 
robot [6]. Takayama and Pantofaru (2009) found that having 

This research was supported in part by the EC H2020 L2TOR project 

(grant 688014). 



the personality trait of agreeableness decreases personal spaces 
when individuals approach robots, while having the 
personality trait of neuroticism and negative attitudes toward 
robots increase personal spaces when robots approach people 
[7]. These studies demonstrated that individual differences in 
negative attitudes toward robots and personality characteristics 
may predict how humans behave when they interact with a 
robot. However, the results are far from consistent, and more 
importantly, no study has examined whether individuals with 
different attitudes towards robots and with different 
personality traits learn to different levels from social robots.. 
Observing differences in human behaviors has scientific 
impact, but perhaps more important for human-robot 
interaction (HRI) research in individual differences is to move 
a step further and evaluate whether individuals with certain 
traits benefit more from robot companions than others. Robot-
assisted L2 learning is a perfect example to explore the issue 
as the learning outcomes such as test scores can be directly 
used to evaluate how effective and beneficial the robot 
companion is.  

To examine ways in which individual differences affect 
how well humans learn from or with social robots, the present 
study examines language learning. This article focuses on part 
of a larger study and reports learning outcomes of an L2 lesson 
and its relationship with attitudes toward robots and 
personality traits. We chose attitudes toward robots as a 
possible predictor because of the previous findings (e.g., 
[5,7]), and because to assess the unique nature of robot-
assisted L2 lessons, it is critical to specifically examine 
individuals’ attitudes toward robots. By assessing both 
negative attitudes toward robots and general personality traits 
such as openness to experience and extroversion, we are able 
to understand whether the observed relations between 
individual differences and learning outcomes are likely to be 
specific to robot-assisted L2 lessons as opposed to L2 lessons 
in general. For example, open-minded individuals may be 
more likely to learn from the robot because they are willing to 
interact with an unfamiliar agent and welcome the use of new 
technology or methods. Another possibility is that extraverted 
individuals benefit from any language lessons, whether with 
another person or a robot, because they enjoy communicating 
with another agent. In this study, we specifically tested the 
possibility that the learning outcomes of robot-assisted L2 
lessons can be explained by the person’s attitude towards 
robots. In other words, we tested the hypothesis that 
individuals who have positive attitudes toward robots are more 
likely to learn language from the lesson provided by a robot. 
We also tested the hypothesis that the relation is specific to 
attitudes towards robots and thus general personality traits 
such as openness to experience and extraversion do not predict 
the learning outcomes in robot-assisted L2 lessons.  

II. PARTICIPANTS 

Twenty-four Turkish speakers (Age range = 18.41-24.73 

years; Mage = 20.18 years; SD = 1.56; 16 females) participated 

in the study. All participants were undergraduate and graduate 

students at Koç University in Istanbul, Turkey, who received 

course credits or monetary compensation for their 

participation. Participants had no known vision or hearing 

impairments. They were given the options of receiving 

monetary compensation or course credits for their 

participation.  

III.  STIMULI 

A. Pre-Lesson Test and Questionnaire  

Prior to the one-on-one English lesson with the NAO 
robot, participants completed one English test on paper and 
one survey on a desktop computer.  

English Test. Oxford Quick Placement Test [8] was used to 
assess the English skills of participants. There were 60 
multiple-choice questions in total.  

Individual Difference Questionnaire. Total of 157 questions 
were prepared and all were put on one Qualtrics program to be 
completed on a desktop computer in the lab. This article 
specifically reports data from the following two sections 
concerning attitudes towards robots and personality traits.  

 Attitudes toward robots. Negative Attitudes toward 
Robots Scale (NARS) was used to assess how 
participants feel about robots [9]. The NARS consists 
of 14 questions that can be divided into three 
subscales: negative attitude toward interacting with 
robots (S1, Questions 4, 7, 8, 9, 10, and 12), negative 
attitude toward social influence of robots (S2; 
Questions 1, 2, 11, 13, and 14), and negative attitude 
toward emotions involved in interaction with robots 
(S3; Questions 3, 5, and 6). Table I shows the Turkish 
version of the NARS that was developed by the first 
and second authors based on both the Japanese version 
[10] and the English version [9]. Participants rated 
how well each statement represents their negative 
attitudes toward robots on a scale of 1-5.  

 Personality traits. Personality traits were measured 
based on the five-factor model of personality or “Big 
Five” – openness to experience, conscientiousness, 
extraversion, agreeableness, and neuroticism. We 
adapted the Turkish version of the Big Five survey 
used by Demir and Kumkale (2013) [11]. There were 
45 questions in the survey that can be divided into five 
subscales: openness to experience (Questions 1-9), 
neuroticism (Questions 10-18), extraversion 
(Questions 19-27), conscientiousness (Questions 28-
36), and agreeableness (Questions 37-45). Participants 



rated how well each of the statements represent their 
personality on a scale of 1-5.  

B. English Lesson with the NAO Robot 

Participants were taught eight English words – upholstery, 
barb, angler, caster, dromedary, cairn, derrick, and cupola. The 
words were selected from the last 40 items of the Peabody 
Picture Vocabulary Test, Fourth Edition (PPVT-4), which are 
supposed to be advanced for native English speakers [12]. The 
eight words were carefully selected so that (1) the Turkish 
equivalents of the words were not phonetically similar to them 
and (2) pronouncing the words should not be too difficult for 
Turkish speakers. With regard to the voice of the robot, instead 

of using the default Turkish text-to-speech (TTS) library in 
NAO, we used the female voice available on Amazon Polly 
(“Filiz” for Turkish and “Salli” for American English). All 
speech was pre-recorded as WAV sound files.  

C. Post-Lesson Tests 

 Two post-lesson tests, the productive vocabulary test 
(hereafter the productive test) and receptive vocabulary test 
(hereafter the receptive test), were administered immediately 
after the lesson and one week later. The definitions of the 
target words used in the productive test were the same as the 
definitions used in the lesson. In the receptive test, the pictures 
from the PPVT that correspond to the target words were used 
(see Procedure for the detail of the productive and receptive 
tests).  

IV. DESIGN 

Participants were invited to the lab twice. The first visit 
was for the pre-lesson tests and survey (English Test and 
Individual Difference Questionnaire), the robot-assisted 
English lesson, and the immediate post-lesson tests (productive 
and receptive). The second visit was for the delayed post-
lesson tests (productive and receptive) and the post-lesson 
questionnaire. The robot was controlled through a Wizard-of-
Oz interface. We set one microphone behind the participant 
and four cameras at the corners of the ceiling, with which the 
“wizard” in another room monitored the participant in another 
room.   

TABLE I. THE TURKISH VERSION OF THE NEGATIVE ATTITUDES TOWARD 

ROBOTS SCALE (NARS; NOMURA, KANDA, & SUZUKI, 2006) USED IN THE 

PRESENT STUDY.  

1 Eğer robotların kendi duyguları olursa kaygılı hissederim. 
(I will feel anxious if robots have their own emotions.) 

2 Robotların insanlara daha çok benzemesinin insanoğlu açısından 

olumsuz bir sonucu olacağını düşünüyorum. 

(I surmise that there will be negative consequences for humans 
when robots become more similar to humans.) 

3 Robotlarla etkileşime girersem kendimi rahat hissederim. 

(I will feel comfortable if I interact with robots.) 

4 Robotların kullanıldığı bir iş yerinde çalıştığımı hayal ettiğimde 

kaygılı hissederim. 

(I feel anxiety when I imagine that I may be employed or 
assigned to a workplace where robots are used.) 

5 Eğer robotların kendi duyguları olursa kendimi onlara yakın 

hissederim. 
(I will feel close to robots if they have their own emotions.) 

6 Robotların duygusal davrandıklarını gördüğümde kendimi daha 

rahat hissederim.  
(I feel more comfortable when I see robots behaving affectively.) 

7 Robotlar hakkında bir şey duyduğumda bile kendimi çaresiz 

hissediyorum.  

(I feel helpless even by hearing something about robots.) 

8 Başkalarının önünde robot kullanacak olursam kendimi 

utandırabilirim. 

(I am likely to be embarrassed when I use robots in public.) 

9 “Yapay zekanın verdiği kararlar” veya “robotların verdiği 

kararlar” gibi ifadeler beni rahatsız ediyor.  

(The words “artificial intelligence” or “decision by robots” make 
me feel unpleasant.) 

10 Sadece robotların önünde durmak bile bende gerginlik yaratır. 

(Even standing in front of robots will strain me.) 

11 Robotlara aşırı bağlı olmak gelecekte olumsuzluğa sebep 

olabilir. 

(I surmise that becoming extremely dependent on robots will 
have negative consequences for humans in the future.) 

12 Robotlarla etkileşime girersem kendimi tedirgin hissederim. 

(I will feel nervous if I interact with robots.) 

13 Robotların çocukların zihnini olumsuz yönde etkileyeceklerinden 
korkuyorum. 

(I am afraid that robots may negatively influence children’s 

minds.) 

14 Gelecekteki toplumlara robotların hükmedeceği kanısındayım. 

(I surmise that robots may dominate future societies.)  

Note. English translations of the questions are in parentheses.      

TABLE II. THE TARGET WORDS AND THEIR DEFINTIONS USED IN THE STUDY 

Target word Definition 

upholstery Bu kelime döşemelik kumaş anlamına gelir 

(This word means fabric that used to make a soft 

covering) 

barb Bu kelime çengel ya da kanca anlamına gelir 

(This word means the tip of an arrow or fishhook) 

angler Bu kelime olta ile balık tutan kimse anlamına gelir 
(This word means a person who fishes with hook and 

line) 

caster Bu kelime bir şeye takılan küçük tekerlek anlamına 
gelir 
(This word means a little wheel attached to 

something) 

dromedary Bu kelime tek hörgüçlü deve anlamına gelir 

(This word means a one-humped camel) 

cairn Bu kelime taş yığını anlamına gelir 

(This word means a mound of stones) 

derrick Bu kelime petrol kuyusu üzerindeki kule anlamına 

gelir 

(This word means a tower over an oil well) 

cupola Bu kelime bir çatı üstüne inşa edilen küçük kubbe 

benzeri yapı anlamına gelir 

(This word means a rounded vault-like structure built 
on top of a roof) 

 



 

Fig. 1. The participant was instructed to go into a living room-like 

room by herself and to sit in front of the robot. The lesson began when 

the NAO robot recognized the participant saying “Merhaba (Hello).” 

V. PROCEDURE 

On the first visit, the participant was first asked to take the 
English test. Participants were given 30 minutes to complete 
the test although they were allowed to finish it earlier and 
move on to the next task. Then, participants filled out the 
Individual Difference Questionnaire on a desktop computer. 
Participants were allowed to take as much time as they needed, 
and it took approximately 30 minutes to complete the entire 
questionnaire.  

After completing the English Test and the questionnaire, 
the participant was instructed to go into a living room-like 
room by herself and to sit in front of the robot. The lesson 
began when the NAO robot recognized the participant saying 
“Merhaba (Hello)” (Fig. 1). The robot first briefly explained 
the structure of lesson, and then introduced the word one by 
one. Each target word was taught in four steps:   

1. The robot introduced the target English word and 
asked the participant whether she already knew the 
word (Note  that none of the participants knew any of 
the target words).  

2. The robot introduced the definition of the target word 
(see Table II).  

3. The robot asked the participant to utter the target word 
following the robot, for three times. 

4. The robot again defined the word and asked the 
participant to repeat the definition.  

 After learning every two target words, the participant was 
also given a mini quiz in which the robot provided the 
definitions of the target words and asked the participant for the 
corresponding word. The lesson lasted for about 20 minutes.  

 At the end of the lesson, the robot asked the participant to 
leave the room and find the experimenter who was waiting in 
another room. The experimenter administered the immediate 
productive and receptive tests. In the productive test, the 
experimenter one by one provided the definitions of the 
learned English words as they were defined in the lessons, and 
the participant was asked to say the corresponding English 
word. In the receptive test, the participant heard the learned 
English word and was asked to point to a picture that matches 
with the word. Participants also completed a short post-lesson 
questionnaire that assessed how participants felt about NAO 
and robots in general after finishing the lesson.   

 All participants were re-invited to the lab one week later 
(Due to schedule conflicts, the second visit took place six days 
after the lesson for three participants and eight days after the 
lesson for one participant. Due to technical issues, another 
participant was invited to the lab three times– once for the pre-
lesson test and questionnaire, once for the lesson, and once for 
the post-lesson tests and questionnaire but the delay between 
the lesson and the post-tests was seven days). On the second 

visit, participants again completed the productive and receptive 
tests. They also completed the short post-lesson questionnaire.  

VI. RESULTS 

We examined whether individual differences in attitudes 
toward robots and personality traits predict the learning 
outcomes. The learning outcomes were measured in four post-
lesson tests: immediate productive test, immediate receptive 
test, delayed productive test, and delayed receptive test. Table 
III shows the descriptive statistics of all analyzed variables.  

First, we examined whether the scores from each of the 
four post-lesson tests were correlated with the ratings from 
each of the three subscales of NARS (S1, S2, and S3) and 
overall scores or the ratings from each of the five subscales 
(openness to experience, conscientiousness, extraversion, 
agreeableness, and neuroticism). As shown in Table IV, 
several correlations were found between the test scores and the 
NARS scores. Namely, the overall NARS scores were 
correlated with the immediate receptive test, delayed 
productive test, and delayed receptive test. The scores for the 
second subscale S2 (i.e., negative attitude toward social 
influence of robots) were correlated with the scores from all 
four tests. Among the five personality traits, openness to 
experience was the only one with any significant correlation, 
and it was only with the delayed receptive test.  

Second, we built regression models to evaluate interaction 
among different predictors. Prior to building a regression 
model, correlations among possible independent variables 
were calculated (Table V). Significant correlations were found 
between (1) S1 and S2, (2) S3 and openness to experience, (3) 
openness to experience and extraversion, and (4) extraversion 
and agreeableness. To avoid the issue of multicollinearity, S1 
and S3 of the NARS were excluded from the analysis. With 
regard to the personality traits separate models were build. For 
each of the four tests, three regression models were built: 
Model 1 included as the second scale (S2) of the NARS as a 
sole predictor; Model 2 included S2 as well as openness to 



experience, neuroticism, conscientiousness, and agreeableness 
as predictors. Model 3 was built to test extraversion which 
could not be tested in Model 2. In addition to S2 and 
extraversion, neuroticism and conscientiousness were included 
in Model 3 as they were not correlated with extraversion.  

Table VI shows the details of the regression models. 
According to the R2 value, when S2 of the NARS was the sole 
predictor, the model explained 28% of the variance in the 
immediate productive test (Model 1). When openness to 
experience, neuroticism, conscientiousness, and agreeableness 
were included, the model explained 43% of the variance in the 
test scores (Model 2). When neuroticism, extraversion, and 
conscientiousness were included, the model explained 38% of 
the variance in the immediate productive test (Model 3). 
However, in all three models, S2 was the only significant 
predictor. The pattern was largely the same for the immediate 
receptive test (Table VII). In all three models, S2 was again 
the only significant predictor. The percentage of the variance 

TABLE III. DESCRIPTIVE STATISTICS OF THE TEST SCORES AND INDIVIDUL 

DIFFERENCE MEASURES 

  Mean Median SD Min Max 

Post-Lesson Tests 
        Immediate Productive 2.92 3.00 1.82 0 7 

   Immediate Receptive 5.13 5.00 2.03 1 8 

   Delayed Productive 1.46 1.00 1.59 0 5 

   Delayed Receptive 5.17 5.00 1.63 3 8 

NARS 

        S1 11.83 12.00 4.77 6 27 

   S2 14.92 15.50 4.42 5 23 

   S3 7.92 7.50 2.81 3 14 

Personality 

        Openess 35.79 37.00 5.56 22 44 

   Nauroticism 33.04 34.00 6.50 19 46 

   Extraversion 32.33 31.50 5.78 24 45 

   Conscientiousness 24.71 24.50 4.81 16 34 

   Agreeableness 33.71 35.00 4.78 23 45 

TABLE IV. CORRELATIONS BETWEEN THE TEST SCORES AND INDIVIDUAL 

DIFFERENCE MEASURES 

    

Immediate 

Productive 

Immediate 

Receptive 

Delayed 

Productive 

Delayed 

Receptive 

NARS All -.35 -.45* -.63* -.51* 

 S1 -.26  -.25 -.26 -.30 

 

S2 -.49* -.53* -.49* -.53* 

 

S3 .05 -.27 .05 -.38 

Personality Oa .10 -.31 .10 -.44* 

 
Nb .13 -.07 .13 -.15 

 

Ec .24 -.19 .24 -.21 

 

Cd .14 -.27 .14 -.29 

  Ae -.18 .05 -.18 .03 

aO = Openness to experience; bN = Neuroticism; eE = Extraversion; dC = Conscientiousness;  
eA = Agreeableness *p < .05 

TABLE V. CORRELATIONS AMONG THE INDEPENDENT VARIABLES 

 

S1 S2 S3 O N E C A 

S1 
 

.65* .27 .06 -.18 -.02 .17 -.05 

S2 
  

.25 .11 -.15 .15 .06 -.14 

S3 

   

.46* -.25 .40 .08 .00 

Oa 

    

-.23 .49* .08 -.04 

Nb 
     

-.10 .09 -.07 

Ec 
      

.00 -.51* 

Cd 

       

.07 

Ae               
  aO = Openness to experience; bN = Neuroticism; eE = Extraversion; dC = Conscientiousness;  

eA = Agreeableness *p < .05 

 

TABLE I.  TABLE VI. REGRESSION MODELS FOR IMMEDIATE 

PRODUCTIVE TEST 

  B SE  t 

Model 1a 

       NARS (S2) -.24 .08 -.53 -2.95* 

Model 2b 
       NARS (S2) -.24 .08 -.52 -2.86* 

   Openness  -.10 .07 -.28 -1.54 

   Neuroticism -.06 .06 -.20 -1.06 

   Conscientiousness -.08 .08 -.20 -1.10 

   Agreeableness -.01 .08 -.03 -.19 

Model 3c 

       NARS (S2) -.22 .08 -.54 -2.92* 

   Neuroticism .02 .05 .07 .37 

   Extraversion .10 .06 .33 1.79 

   Conscientiousness .06 .07 .16 .88 

N = 24; aOverall R2 = .28; bOverall R2 = .43; cOverall R2 = .38; *p < .05. 

TABLE II.  TABLE VII. REGRESSION MODELS FOR THE IMMEDIATE 

RECEPTIVE TEST 

  B SE  t 

Model 1a 
       NARS (S2) -.25 .05 -.71 -4.68* 

Model 2b     

   NARS (S2) -.25 .06 -.70 -4.23* 

   Openness  -.04 .05 -.14 -.81 

   Neuroticism .00 .04 .02 .11 

   Conscientiousness .00 .05 .01 .04 

   Agreeableness -.04 .05 -.11 -.67 

Model 3c 

       NARS (S2) -.24 .09 -.52 -2.81* 

   Neuroticism -.04 .06 -.14 -.75 

   Extraversion -.04 .06 -.13 -.68 

   Conscientiousness -.10 .08 -.23 -1.26 

N = 24; aOverall R2 = .28; bOverall R2 = .43; cOverall R2 = .37; *p < .05. 

 

 

 



in the immediate receptive test explained by Models 1, 2, and 
3 was 28%, 43%, and 37%, respectively. 

S2 was a significant predictor for all six models built for 
the delayed tests. R2 were .50, .53, and .50 for Models 1-3 of 
the delayed production test, and .30, .52, and .38 for Models 1-
3 of the delayed receptive test. Thus, S2 explained a larger 
variance in the delayed tests than in the immediate tests. In 
addition, openness to experience was a significant predictor in 

Model 2 of the delayed receptive test (B = -.17; SE = .06,  = -
.47; t = -2.79), suggesting that individuals with the personality 
trait of openness to experience tend to score low in the test. 

VII. DISCUSSION 

 The present study examined whether and how individual 
differences in attitude towards robots as well as personality 
traits affect learning outcomes of robot-assisted L2 lessons. 
We hypothesized that (1) individuals who have positive 
attitudes toward robots are more likely to learn L2 words  from 
the lesson provided by a robot, and (2) the relation would be 
specific to attitudes towards robots and thus general 
personality traits such as openness to experience do not predict 
learning outcomes. Our preliminary data  suggest that the 
responses to S2 of the NARS was negatively correlated with 
the scores of all post-lesson tests. When S2 was put into 
regression models with personality trait factors, S2 remained 
as the only significant predictor except that openness to 
experience was also a significant predictor in the model for the 
delayed receptive test. As negative attitude towards robots but 
not general personality traits predicted the learning outcomes, 
it is safe to suggest that how people learn L2 in robot-assisted 
lessons is affected by their attitudes toward robots.  

Importantly, S2 is a scale for negative attitude toward 
social influence of robots, and is composed of four statements 
including “1. I feel anxiety if robots really have their own 
emotions,” “2. I surmise that something negative for humans 
happen when robots become more similar to humans,” “11. I 
surmise that extreme dependence on robots may cause 
something negative for humans in future,” “13. I am afraid that 
robots may negatively influence children’s mind,” and “14. I 
surmise that future societies may be dominated by robots.” 
Therefore, our results suggest that those who are afraid of 
robots becoming like humans and influencing human life are 
less likely to learn language from robots. Whereas other two 
scales concern participants’ expectations about personal 
interaction with robots they themselves may experience, S2 
concerns abstract fear and anxiety people have towards robots.   

Although this study demonstrated the relation between 
learning outcomes and general and somewhat abstract negative 
attitudes toward robots, the mechanism underlies this relation 
is still unknown. We speculate that, an individual with 
negative attitudes toward robots is unlikely to pay attention to 
the robot tutor and learn well. The current data do not allow us 

to evaluate this possibility, and more experiments are needed 
to understand the relation. It is also critical to conduct the 
current study with human-led lessons in order to assess 
whether observed relations are truly specific to robot tutors. 
Our team is working on experiments to assess these issues in 
addition to recruiting more participants to the current study.  

VIII. CONCLUSION 

Researchers and educators have long been aware of the 
importance of recognizing individual differences. However, 
the topic has not received enough attention perhaps because it 
is unrealistic for teachers to provide personalized lessons for 
each individual student. Research on human-robot interaction 
can shed a light to the situation. By attitudes toward robots and 
personality traits, our study provides novel and unique insights 
on how robots can be used in humans learn a new language.  
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NAO eğitmen sonuçları: 

 Data toplamı devam etmektedir

 Planlanan analizler

 Jest ve Gösterme koşullarının performans üzerindeki etkileri

incelenecektir.

 Performans üzerinde çocukların yaşının, sözel ve uzamsal belleğinin

etkisi ölçülecektir.

 Beklenen sonuçlar

 NAO’nun jestleri çocukların ilgisini daha çok çektiği için daha iyi

performansa yol açabilir

 Öte yandan NAO jestlerini ilk kez gören çocuklar bu jestlerden bir

insandan ögrendikleri kadar öğrenemeyebilirler.

Sosyal robotların jest kullanımının
çocuklarda ikinci dil öğrenimine etkileri
Koç Üniversitesi, Iowa Üniversitesi
Ö. Ece Demir-Lira,  Cansu Oranç, Junko Kanero, Sümeyye Koşkulu,  İdil Franko, Zeynep Adıgüzel, 

Tilbe Göksun ve Aylin C. Küntay

Giriş
 Konuşmacıların ürettiği el jestlerin hem konuşmacının kendi

düşüncelerini aktarması ve iletişimi hem de dinleyicinin algısı üzerinde

bilişsel açıdan olumlu etkileri vardır. Fakat bu olumlu etkiler bazı

durumlarda görülmemektedir.

 İletişimsel iki ana jest türü işaret ve ikonik jestleridir.

 İşaret: işaret parmağı ile çevredeki bir nesne, yer veya kişiyi gösterir. 

 İkonik: bir hareket, şekil, yer veya kişiyi tasvir etmek için kullanılır.

 Robotların hareket becerileri onları dil eğitiminde önemli bir bilgi

kaynağı durumuna getirmektedir. Buna karşın, robotların jest 

kullanımlarının etkilerine dair detaylı çalışmalar bulunmamaktadır.

Çalışmanın amacı

 Bir sosyal robot olan NAO kullanılarak iletişimsel jestlerin üç farklı

türünün (işaret ve ikonik jestleri) çocuklarda İngilizce sözcük

öğrenmeyi nasıl kolaylaştırdığına anlamak

 Robotların jestleri ile dikkat vurgulayıcı diğer öğeleri karşılaştırarak

robot jestlerin öğrenmede özel bir rol mü oynadığını yoksa sadece

dikkat çektiklerini mi anlamak

 Sosyal robot NAO ve insan tarafından ikinci dil öğretimini

karşılaştırmak

Katılımcılar:

 Anadili Türkçe olan 5-6 yaşındaki çocuklar

 Her grupta 20 kişi olmak üzere toplam 80 çocuk

 Her çocuk iki eğitmen koşulundan (NAO, insan), sonra da iki jest koşulundan

(ikonik, işaret) birine dahil edilecektir ve ek olarak dikkat koşulunda da yer

alacaktır

Malzeme ve Ölçümler:

 Öğretilecek sözcükler: 8 İngilizce ölçüm sözcükleri

 big-small (büyük-küçük), long-short (uzun-kısa), wide-narrow (geniş-dar), 

high-low (yüksek-alçak). 

 Çocukların bu sözcüklerin Türkçe çevirilerine ilişkin bilgileri

 Sözel ve uzamsal kısa süreli bellek

Deney Tasarımı ve İşleyiş:

 Çocuklara NAO’nun onlara İngilizce sözcükler öğreteceği söylenecektir. 

 Sözcükleri farklı nesnelerle gösterilecektir (örn., büyük top, uzun çiçek). 

 Kavramları ifade eden nesnelerin resimleri NAO ile çocuk arasına

yerleştirilecek bir ekranda sunulacaktır (Şekil 1a).

Yöntem

 Eğitmen sözcükleri üç koşulda sunacaktır: ikonik jest (IJ), işaret jest (SJ), 

dikkat vurgulayıcı (DV) 

 IJ: Sözcüğe bir ikonik jest eşlik edecektir (örn., “big” sözcüğü iki elin üst

gövdenin iki yanına açılmasıyla ifade edilecektir, Şekil 1b).

 SJ: Eğitmen ekrandaki görseli işaret edecektir

 DV: Eğitmenin elleri sabit kalacak, tablet ekranındaki nesneye kırmızı bir

çerçeve ile dikkat çekilecektir (Şekil 1c).

Sonuçlar
İnsan eğitmen sonuçları:

 Çocukların cevapları ANOVA ile analiz edilmiştir,  Jest (Ikonik, İşaret ) 

ve Gösterme (El jesti, Dikkat vurgulayıcı)

 Çocuklar Dikkat vurgulayıcı koşulunda Jest koşuluna oranlar daha fazla

doğru cevap vermişlerdir (F(1,33) = 4.11, p =.05).

 Jest ve Gösterme koşulları arasında bir etkileşim görülmüştür, (F(1,33) 

= 2.69,  p =.11). 

 Dikkat vurgulayıcı koşulu bu koşul gösterme jestlerini takip ederse

daha iyi performansa yol açmıştır.

 Jest koşulun bir etkisi görülmemiştir (F(1,33) = 1.04, p = .32).

* *
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 Çalışmanın bulguları jestlerin neden öğrenmeyi kolaylaştırdığına dair

bilgi sağlayacaktır. 

 Jest koşulları arasında anlamlı bir fark bulunmamalıdır. 

 Kolaylaştırıcı etkinin jestlerin dikkat çekmesinden kaynaklanması

durumunda ise jest koşulları dikkat koşulundan farklı bir etki

 Bu çalışma robot jestlerin öğrenme üzerindeki etkilerine dair önemli

teorik katkıda bulunmaktadır. 

 Böylece, robotların çocuklara ikinci dil öğretmelerine ilişkin gelecekte

yapılacak çalışmalara zemin oluşturmaktadır.z
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• Her sözcük çifti 3 kere tekrar edilecektir. Çocukların öğrenmeleri her 

tekrardan sonra öğrendikleri sözcüklere karşılık gelen görselleri seçmeleri

istenerek ölçülecektir. Cevapları 1-doğru 0-yanlış şeklinde kodlanacaktır.

• Jestlerin süreleri ve sözcüklerin dilbilimsel özellikleri gruplar arası

denkleştirilecektir.
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den Berghe, Josje Verhagen, Ora Oudgenoeg-Paz, Kirsten Bergmann,
Thorsten Schodde, Aylin C. Küntay,Tilbe Göksun, Paul Vogt (2017, Octo-
ber). Observing human tutoring to develop robot-based language lessons.
Symposium on Multimodal Communication 2017, Bielefeld, Germany.

• Sebastian Wallkötter, Michael Joannou, Samuel Westlake and Tony Bel-
paeme (2017, October). Continuous Multi-Modal Interaction Causes Human-
Robot Alignment. In Proceedings of the 5th International Conference on
Human Agent Interaction (pp. 375-379), ACM, Bielefeld, Germany.
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Observing human tutoring to develop robot-based language lessons 

Decades of research by psychologists and educationalists identified a number of 

strategies human adults use to teach a new language to young children (e.g., Konishi et al., 

2014). In recent years, scholars in robotics and related fields have also been involved in 

research on early language education, advocating the potential of humanoid robots as 

companions that simulate the way human adults teach language (e.g., de Haas et al., 2016). 

To this date, however, there has not been extensive discussion on how strategies employed 

by human teachers can be applied to develop robot-based language lessons. In this project, 

we aim to determine which pedagogical approaches can be and should be implemented in 

robot-based language lessons.  

This abstract discusses our first step – analysis of teaching strategies observed in 

preschool language classes, with the special focus on the use of first (L1) and second (L2) 

languages and bodily actions such as gestures. We chose these two topics due to the 

potential strengths of a robot as a language teaching tool. First, the ability to switch between 

L1 and L2 makes robots as effective as or perhaps more effective than human teachers in 

some situations. It is often difficult for a human teacher to switch between two languages 

especially when the classroom consists of children from different language backgrounds. A 

robot can provide supplementary one-on-one L2 lessons using any L1-L2 combinations. 

Second, the capability to perform actions makes a robot different from other devices such as 

a tablet. As a physical agent with arms and legs, humanoid robots are able to perform 

various gestures which are, at least when performed by humans, known to facilitate 

language learning in children (e.g., Hostetter, 2011; Sueyoshi & Hardison, 2005).  

To assess how human L2 teachers use language and actions, we conducted semi-

naturalistic observations of (1) large-group L2 English lessons at preschools in Turkey, (2) 

one-on-one or small-group L2 English lessons in the Netherlands and Germany, and (3) L2 

Dutch lessons for children from immigrant families in the Netherlands.  

First, teachers’ utterances were transcribed, and all bodily actions were noted 

alongside. We then coded each utterance for a number of characteristics using an original 

coding scheme. All utterances were coded for whether it was in L1 or L2, and for whether 

switching between L1 and L2 occurred. Gestures and other actions were classified at 

different levels. At a global level, gestures can be classified into categories such as a deictic 

gesture (pointing at different entities such as objects or locations), an iconic gesture (gesture 

that represents a concrete event or object), or a metaphoric gesture (gesture that represents 

an abstract concept such as knowledge). It was also useful for our purpose to note more 

specific categories that can be directly used in our robot-based lessons. Thus, our codes 

included both general categories (e.g.,deictic gestures) and specific categories (e.g., pointing 

to a box, pretending to wear a jacket). Some of these codes were derived from the literature 

whereas others were added by our coders based on the observations. We also coded non-

gestural actions (e.g., dancing on a song) because most commercially available humanoids 

(e.g., Softbank Robotics NAO) are expected be able to perform them.  

Our observations show that, in terms of language use, English teachers in Turkey and 

the Netherlands mainly used the L2 as the medium of instruction. However, the teachers 

sometimes shifted from L2 to L1 (1) to manage classroom issues, (2) to ask questions, (3) to 

give instructions, and (4) to explain syntactic or phonological rules (e.g., explaining the 

difference between ‘this is’ vs. ‘these are’ or explaining ‘the singular-plural distinction’ as in 

shoe vs. shoes). However, in Germany, the teacher switched very frequently between the L1 

and L2: out of all utterances: 55% was in L1, 30% was in L2, and 15% was unclassifiable 

(e.g., interjection, children’s names). We can claim that teachers were naturally adjusting 



their language in order to ensure that children understood key concepts. Although many L2 

programs take, or at least claim to take, a total immersion approach in which the teacher 

speaks only in L2, the use of L1 can be still observed and is believed to be quite beneficial in 

some situations (e.g., Moore, 2002). 

 The use of gestures and other actions was very frequent in all lessons. The amount, 

however, varied greatly across lessons, from 9.24 to 73.07 per 20 minutes. Importantly, the 

rate of action use seemed to depend largely on the theme of a lesson. For instance, when 

teaching names of body parts, 70% of the teacher’s utterances containing target words were 

accompanied with gestures (e.g., pointing to the arms), but when the lesson theme was 

weather, the teacher used gestures in only 18% of her target word utterances. Thus, 

teachers used gestures only when there was a conventional or very straightforward gesture 

associated with the word they were teaching.  

Our data suggest that, although the mere presence of gestures may increase 

children’s attention to the learning content (e.g., Hostetter, 2011), including gestures in every 

possible occasion may not be necessary. Gestures are suited to teach words in some 

domains such as math (Cook & Goldin-Meadow, 2006), but may not be as important when 

teaching concepts with no conventional gestures such as body parts or color because the 

behavior was not observed among human teachers either. It must be noted, however, in 

teaching any concepts, some gestures such as pointing can be useful. Pointing can direct 

children’s attention to any relevant object, material, or location. In fact, pointing was more 

common than any other gestures (e.g., iconic gestures) in our class observation.  

So how can we use the information in L2 classrooms to develop a robot L2 tutor? Our 

data on language use suggests that L1 is used in L2 classrooms more often than commonly 

believed, and the amount of L1 use is flexibly determined based on various factors such as 

lesson topics and L2 proficiency of students. The results also highlight the potential benefits 

of using a robot as a language tutor because, as mentioned earlier, a robot can be 

programmed to use any combination of L1 and L2 in theory.  

Translation of the pedagogical strategies used by human teachers to robot-based 

lessons also introduce unique challenges. Although we found that the teachers constantly 

performed actions to facilitate their learning process, the robot gesturing too much might 

cause more harm than good. Most humanoids available under the status quo cannot move 

as flexibly or smoothly as humans, and thus some of the gestures observed in the 

classrooms cannot be well replicated by robot tutors. Further, many robots produce motor 

sounds while gesturing and thus can mask speech sound when utterance and gesture 

simultaneously occur. Research suggests that overuse of actions and gestures or mismatch 

between speech and gesture can impede the word learning process (e.g., Goldin-Meadow & 

Sandhofer, 1999). Even human teachers do not perform actions in some situations, and thus 

in designing robot-assisted L2 lessons, we must carefully consider when the use of actions 

and gestures is truly appropriate, as opposed to including them as much as possible.  

In conclusion, we emphasize that observation of human tutoring can be quite 

beneficial in developing robot learning companions not only because it provides general 

ideas about how children learn a new language, but also because specific phrases and 

actions used by human teachers are most likely to be familiar for children and thus may help 

children recognize the robot tutor as an agent and to have a successful learning experience. 

With regards to some features such as gestures, we must carefully consider the balance 

between what we want the robot to do and what hardware and software limitations of the 

particular robot let us do. Observations of human tutoring can serve as a good starting point 

in determining what to consider in developing educational robots.  
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ABSTRACT
This study explores the effect of continuous interaction with
a multi-modal robot on alignment in user dialogue. A game
application of ‘20 Questions’ was developed for a SoftBank
Robotics NAO robot with supporting gestures, and a study was
carried out in which subjects played a number of games. The
robot’s confidence of speech comprehension was logged and
used to analyse the similarity between application legal dia-
logue and user speech. It was found that subjects significantly
aligned their dialogue to the robot throughout continuous,
multi-modal interaction.
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INTRODUCTION
Whether interacting with a child, a colleague or a stranger, it is
widely accepted that humans adapt their communication in ac-
cordance with their understanding of the listener’s knowledge
and capability [1]. This unconscious process occurs across
multiple channels, and greatly simplifies dialogue production
and comprehension [6]. In contrast, many modern domes-
tic robots still use just a single modality which can result in
the loss of information, such as context, and less effective
communication and irritation for the user.
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With emergence of less computationally-expensive computer
vision techniques and advances in the field of HRI, modern
social robots can utilise some of the many non-verbal forms of
communication that come naturally to humans. For example,
gesture and gaze comprehension are of particular importance
when resolving context in dialogue, as humans often refer to
objects and events using these channels. This report explores
the extent to which humans naturally align to multi-modal,
human-like robot communication.

The strength of this alignment will have implications in the
design of future HRI systems. In this report, a study was con-
ducted to understand the strength of human verbal alignment,
i.e. adaptation of grammar, vocabulary and speaking style, to
a multi-modal social robot by continuous interaction. A Soft-
Bank Robotics, NAO robot was programmed to play games
of ‘20 Questions’. Users would think of an animal and the
NAO would work out what the animal was by asking a series
of questions. In addition to verbal communication, the robot
was capable of relaying information through LEDs in its eyes
and ears, and via gestures. Interactions between the user and
the robot were then logged over a series of games in order to
evaluate if humans automatically adapt to robots even when
the robot utilises multiple communication channels.

RELATED WORK
Entertainment is one of the most promising applications of
social robots [4]. However, the consequences of fragile, error-
prone communication systems in HRI include degraded per-
formance and limited commercial potential [5]. Dialogue
performance can be greatly improved through the additional
utilisation of non-verbal modalities, as demonstrated by a
study involving a storytelling robot [4].

Another application of social-robots is their use as classroom
assistants. When designing a robot to aid children in their
learning, one would readily assume that the robot, like human
tutors, should have social and adaptive behaviour. However,
experiments by Kennedy, Baxter and Belpaeme [2] demon-
strated that this is not necessarily the case, and it was hypoth-
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esised that social behaviour of robots may distract children
from their learning tasks.

An important factor to consider in HRI is the way in which
users align their verbal communication style to the robot, par-
ticularly in error-resolution situations. Oviatt, Bernard and
Levow [5] analysed the type and magnitude of linguistic adop-
tion that occurred during human-computer error resolution.
They discovered that users adapt to the system in three dis-
tinct ways: increasing linguistic contrast, increasing hyper-
articulation and suppression of linguistic variability. Further,
the researchers also found that the feedback given by the robot
had a significant effect on the users’ behaviour [3].

IMPLEMENTATION

Hardware
The NAO robot was chosen for this experiment as it has broad
functionality and an infant-like appearance that helps to limit
any preconceived expectations of its capabilities. It has 25
degrees of freedom to allow the development of a range of
physical gestures to complement verbal communication. There
are 11 degrees of freedom in the lower body (pelvis and legs)
and 14 in the upper body (head and arms). Low level control is
updated every millisecond while high level control and sensor
data is updated every 20 ms. Additional features include two
loudspeakers to allow the robot to play audio and speech, as
well as four microphones (two at the front of the head and two
at the back) to allow the robot to capture the user’s speech.
Captured utterances are processed using NAO’s built-in speech
recognition engine (Nuance VoCon 4.7).

Software
Gestures
Blinking is a subconscious form of non-verbal communica-
tion in human-human interaction and consequently, prolonged
staring throughout an interaction will result in alienation. The
NAO has a number of LEDs embedded in its head, with a total
of 24 LEDs dedicated to each eye. To maximise agency, LEDs
were turned off and on in sequence to imitate human blinking
which occurred at a constant base frequency with added ran-
dom noise. Throughout normal interaction, the NAO’s eyes
shone white; however, upon comprehending speech with high
confidence, the eyes flashed green for one second. Conversely,
if detected speech was not confidently comprehended, the eyes
flashed red. This modality was designed to play a major role
in informing the user how to adapt for alignment. Addition-
ally, LEDs in the NAO’s ears were turned on upon detection of
sounds above a certain volume threshold and otherwise, turned
off. Given that verbal feedback can be invasive to conversation,
these LED controls were implemented to provide an intuitive
alternative.

Further gestures were implemented by manipulating the
robot’s joints. Upon receiving an answer from the user, a mo-
tion to suggest that the NAO was thinking was selected at ran-
dom, initiated and coupled with a verbal response. Question-
specific gestures were also implemented as well as end-game
gestures that represented the NAO’s reaction to either losing
or winning the game. The advantages of this approach were

twofold. Firstly, this approach forced breaks in the conversa-
tion and gave the dialogue a more natural pace, closer to that
of human-human interactions. Secondly, these motions gave
the user some indication of what the robot is doing, namely,
processing the answer of the previous question, and indicated
that the robot will give a response in a moment.

QiChat
The corpus was outlined within QiChat topic files using a
bootstrap method. The resulting system was context-based
grammar, and consequently, only a restricted portion of the
grammar was available at any particular point depending on the
flow of the conversation. This was achieved by dynamically
loading and unloading portions of the corpus.

The overall dialogue flow was system initiative but could be
switched to short user initiative dialogues upon particular user
requests. To encourage the user to stay within the grammar
it was decided that in-corpus grammar would be used when
the robot was talking. Possible questions the NAO could ask
were specified in YAML files along with the grammar for the
expected answers. Once the user response to the question
was received and recognised, it was passed to a Python script
running the game engine.

Each question topic contained a concept for ‘yes’ and ‘no’ that
allowed the question to be answered in a variety of ways spe-
cific to that question. Additional topics were added to handle
uncertainty in sentences (e.g. ‘I think so’). This was to ensure
that such an answer does not result in the disqualification of
a possible animal due to gaps in the user’s animal knowledge
or wrong answers. For instance: NAO: ‘Does it fly?’ User:
‘Maybe’. This would not disqualify the animal ‘bird’ from the
list of potential candidates.

Although animals are not necessarily disqualified due to user
responses, the nature of the animal YAML file definitions en-
sured that some uncertainty is accounted for. Each animal
definition was outlined in its own YAML file. The file con-
tained the name of the animal, a short question to be asked
when the robot wished to guess the animal (e.g. ‘is it a bear?’)
and a frequency value for each label of each question the robot
may ask. This frequency represents the number of times a
label, animal pair has been observed in the past. For instance
a cat may have a frequency value of ‘100’ for ‘it has fur’ and
a value of ‘5’ for ‘it does not have fur’. This adds robustness
to the system given an instance when the user says ‘no’ as the
cat is not completely disqualified.

Game Engine
This section describes the robot’s internal representation of
the game. First, answers to questions were clustered into a
finite amount of categories called labels, L. A question such as
‘Does it fly?’ would have two: ‘yes’ and ‘no’. Elements of the
robot’s corpus were then be mapped onto the according label.
Questions were subdivided into two categories: differentiating
questions and guesses. Differentiating questions, Q, as the
name implies, help the robot to differentiate between animals.
An example would be: ‘Does it have legs?’. Guesses G, are
yes/no questions, specifically asking for an animal, e.g. ‘Is it a
cat?’. To win the game, the robot has to ask a guess and detect
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the label "yes". There was a total of Q = 17 differentiating
questions and G = 32 guesses, one for each animal, making
a total of 49 questions. All question labels were combined
into a feature space, where each dimension represented the
frequency of a label’s observation. Each animal was then
represented as an element of this space.

To find the animal, it was assumed that the user’s animal was
in the set of animals, A, known to the robot. This allowed the
robot to create a probability distribution over animals, mod-
elling the user’s belief. The optimal distribution, P∗ would
assign 0 probability to every animal except the user’s, which
would have probability 1. This distribution had to be found
by asking questions. Initially however, the robot had no in-
formation about the user’s animal, thus its prior, P(A), was a
uniform distribution over all animals. Given the label of the
user’s response to a question, this prior could be improved in
a Bayesian fashion:

P(A|L = l) =
P(L = l|A)P(A)

P(L = l)
, (1)

where P(L = l) was the total probability of observing label l
as an answer and P(L = l|A) was the probability of observing
l, given the currently asked question. Further, P(A) was the
robot’s current prior and P(A|L = l) was the new, better prior.
As an alternative to computing P(L = l) and marginalising
over it, one can normalise the result of P(L = l|A)P(A) after
computation.

One challenge in using this method alone was that the proba-
bility of an animal could never reach 0 exactly. This decreased
robustness if the robot’s model of an animal differed from the
user’s. An example would be the user thinking of a squirrel
and being asked: ‘Does it have two or four legs?’. While the
robot may think that a squirrel has two legs, the user may think
it has four and thus answer accordingly. This would decrease
the squirrel’s probability and other animals, i.e. dog, cat, and
so on would become more likely. To solve this, the robot’s
belief was thresholded after each Bayesian update:

Pthresh(A) =

{
P(A) , if P(A)≥ 0.05

∑A[P(A)>0]
0 , otherwise

. (2)

Here, ∑A[P(A)> 0] counted the number of animals with a non-
zero likelihood, scaling the threshold dynamically. This can be
viewed as ‘discarding’ an animal, if enough information had
been gathered suggesting another. Not only did this solve the
problem of a potential difference between the robot’s and the
user’s model of an animal; tests also showed that this creates
robustness against deliberately-supplied false information. For
example, if the only remaining animals are a cat or a dog, both
of which are equally unlikely to fly, then if the user told the
robot that the animal does fly, each animal’s probability would
decrease initially, but reset after normalisation. This means
the robot is mostly unaffected by false information, if enough
correct information has been specified beforehand.

Finally, the robot chose its next question depending on how
many animals could be discarded on average when asking. It
was done by simulating each label as a reply for each question,
using above inference method. However, when computing the
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Figure 1. The figure shows the distribution of games played by partici-
pants. There was a total of 32 participants. The graph shows how many
participants played at least N games.

updated prior, Pthresh, the number of times a probability was
set to 0 was counted. As the likelihood for a label is known,
the expected number of discarded animals per question could
be calculated. Consequentially, the question with the highest
expected value was chosen as next question.

This setup scales well into the case of an unknown animal.
The robot would assign high probability to a known animal
sharing the most features with with user’s animal. However,
since the user will answer the corresponding guess question
with label ‘no’, the robot runs out of animals to consider and
concedes.

STUDY DESIGN
The goal of this paper is to answer the hypothesis: ‘Does
continuous multi-modal interaction cause human-robot align-
ment?’. A within-subject study was conducted, asking a num-
ber of subjects to play a sequence of four games. For each
game the subject’s verbal alignment to the robot was measured.

In the beginning, the robot would offer an explanation of the
game and then start the experiment. This allowed a controlled
and repeatable introduction. During the experiment the robot
would record all detections of the speech recognition engine
together with their confidence. This capture happened auto-
matically and in the background, minimising influence on the
subject.

The way the study was set up allowed minimal interaction
between the researchers and the subject. This provided con-
sistency across all experiments and minimised the Hawthorne
effect as neither observers nor clear recording equipment (cam-
era or microphone) were present. This facilitated authentic or
near authentic behaviour throughout the interaction.

RESULTS AND ANALYSIS
Carrying out the study, a total of 32 subjects were asked to play
initially. However, many participants could not play four sub-
sequent games, due to time constraints. The distribution over
how many games were played by all participants is shown in
figure 1. Each of the 32 participants played at least two games,
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Figure 2. The graph shows the average confidence of the speech recogni-
tion system over the number of games played. The error bars visualize
the standard error. The confidence increases significantly (p = 0.018)
over the course of multiple games.

however only a total of 19 played four or more consecutive
games.

The group of participants that played four or more games was
analysed using ANOVA with repeated measurements. For this,
the first four games of each participant were considered. Fig-
ure 2 shows the average confidence in each game as well as the
standard error. The result shows that the confidence increases
significantly over time (F(3,54) = 3.651, p = 0.018).

To measure the speech recognition’s confidence the ASR’s
(Nuance VoCon 4.7) confidence value was used. This result
suggests alignment between the human and the robot.

DISCUSSION
Throughout these interactions, the principal method of indi-
cating if detected speech had been matched to a phrase in
the corpus was non-verbal and expressed via the colour of
the robot’s eyes. In addition, only implicit verbal feedback
was given by the NAO as to whether the subject’s answer was
correctly categorised by the dialogue system. This ensured
that no information was given as to the specific content of the
robot’s grammar. Users acquired knowledge of the NAO’s
grammar through trial and error only, and therefore, alignment
occurred entirely naturally, without explicit instruction from
the robot or a researcher.

As seen in Figure 2, the NAO’s confidence of comprehen-
sion initially averaged at a level below the speech recognition
confidence threshold of 0.5. As interaction continued, the
average confidence of comprehension increased significantly,
and eventually peaked in game number three. This experi-
ment demonstrated that subjects significantly aligned their
spoken communication during these multi-modal interactions
to maximise the NAO’s confidence of comprehension.

A slight, but insignificant, decline in the confidence of compre-
hension was observed in game number four, seen in Figure 2.
The reason behind this is unknown. However, the answer may
lie in an underlying compromise between effective dialogue,
and speech that is natural to the user. Significant alignment

occurred throughout the first three games, at which point the
conversation may be considered effective, however, it is likely
that subjects suppressed their natural linguistic variability to
achieve this. Once sufficiently effective dialogue had been
achieved, the users may have begun to slip back into more
natural linguistic habits.

The results of this study should be leveraged by designers
of social robots. The strong degree of alignment that was
observed indicates that subjects quickly built a belief of the
robot’s capability in order to predict what the robot will un-
derstand and, subsequently, tailor their grammar accordingly.
Consequently, this implies that small corpora can still result
in efficient dialogue, whilst reducing development time. The
occurrence of significant alignment implies that the NAO was
‘over-promised’, a situation that can lead to disappointment for
the user. Consequently, this report hypothesises that gradient
of alignment can be used as proxy for measuring the degree to
which a robot has been over-promised.

CONCLUSION
This study found that subjects automatically strayed from their
natural style of verbal communication in order to align their
dialogue with that of the NAO robot throughout continuous,
multi-modal interaction. This adaptation occurred in the pres-
ence of communication through multiple channels, with the
NAO relaying information through speech, gestures and LEDs
in its eyes and ears. In addition, this alignment occurred in the
absence of explicit instruction from the robot or researchers.

The study observed some degree of overshoot when subjects
simplified their speech to align with the robot. However, this
was not observed with statistical significance. If true, it would
highlight the compromise that users make between effective
interaction and natural speech.

It is clear that the phenomenon of alignment has positive and
significant effects on the effectiveness of dialogue in HRI. This
paper proposes that the gradient of alignment could also be
used as a proxy to measure the degree to which a robot is over-
promised by its appearance. Future study into the possible
interaction between rate of alignment and over-promising is
recommended.
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ABSTRACT
This paper provides a qualitative review of different object
recognition techniques relevant for near-proximity Human-
Robot Interaction. These techniques are divided into three
categories: 2D correspondence, 3D correspondence and non-
vision based methods. For each technique an implementation
is chosen that is representative of the existing technology to
provide a broad review to assist in selecting an appropriate
method for tabletop object recognition manipulation. For each
of these techniques we give their strengths and weaknesses
based on defined criteria. We then discuss and provide recom-
mendations for each of them.
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I.4.8 Scene Analysis: Object Recognition

Author Keywords
object detection; pose detection; tabletop manipulation.

INTRODUCTION

Context: Near Object Interaction
This paper takes a practical approach to survey the technical
landscape on the problem of small object identification and 6D
object localisation in a cluttered environment – a context often
termed as object recognition for tabletop manipulation. Our
approach is practical: we consider a typical interaction setup
(Fig. 1) where the robot needs to accurately and robustly iden-
tify and localise objects in order to manipulate them, commu-
nicate about them or reason on their geometric properties and
relations. Critically, the object recognition technique needs to
be suitable for actual experimental work, including field exper-
iments: it must be reasonably easy to deploy the system in a
range of dynamic human environments, without having to rely
on expensive or cumbersome physical sensors, or expensive
computation. We also take a short to medium horizon: not
all techniques we evaluate are commonly available yet, but
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all have the potential to be robust implementations in the near
future.

This paper tries to remedy a lack of information on deploy-
ment details in HRI contexts: many traditional assessments do
not report on practical considerations. We need to take into
account many different factors. For example, how robust is
the detection and pose recognition when there are frequent
changes to the environment, such as varying backgrounds or
changing lighting conditions.

Figure 1. A close proximity interaction setup, typically found in human-
robot interaction and cognitive robotics scenarios. Key scene character-
istics are usually constant: relatively small objects (e.g. largest side being
less than 10 cm), presence of occlusions, limited working space, and the
presence of both textured and texture-less objects.

In this paper we compare across three families of techniques.
The first is techniques that rely on 2D images, from which we
track a selection of points. Back projection on these points
allow the estimation of an object’s 6D position. The second
family of methods use 3D templates. 3D objects are compared
against a known point cloud to find the position and orienta-
tion of an object. The final family relies on techniques that
do not use traditional vision techniques, for example RFID
technology.

Surveys on Object Detection
As a cornerstone of many robotic applications, research on
object recognition and localisation has been reviewed in nu-
merous past literature surveys. These surveys typically focus
on one family of techniques or algorithms, typically using syn-
thetic datasets to quantitatively compare the performances of
the state of the art. We summarise hereafter the main findings
for each of the localisation techniques.



Techniques based on 2D correspondences
When perceptual data consists of camera images, pre-stored
templates of objects are often matched against the incoming
video stream using 2D correspondence techniques. Li et al. [9]
conducted a survey of visual feature detection. In the review
they categorise these techniques based on the fundamental
principle by which they detect features, such as edge, blob
or corner detection. Feature detection methods vary in per-
formance based on the application context, but among them
feature based techniques such as A-KAZE, ORB and SURF
are popular in object recognition and tracking contexts [5].

Techniques based on 3D correspondences
The increased availability and popularity of 3D cameras has
driven the need for 3D object matching techniques. Diez et
al. [6] performed a qualitative review of 3D registration tech-
niques, in which a mapping is made between 3D images or
a 3D templates and an image. They specifically reviewed a
variety of detectors and descriptors for 3D registration. De-
scriptors and detectors attempt to minimise the number of
points required before using such brute force techniques to
perform accurate identification. Note that while these are used
to select salient points, they nearly always end up using itera-
tive closest point (ICP) algorithms, which find corresponding
points between a template and an unknown object. The more
points that are used, the more accurate the detection is, but
using more points has an exponential impact on computational
requirements.

Non vision-based techniques
Many other reviews also focus on technologies not relying on
visual perception. RFID can be used for coarse localisation,
and has been shown to have an accuracy of a few centimetres
[13]. The techniques used in their review are meant for local-
isation within a room, while our focus is on techniques that
work on the scale of under a metre, for example localising
objects on a tabletop. But reduced distance holds potential for
increased accuracy, as objects are nearer to the RFID readers.
Mautz [10] conducted a wide survey of a number of indoor
positioning techniques for a range of applications. Most of the
techniques reviewed are localisation for navigation, and are
not practical for use in a tabletop situation. However, among
the suitable methods identified for the accuracy we require for
tabletop recognition was magnetic technology, which is able
to reach millimetre levels of precision. Hostettler et al. [8]
look at using Anoto positioning technology to localise a robot.
They concluded that using a printed pattern that they are able
to position a robot with high accuracy and with robustness to
lighting and occlusion conditions, the technology was only
restricted by the size and quality of the sheets that could be
printed with the pattern.

Approach and Methodology
We compare a number of existing implementations of a wide
range of techniques for object and pose detection. We chose a
selection of implementations based on availability, ability to
process in real-time and that could be considered representa-
tive of that technology. Each of these methods was compared
against the following criteria:

1. Degrees of Freedom: The degrees of freedom that the
method is able to measure (position and/or orientation).

2. Detection Stability: How stable was the method of detec-
tion. Would an object be lost even if nothing was happening,
or were false positives generated.

3. Rotation Invariance: Is the method able to track the object
when it is rotated.

4. Distance Invariance: How much does the distance of the
object affect the tracking for that method.

5. Environment Interference: Is the method able to cope
with changes to the background and lighting.

6. Occlusion: Can the method detect objects that are being
partially occluded by other objects from the perspective of
the robot.

7. Practical Use: Any additional notes such as extra equip-
ment required that may affect the usability of the system in
an experiment.

Each method is briefly described. A table of results provides a
side by side comparison of each implementation. Finally we
discuss and provide recommendations on each method.

ASSESSMENT OF OBJECT DETECTION METHODS
Here we briefly describe each method we evaluated and their
main weaknesses. Table 1 provides a summary of our results.

3D pose estimation from 2D images
These techniques use a standard 2D cameras. From this, image
features are extracted that can be used to identify the object.
These features can then be used to provide a 3D position by
back projecting the 2D points to 3D reference points, using
algorithms like ‘perspective-n-point’(PnP) [7].

Fiducial markers
Fiducial markers look similar to 2D barcodes that can be
printed out or displayed on a screen for detection. Several
libraries provide 6D tracking of such markers, like the chilitags
library [4].

Figure 2. Object with a fiducial marker, which allows it to be identified
and tracked.

The tags are highly susceptible to occlusion, a small amount
is enough to lose tracking. The markers require a flat surface
to work, on irregularly shaped objects we get around this by
attaching cubes (fig. 2).

Feature tracking
Three feature tracking methods were tested using the imple-
mentations provided by OpenCV1; SURF [2], A-KAZE [1]
and ORB [12]. In each case an image is used as a target for the
feature detection. These methods are classed as blob detection,
1http://opencv.org/



Method Degrees of Freedom Sta. RInv. DInv. Env. Occ. Practical Use

2D w/ PnP

Fiducial Markers 6D Very High Very High High Very High Very Low Markers on flat surfaces
A-KAZE 6D Moderate Very High Low Low Moderate

ORB 6D Moderate Very High Low Low Moderate
SURF 6D Moderate Moderate Moderate Low Moderate

Template Matching 6D Very High High High Low Moderate
Deep Learning (Faster R-CNN) Planar High Very High Very High Very High High High Training Requirement

Depth Mapping

ORK 6D Very Low High High High Moderate RGB-D Camera
Realsense SDK 6D High High High High Moderate RGB-D Camera

Non-Vision Based

GaussSense Planar w/ Rotation Low Very High Very High Very High Very High Sensor Board
ePawn Planar w/ Rotation Very High Very High Very High Very High Very High Sensor Board

Table 1. Table showing a summary of the different object detection methods and their performance based on the criteria defined in section 1.3. Sta.:
Detection Stability. RInv.: Rotation Invariance. DInv.: Distance Invariance. Env. Environment Interference. Occ.: Occlusion

which look for areas of pixels that are similar to each other but
contrast their surroundings.

All three of these methods struggle with changing back-
grounds, and did not handle varying distances well. Besides,
computing the backprojection to obtain a 6D pose is gener-
ally difficult: as feature trackers select by themselves which
features they choose to match, they are not known in advance.
This makes it difficult to apply a PnP transformation to recom-
pute 6D coordinates.

Template matching
Template matching, while a relatively old technique, was also
considered; we tested using the implementation from OpenCV.
An image is used as the target for template matching. This
target image is then compared pixel by pixel against an image,
and the strongest match is returned as a bounding box.

Multiple target images will be required per object to provide
proper 6D pose estimation. Its greatest weakness is to varying
backgrounds.

Deep Learning
Deep learning relies on the training of a neural network on
a dataset of pictures. Here we used Faster R-CNN [11] to
test Deep Learning. We used a pre-trained network2 that was
trained on the PASCAL VOC 2007 image dataset.

The network was unable to detect iconic versions of objects
it had been trained on (fig. 3), so training would be required
on the specific objects to be used as part of the experimental
setup.

This method only provides bounding boxes of the objects, but
these cannot be compared against a known object (an object
could be small but near the camera or large but far away and
we would be unable to determine the exact dimensions). This
makes it difficult to provide a 6D estimation.

3D pose estimation from 3D sensor data
In recent years RGB-D cameras, which return 3D scene data
in addition to a 2D image, have been widely used in HRI. The
Microsoft Kinect technology or the Intel Realsense technol-
ogy have proven particularly popular. Here we evaluate their
2https://github.com/smallcorgi/Faster-RCNN_TF

Figure 3. Images showing two pictures of cows, on the left a real cow that
is detected by Faster R-CNN trained on the PASCAL VOC 2007 dataset,
on the right an iconic toy cow that is missed.

software in the context of object localisation and pose reading.
The techniques that we look do not require more than a tablet
or laptop to process the data.

Planar segmentation and iterative fitting
We evaluated “Tabletop” from the Object Recognition Kitchen
(ORK)3 implemented using ROS. Tabletop uses planar seg-
mentation to separate the surface of a table and segment ob-
jects that are on top. These objects are then compared to a
database containing meshes of known objects using simple it-
erative fitting (related to ICP[3]). This method performed well
with different object rotations and scales, and was unaffected
by a change in background. However this method generated
too many false positives to be considered a stable option for
close proximity human-robot interaction scenarios.

Intel Realsense tracking
In the Intel Realsense SDK4, Object Tracking (C++) for the
SR300 was used. This method relies on having a 3D mesh of
the object, which it then used for matching. During our inves-
tigation we were unable to determine the exact method used
by the Intel SDK as it has not been published (see discussion
section). Objects were sometimes lost for no apparent reason
and would need to be moved for them to be recognised again.
This technique is able to handle a small amount of occlusion.
3http://wg-perception.github.io/object_recognition_core/index.html
4http://www.intel.co.uk/content/www/uk/en/architecture-and-
technology/realsense-overview.html



Non-Vision Based Techniques
This section details methods that do not rely on the use of
cameras, but instead the use of additional equipment.

Magnetic Field sensors
Magnetic Field sensors use one or more Hall effect sensors
to read the position and orientation of a magnetic tag. We
evaluated the GaussSense5 solution, a small and affordable
magnet sensor with a high degree of sensitivity. It is able to
measure orientation and measures up to 3-4cm away from the
sensor. It does however only cover a very small area. Many
sensors would be required to cover a larger, the price may then
become a consideration, with a 16x16cm board costing $350.
GaussSense also requires the use of an Arduino to process the
data received. However to distinguish between different tags
requires an NFC tag.

NFC solutions
Several NFC sensors a can be combined into an NFC array,
allowing for detection over a larger area. We evaluated the
ePawn6 mat, an NFC sensor board covering a 32x32cm area.
The ePawn mat, using a 2D matrix of sensors, can locate a tag
with millimetre accuracy. Using two tags in an object allows
the calculation of orientation in the plane of an object. Tags
themselves are 2cm in diameter so would be able to fit on
or inside small objects. Tags only really work well while in
contact with the mat. The prototype we evaluated currently
costs e1400.

DISCUSSION AND RECOMMENDATIONS
Of all the 2D vision based techniques fiducial markers were
probably the most reliable. However its sensitivity to occlu-
sion means it is unsuitable for a study where the objects are
frequently moved around by hand and placed behind other
objects. Another challenge is often the attachment of fiducial
markers onto objects: curved or irregular objects often prove
challenging to attach the markers to. However, fiducial mark-
ers might bring benefits not offered by other technologies: the
ease of displaying fiducial markers on a screen, or printing
out markers, and the high accuracy it can provide, means that
it is suitable for calibrating multiple cameras quickly in an
experimental setup.

The feature tracking methods (A-KAZE, ORB and SURF) all
have issues with dynamic backgrounds, which is an issue when
the camera is not static or when subjects in the interaction are
in view. It should be noted that the objects being used for
this assessment were all relatively simple toys, which lacked
rich texture. These methods may perform better on other,
more textured, objects, but it may still require combining these
methods with other algorithms to get a truly robust detection
system.

Template matching, while relatively old, was among the most
robust of the 2D methods. To provide a 6D pose estimation
however this method will require a lot of templates to compare
against. Therefore this method will not scale well with mul-
tiple objects. It may be better to use this method to increase

5http://gausstoys.com/
6http://epawn.fr/

the stability of other techniques where it could be used for
foreground selection.

The Faster-RCNN that we tested can only provide a bounding
box for our objects, this means we cannot get a full 6D pose
estimation with this technique alone. However its reliability
means that it could be very useful as a foreground selection
technique to be used in a pipeline with other methods. Recent
research looks into using a CNN that is able to handle 3D pose
estimation [14], but it is unlikely that a training set for specific
experimental requirements exist as these networks are only
just emerging. The process of generating the required training
data and then training the network is a process that potentially
requires months of work before being usable in an experiment.

The implementation of tabletop in ORK provided too many
false positives to be feasible for use in our future studies.
However we only tried one camera, the Intel SR300. Other
hardware or updates to software drivers may increase perfor-
mance. By making use of the planar segmentation part of
the process it would be possible to subtract the background
for use in other detection methods, causing this to no longer
be an issue for those methods which struggle with varying
backgrounds.

The Intel Realsense SDK performed better with a lot higher
stability compared to ORK. However the issue where it would
sometimes lose an object while not common is still enough
to cause issues in a study. This however is probably the best
method available if it is a requirement to track objects while
they are being moved. We were unable to find the exact tech-
nique that Intel Realsense used, as it has not been published,
but due to its performance it was still included in this review.
It appears to identify contours in the object before we assume
using ICP to match these points to the points of objects stored
in the database.

None of the vision based techniques were fully capable of
performing the required level of object recognition in a prac-
tical tabletop setting. However a pipeline of techniques has
the potential to overcome the weaknesses that are shown with
just a single method. For instance the 2D techniques could
be used to provide a bounding box and classification of the
object, allowing a 3D technique to provide precision depth
and pose information.

The GaussSense magnetic sensor performs well when tracking
a single object. However an NFC module is required to be
able to distinguish between multiple objects. For this reason it
would be recommended to just use an NFC sensor when using
multiple objects.

The ePawn NFC mat is probably the best method reviewed
here for use in object recognition with tabletop manipulation.
Its downside is that it cannot provide full 6D pose estimation,
and the need for additional sensor equipment in the form of
a RFID matrix. It is however suitable for many cases where
objects need to be tracked, and potential interactions can be
shaped around this limitation. NFC also has an advantage of
being a known and reliable technique, as it used widely in
contactless technology, such as debit cards and key fobs.
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Abstract—Social robots represent a fruitful enhancement of
intelligent tutoring systems that can be used for one-to-one
tutoring. The role of affective states during learning has so
far only scarcely been considered in such systems, because it
is unclear which cues should be tracked, how they should be
interpreted, and how the system should react to them. Therefore,
we conducted expert interviews with preschool teachers, and
based on these results suggest a conceptual model for tracing
and managing the affective state of preschool children during
robot-child tutoring.

I. INTRODUCTION

The use of robots for educational purposes has increasingly
moved into focus in recent years. One rationale is to enable
individually adapted one-to-one teaching for weaker students,
which can hardly be provided in regular classrooms. This
idea already underlay educational on-screen applications like
intelligent tutoring systems (ITSs). Physically present social
robots are expected to bring an additional quality to the
learning interactions, similar to co-present teacher-child or
child-child interaction, which can make the tutoring experience
more effective. Indeed, a recent study showed that students’
learning performance increases up to 50% if a social robot was
included compared to a classical on-screen media learning [1].

One of the main challenges for robot tutors is to identify
the learner’s internal states, e.g., whether she is following,
distracted, or losing motivation. Yet, recognizing and reacting
to these cognitive and affective states is vital to keep the
learner engaged and to foster learning. In previous work, we
developed an approach to dynamically adapt robot tutoring to
the changing pedagogical state of the learner [2]. There, the
skill mastery of the student is kept track of inferentially using
Bayesian Knowledge Tracing, which enables the robotic tutor
to choose the to-be-addressed skill and difficulty of the next
task accordingly. This way the model works to keep the child
in the “zone of proximal development” [3], which can lead to
a feeling of flow, motivation and better learning [4], [5].

However, this approach lacks ”emotional intelligence” [6].
Successful human teachers not only teach the curriculum
according to the learner’s knowledge state, but also manage the
affective states of children. Studies have shown that affective
states like curiosity, interest, flow, joy, boredom, frustration
and surprise can influence learner’s problem-solving abilities,
and affect task engagement and learning motivation [7]. Fur-
ther, such states are found to influence cognitive processes like

long-term memorizing, attention, understanding, remembering,
reasoning, decision-making and the application of knowledge
in task solving [4], [8]. It is thus not surprising that good
human tutors are sensitive to learners’ vocal (e.g., intonation)
or nonvocal behavior (e.g., facial expression, body language)
[9]. Technical systems are also increasingly able to recognize
most of these cues - albeit sometimes in a quite rudimentary
way. However, little attention has been paid to the question
how a robot should interpret and respond to the affective state
of a learner during tutoring with the needed flexibility and
adaptiveness [10], [11].

In this paper we present steps towards a model for tracing
and managing the affective state of preschool children in
second language tutoring interactions with a robot tutor. This
model is based on pedagogical knowledge about children’s
affective states during actual robot-child tutoring gathered
through expert interviews with preschool teachers. This knowl-
edge comprises information about which affective states are
relevant, from which features they can be tracked and, finally,
how to react to them appropriately as a tutor. It lends itself to
a decision-theoretic affective state tracing model that can be
combined with our previously developed adaptive knowledge
tracing approach. The following section discusses previous
work on affect detection and affective tutoring systems. After-
wards we present the procedure and results of the conducted
expert interviews. Finally, we discuss how these findings can
be incorporated into a conceptual model that enables the
recognition of and reaction to changes in children’s affective
states.

II. RELATED WORK

A. Affect Detection

A lot of work has been done on affect recognition based on
different modalities. One widely used approach is the analysis
of facial expressions to detect the affective state of a user [12].
Often, classifiers are trained on “very expressive and played”
emotions, making their applicability to real-world interactions
questionable. In fact, the accuracy of emotion detection based
on facial features is often low in real-world applications.
Furthermore, the recognition rate is strongly dependent on the
expressiveness of each target.

An alternative approach is the detection of affect from
the user’s voice [13]. Classifiers based on voice analysis are



trained on datasets of spontaneous speech, so that they are
more suitable for real-world applications. With regard to robot-
child tutoring, affect detection through speech analysis is,
however, difficult because speech input is often not included
as speech recognition for children has a low accuracy [14].
Other attempts have been made to detect the affective state
through analyzing written text [15]. This approach includes,
for instance, analyzing the usage of adjectives and adverbs.
But in most natural interactions humans do not write text, and
preschool children are usually not able to read and write.

A broader approach for affective state detection is the
tracking of the whole body posture and movements by using a
body pressure mat laying on a seat [16], or using a Microsoft
Kinect [17]. A limitation is that the use of a body pressure
mat assumes that the user remains on a seat and cannot move
around. The Kinect, however, allows the user to move around,
but may have problems in detecting smaller events like small
postural shifts. Also, approaches based on human physiology
have been adopted. In this realm, measures such as ECG, EEG,
EMG [18], [19], and brain imaging [20] have been applied to
“read” the affective state from the user’s body. The results of
these methods are promising, however the applicability of such
obtrusive approaches (e.g., wires and patches on the body) in
tutoring interactions with children is clearly limited.

In sum, all of these approaches have their field of use, but
also their limitations. In contrast, multi-modal approaches have
been studied to overcome these limitations and to increase
accuracy of the detection. A lot of combinations exist, e.g.,
facial expressions and voice [21], facial expression, voice
and body posture [22], facial expressions, body postures and
context dependent activity logs [23], or speech and text [24].
Such systems demonstrated that a multi-modal approach to
detect affective states results in higher accuracy rates.

B. Affective Tutoring Systems (ATSs)

Since the technical progress yields new possibilities to make
use of the affective state in tutoring interactions, a lot of
systems have been extended with such a module. Shen et
al. [25], for instance, used physiological signals for affect
detection and then guided the learning interaction by different
affective strategies. Their results demonstrated the superiority
of an emotion-aware over a non-emotion-aware system with a
performance increase of 91% .

Alexander et al. [26] developed an affect-detecting ITS
including a virtual agent for primary school students. The
affective state is detected by analyzing the facial expressions
of the student and serves as the basis for a case-based selection
of the next tutoring actions. The case-based rules have been
informed by an observational study of human tutors. In a
study conducted in a primary school, where children had to
solve mathematical equations, the use of their affective system
showed a significant increase of the students’ performance as
compared to a control group without affective support.

The “Affective AutoTutor” system [27] can automatically
detect boredom, confusion, frustration and neutral affect by
monitoring conversational cues and discourse features along

with gross body language and facial features. Cues provided
by each channel are combined to select a single affective state,
based on which AutoTutor responds with empathic, motiva-
tional, or encouraging dialog-moves and emotional displays.
Evaluations showed that this systems is able to support learners
not only in acquiring knowledge, but also in using it in transfer
tasks later on. Recently, Goren et al. [28] incorporated affect
detection via facial expressions in robot-child tutoring. In a
study with preschool children they showed that their system
personalized its policy over the course of training, and that
children who interacted with the personalized robot showed
increased long-term positive valence as compared to a control
group without personalization.

Taken together, the findings from earlier approaches suggest
the inclusion of affect detection in robot-child tutoring. Most
affect detectors are trained on specifically annotated data to
identify the important cues for each affective state. For exam-
ple, the emotion classifier “Affectiva Affdex” [29] is trained on
more than 5 million human faces to classify facial expressions.
Strategies for how to respond to those states are usually based
on observational studies of the reactions of a human tutor
to the behavior of a student [30]. We adopt this approach
here, too, with the aim of building a model that enables a
robot to detect changes in children’s learning-relevant affective
states and to react to these changes appropriately. For this,
child-robot interaction specific knowledge is necessary that
could be best gathered from experts in reading and managing
the affective states of young children in tutoring interactions,
namely, preschool teachers.

III. EMPIRICAL BASIS

With the aim of answering the questions, which affective
states occur and are important during robot-child tutoring, and
how they can be detected based on the observation of a child,
a qualitative approach was chosen. We used video recordings
from a previous study in kindergarten and interviewed five
preschool teachers on their perception and interpretation of
the children’s behavior.

A. Participants

A total of five female preschool teachers were invited and
interviewed as experts. They were between 36 - 61 years old
(M = 48.6;SD = 8.16) and had a working experience from
16 to 42 years (M = 29;SD = 8.88).

B. Materials

With the objective of allowing the experts to observe
children during robot-child tutoring in a controlled manner,
video recordings from an interaction study were used. They
were presented and discussed during face-to-face interviews
with one interviewer. In total, video recordings of eight
different children (4 female, 4 male), which varied in their
level of activity and expressiveness when facing the robot,
were chosen. The decision was taken to ensure that individual
difference are considered in spite of the small samples. The
recordings were taken in the realm of a separate study in Dutch



Fig. 1. Screenshot from one of the videos shown to the experts during the
interview. The learning interaction is displayed from two perspectives.

preschools were children were tutored to learn animal names
in a foreign language by means of a “I spy with my little
eye...” game with a Nao robot. Here, up to four images of
animals were displayed on a tablet screen, while the robot is
referring to one of them using a Dutch description and the
English name of the animal [31]. To choose the animal the
robot mentioned, the children had to tap on the picture on the
tablet. Two camera perspectives were recorded and presented
to the experts to allow a frontal view on the child, but also a
landscape view from the side on the whole experimental setup
which includes the robot, the tablet and the child (see Fig. 1).

C. Procedure

At the beginning of each interview session, the participants
were informed about the purpose and the procedure of the
interview and signed an informed consent that their voice
was recorded. They were instructed that they should judge
the behavior and related affective state of children, which are
presented in video recordings. First, a small example video
was presented, which had to be commented by the experts to
make sure the task was clear. Then, the interviewer started the
video on a laptop and asked the expert to comment on the
child’s behavior and state. After each video (one video relates
to one child) the interviewer asked how the experts would react
to negative changes in the child’s state, e.g., if they recognize a
lack of attention, and how this could be realized with a robot.
At each point in time, the interviewees were allowed to pause
the video and go back to review a scene. Each expert discussed
a total of four videos with the interviewer. Afterwards they
were thanked for their participation and dismissed.

D. Analyses and Results

The whole interview session were recorded by means of a
computer microphone, and a screen capture tool to synchronize
the comments with the video recording that was played
at the time. The recordings were afterwards transcribed to
enable detailed content analyses of the experts’ comments.
The transcripts were then analyzed regarding the following
research questions:

TABLE I
CHILDREN’S STATES AND RELATED CUES

Meta-level
State

State
Interpretation

Behavioral Cue n∗

Engagement Concentration/
Thinking

eye contact 5 (4)
sit still 2 (2)
hand to head 4 (3)

Involvement/
Activity

mimic robots gestures 2 (2)
answer verbally 1 (1)
nodding 1 (1)
head-shaking 1 (1)

Expressive/Proud
smiling 7 (4)
thumb up 1 (1)
raise fist 1 (1)

Disengagement Inattentiveness/
Distraction

rub eyes 2 (1)
grimace 4 (4)
gaze away 7 (4)
turn away (whole
body)

10(4)

move position (stand
up, lay down)

2 (2)

Boredom/
Impatience

support the head with
hand(s)

3 (2)

move the head from
left to right

2 (2)

undirected finger tap-
ping

4 (3)

gaze away 2 (1)
move position (stand
up, lay down)

6 (4)

Negative
Engagement

Skepticism tilt head 3 (3)
Disinterest frown 1 (1)
Averseness lower mouth corners 1 (1)

∗n is the frequency of reference to a cue; the amount of children for which the cue
was observed is noted in parentheses.

• RQ1: How do experts interpret the cognitive and emo-
tional state of children during the robot-child tutoring
lessons?

• RQ2: To which behavioral cues do they refer when they
remark changes (e.g., in the childs level of attention)?

• RQ3: How would the experts react to changes in the
children’s engagement from the perspective of the robot?

According to the experts descriptions of the children’s
states, categories of states were derived. As listed in Table I,
the childrens states can be classified into states of engagement,
disengagement, and negative engagement, on a meta level
(RQ1). Engagement is composed of concentration and think-
ing, activity and involvement, as well as expressiveness. If a
child kept eye contact with the robot and tablet, and sit still, the
experts interpreted their behavior as concentrated and engaged.
If they mimicked the gestures the robot made, or answered
verbally or nonverbally (e.g., nodding, head-shaking), they
were also described as involved and thus engaged in the inter-
action. Likewise, expressive behaviors as smiling, or showing
a thumb up were interpreted as a sign of engagement by the
experts. On the other hand, behaviors that were interpreted



as signs of inattentiveness and distraction, or boredom, were
regarded as indicators of disengagement. For instance, rubbing
eyes, gazing away, or frequent changes of the seating position
were interpreted as inattentiveness. Additionally, supporting
ones head with the hands, undirected tapping with the fingers,
and gazing away, were (among others, cf. Table I) named as
remarkable behaviors that demonstrate boredom and disen-
gagement. Finally, the category negative engagement contains
negative states like skepticism and averseness. These states
were related to frowning, lowering mouth corners, and head-
tilt (RQ2).

Each interaction with the robot varied according to indi-
vidual differences of the children (e.g., age, self-confidence).
Hence, we counted for each behavioral cue, how many times
it was mentioned by different experts for different children. If
two experts observed a cue for one child as relevant it was
counted as two; but if one expert mentioned one cue for one
child several times it was counted as one. To reflect on the
occurrence of the cues over different children, it was further
listed for how many different children the cue was observed
(see Table I numbers in parentheses).

The results indicate that eye contact (n = 4 children),
smiling (n = 4), and self-touches to the head (n = 3)
were interpreted as a sign of engagement for multiple children
in the video recordings. Regarding disengagement, making
grimaces (n = 4), gazing away (n = 7), turning away
(n = 4), moving the position (n = 2), and finger tapping
(n = 3) were observed across several children. As a sign
of negative engagement, head tilt was for several children
(n = 3) interpreted as showing skepticism. Instead, giving
verbal answers, nodding, head-shake, eye rub, frowning, and
lowered mouth corners were only addressed for one child,
respectively, and appear hence less informative. Note that the
counts refer to the spontaneous mention of the cue per child
and that the cues were overall mentioned repeatedly over the
course of the interaction.

Furthermore, we asked the experts how they would inter-
vene to keep children engaged in the interaction from the
robots point of view (RQ3). Their suggestions were summa-
rized into categories of potential actions to re-engage children
in the tutoring with the robot (Table II).

Parts of the experts suggestions can be regarded as preven-
tive strategies that can be employed in the interaction from the
outset. These are general strategies to keep children engaged
in an interaction as allowing multi-modal interactions (here:
add speech) or more expressive robot behavior (e.g., gestures,
movements). Beyond that, actions were mentioned that can be
useful to re-engage children in an ongoing interaction after
their engagement was lowered (repair actions, see Table II).
The robot could for example suggest alternative activities to
get the child’s attention back (e.g., play a game). In some
cases, it will even be necessary to stop the tutoring for a break
according to the expert’s opinions. Moreover, it was suggested
that the difficulty of the task should be increased if signs of
disengagement are recognizable.

TABLE II
POSSIBLE ACTIONS MENTIONED BY THE EXPERTS

Preventive actions Paraphrases n∗

Include verbal input It would be more motivating for the child
if it should talk to the robot (expert 2,
video 2)

3

Heighten robot’s activ-
ity (e.g., move head)

The interaction would be more engaging
if the robot moves. (expert 2, video 2)

3

Repair actions
React to the child’s be-
havior/ give feedback

The robot should react to the behavior of
the child, e.g., tell him/her to sit down
again. (expert 5, video 1)

4

Change task difficulty The task should increase in difficulty to
get the childs attention back. (expert 1,
video 3)

1

Include alternative ac-
tivities (e.g., play a
game; stand up)

The robot could ask the child to stand
up and move around, so that he/she is
ready to listen again afterwards. (expert
3, video 2)

4

Allow a break A break or a continuation at another day
could be helpful to get the attention back
(expert 2, video 1)

2

∗n is the amount of experts out of the 5 experts that mentioned the strategy.

E. Discussion

In summary, the analyses of the expert interviews revealed
that preschool teachers agree on the interpretation of several
child behaviors as signs of (dis-)engagement. The behavioral
cues that were identified during robot-child tutoring were
changes in gaze direction (eye contact versus gaze away), body
posture (turn away, stand up, lay down), or facial expressions
(smiling). These cues that have been identified can be used to
narrow down the feature space in affective state recognition.
We note, though, that the small amount of video samples
restricts the significance of our findings. However, a frequent,
independent naming of the most relevant cues by different
experts for different children points to the importance of these
cues for detecting the affective state of children. Interestingly,
the majority of these cues can be recorded by means of non-
obtrusive technologies (e.g., video cameras, Microsoft Kinect)
and can be extracted using existing tools (e.g., Affdex, see
above). Building on this, the following section lays out a
conceptual approach to interpret and respond to changes in
the child’s state during robot-child tutoring interactions.

IV. AFFECTIVE STATE MANAGEMENT MODEL

A. Tracing the Affective State

The first step is to combine the different cues mentioned
in Section III into higher-level states and to trace them over
time. As a first approach, this can be achieved using a naive
Bayesian classifier that determines the hidden internal state E
that is assumed to independently cause cues C1, C2, ..., Cn.
Since cues need to be integrated into coherent belief up-
dates over time, the corresponding belief must be updated
every time step according to a dynamic Bayesian model
P (Et+1|Ct+1

i , Et).



    

    

    

    

    

  

  

  

  

  

Fig. 2. Here the adaptive Bayesian Knowledge Tracing model is shown, consisting of the belief regarding the mastery of a skill St, the observation (response)
Ot to an action At, the affective state Et of the learner and the expected value Ut of a chosen chain of actions.

Variables E and Ci are directly based on the results of the
expert interviews. We focus on the most reliable and explicit
cues that can be tracked with current technology. Thus we
base the model on those cues that were frequently mentioned
for several children (cf. Table I). Since most cues from the
negative engagement group were only mentioned once, and
“head tilt” is difficult to track due to the danger of mixing
it up with moving the head from side to side (from the
disengagement group), we focus on signs of engagement and
disengagement in the first stage of the model’s development.
Engagement and disengagement can be regarded as opposing
poles on a continuum of engagement. Hence, we combine
them into the meta state variable Et that is called interaction
engagement. Cues that were identified as indicating engage-
ment will have a positive effect on this state, while all cues
related to disengagement will have a negative impact.

B. Managing the Affective State
After computing the belief update for interaction engage-

ment, the next step is to determine whether and how the robot
tutor should act. To this end, we include the belief variable
E into our previously developed approach based on Bayesian
Knowledge Tracing [2] (see Fig. 2). According to this model,
the belief over the learners mastery of a certain skill St

explains the observed answer Ot to a given teaching-task At

selected to address this skill St. We add the state variable Et

as well as an utility value Ut, which represents the expected
value of a chosen chain of pedagogical and affective actions.
Et is assumed to influence the students answer to a task, e.g.
if the student is disengaged there may be a higher probability
of observing a wrong answer as she may not have understood
the task description. This information will also affect the belief
update for the currently addressed skill, so that a wrong answer
will have a lower impact when the student is disengaged.

Although experts’ agreed on the identification of the behav-
ioral cues, the interpretation of these cues should be regarded
carefully since one behavior could have distinct meanings
depending on the situation and the specific child. For the

realization of a general model, the expert information is useful
to determine which cues are relevant to look at as a starting
point. A final system must, however, be able to adapt to
specific variations in the child and the situation.

Next, we need to extend the action space of At to actions
that manage the affective state, in addition to the already
present actions of addressing a certain skill with a particu-
lar task. This allows evaluating and weighing both options,
teaching a skill or managing the affective state of a student.
Still, the main goal is to find an action (or action sequence)
from which the child will learn the most. Since the model is a
Dynamic Bayesian Decision Network, this evaluation can be
carried out across several time steps, where each additional
time step lowers the utility gained on the basis of the increase
of the skill belief. Hence, the system can decide whether it
is more beneficial to first raise interaction engagement, before
teaching the next skill, or the other way around.

Again, we based our selection of actions to manage affective
state on the results of the expert interviews (cf. Table II). We
consider only the repair actions here, out of which the change
of task difficulty is already implemented in the model. Three
other actions remain, which could be useful to re-engage a
child in the interaction: First, directly addressing the child’s
behavior, e.g., urge to sit down again or ask for attention;
secondly, using alternative tasks or activities to provide a more
variable interaction, e.g., ask to move around or to play a
game; finally, if the interaction engagement drops significantly,
the robot can propose a break and the interaction can be
resumed later. All of these behaviors can be immediately
included in the model as well as the robot’s behavior reper-
toire. Note, however, that the conditional probabilities P (E|A)
ans P (O|A,E, S) need to be defined heuristically as long as
sufficient interaction data is not available.

V. SUMMARY

The present paper addressed the importance of coping
with a learner’s affective state during preschool child-robot
tutoring. While the automatic recognition of cues seems to



be within reach with today’s technology, we are still lacking
a model of which affective states are most relevant in such
learning interactions, how they can be recognized, and how
they should be responded to by the robot tutor. To tackle
this problem, expert interviews with preschool teachers have
been conducted to identify children’s affective states that are
relevant during robot-child tutoring. The results suggest that
different categories of engagement states seem to be most
important, and that experts recognize and address those states
in interaction. The findings from the interviews are currently
used to inform the implementation of a computational model
for tracing and managing the affective and cognitive state of a
child learner with a robot tutor. To this end, we have laid out
how to extend a previously developed knowledge-tracing and
decision-making model based on a dynamic Bayesian Decision
Network. The combined model will allow for finding an action
policy that combines informative and affective actions of a
robot tutor to manage the internal states (both, cognitive and
affective) of a child learner more thoroughly, and to ensure an
optimal course of learning.
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Abstract

Evaluating human-robot social interactions in a rig-
orous manner is notoriously difficult: studies are ei-
ther conducted in labs with constrained protocols
to allow for robust measurements and a degree of
replicability, but at the cost of ecological validity;
or in the wild, which leads to superior experimental
realism, but often with limited replicability and at
the expense of rigorous interaction metrics.

We introduce a novel interaction paradigm, de-
signed to elicit rich and varied social interactions
while having desirable scientific properties (repli-
cability, clear metrics, possibility of either au-
tonomous or Wizard-of-Oz robot behaviours). This
paradigm focuses on child-robot interactions, and
builds on a sandboxed free-play environment. We
present the rationale and design of the interac-
tion paradigm, its methodological and technical as-
pects (including the open-source implementation of
the software platform), as well as two large open
datasets acquired with this paradigm, and meant
to act as experimental baselines for future research.

1 The challenges in evaluating
social interactions

1.1 Studying social interactions

Studying social interactions requires a social sit-
uation that effectively elicits interactions between
the participants. Such a situation is typically scaf-
folded by a social task, and consequently, the na-
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Figure 1: The free-play social interactions sandbox:
two children interact in a free-play situation, by
drawing and manipulating items on a touchscreen.
Children are facing each other and sit on cushions.
Each child wears a bright sports bib, either purple
or yellow, to facilitate later identification.
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ture of this task influences in fundamental ways the
kind of interactions that might be observed and
analysed. In particular, the socio-cognitive tasks
commonly found in the literature of experimental
psychology (and HRI) often have a narrow focus:
because they aim at studying one (or a few) specific
social or cognitive skills in isolation and in a con-
trolled manner, these tasks are typically simple and
highly constrained (for instance, an object hand-
over task; a perspective-taking task with cubes,
etc.). While these focused endeavours are impor-
tant and necessary, we – as a community – also ac-
knowledge that these interaction scenarios do not
reflect the complexity and dynamics of real-world
interactions Baxter et al. (2016), and we certainly
observe a strong trend within our community to-
wards capturing, interpreting and acting upon the
rich set of naturally-occurring social interactions.

Specifically, we believe that further progress in
the study of human-robot interactions should be
scaffolded by socio-cognitive challenges that:

• are long enough and varied enough to elicit a
large range of interaction situations;

• foster rich multi-modal interaction, such as
simultaneous speech, gesture, and gaze be-
haviours;

• are loosely directed, to maximise natural, non-
contrived behaviours;

• evidence complex social dynamics, such as
rhythmic coupling, joint attention, implicit
turn-taking;

• include a certain level of non-determinism and
unpredictability.

The challenge lies in designing a social task that
exhibits these features while maintaining ‘good’ sci-
entific properties (repeatability, replicability, ro-
bust metrics) as well as good practical properties
(not requiring unique or otherwise very costly ex-
perimental environments, not requiring very spe-
cific hardware or robotic platform, easy deploy-
ment, short enough experimental sessions to allow
for large groups of participants).

In this paper, we introduce such a task, designed
to elicit rich, complex, varied social interactions
while being well suited for interactions with robots
and supporting rigorous scientific methodologies.

1.2 Social play

Our interaction paradigm is based on free and play-
ful interactions (free play) in a sandboxed environ-
ment: while the interaction is free (participants
are not directed to perform any particular task be-
yond playing), the activity is both scaffolded and
constrained by the setup mediating the interaction
(essentially, a large table-top touchscreen). Partic-
ipant engage in open-ended and non-directive play
situations, yet sufficiently well defined to be repro-
ducible and practical to record and analyse.

This initial description frames the socio-cognitive
interactions that might be observed and studied:
playful, dyadic, face-to-face interactions. While
gestures and manipulations (including joint manip-
ulations) play an important role in this paradigm,
the participants do not typically move much dur-
ing the interaction. Because it builds on play, this
paradigm is also naturally suited to the study of
child-child and child-robot interactions.

The choice of a playful interaction is supported
by the wealth of social situations and social be-
haviours that play elicits. Most of the research in
this field builds on the early work of Parten who
established five stages of play Parten (1932), cor-
responding to different stages of development, and
accordingly associated with typical age ranges:

1. Solitary (independent) play, age 2-3: Play-
ing separately from others, with no reference
to what others are doing.

2. Onlooker play, age 2.5-3.5: Watching others
play. May engage in conversation but not en-
gage in doing. True focus on the children at
play.

3. Parallel play (adjacent play, social co-
action), age 2.5-3.5: Playing with similar ob-
jects, clearly beside others but not with them
(near but not with others.)

4. Associative play, age 3-4: Playing with oth-
ers without organization of play activity. Initi-
ating or responding to interaction with peers.

5. Cooperative play, age 4+: Coordinating
one’s behavior with that of a peer. Everyone
has a role, with the emergence of a sense of be-
longing to a group. Beginning of ”team work.”
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These five stages of play have been extensively
discussed and refined over the last century, yet re-
main remarkably widely accepted as such. It must
be noted that the age ranges are only indicative. In
particular, most of the early behaviours still occur
at times by older children.

Interestingly, these five stages can been looked at
from the perspective of HRI as well. They certainly
evoke a roadmap for the development of human-
robot social interactions.

2 The Free-play Sandbox

2.1 Task

We have designed a new experimental task, called
the free-play sandbox, that is based on free play
interactions. Pairs of children (4-8 years old) are
invited to freely draw and interact with items dis-
played on an interactive table, without any explicit
goal set by the experimenter (Fig. 1). The task
is designed so that children can engage in open-
ended and non-directive play, yet it is sufficiently
constrained to be suitable for recording, and allows
the reproduction of social behaviour by an artificial
agent in comparable conditions.

The free-play sandbox follows the sandtray
paradigm Baxter et al. (2012): a large touchscreen
(60cm × 33cm, with multitouch support) is used
as an interactive surface (sandtray). Two children
play together by freely moving interactive items on
the surface (Fig. 2). A background image depicts a
generic empty environment, with different symbolic
colours (water, grass, beach, bushes...). By drawing
on top of the background picture, the children can
change the environment to their liking. The players
do not have any particular task to complete, they
are simply invited to freely play. Importantly, they
can play for as long as they wish (for practical rea-
sons, we have limited the sessions to a maximum of
40 minutes in our own experiments, see Section 5).

Capturing all the interactions taking place dur-
ing the play sessions is possible and practical with
this setup. Even though the children will typi-
cally move a little, the task is fundamentally a
face-to-face, spatially delimited, interaction, and as
such simplifies the data collection. For instance,
during our dataset acquisition campaign (120 chil-
dren, more than 45h of footage), the children’s faces

were automatically detected in 98% of the recorded
frames (see Section 5).

Figure 2: Example of a possible game situation.
Items (animals, characters...) can be dragged over
the whole play area, while the background picture
can be painted over by picking a colour.

2.2 Applications

Child-Child Interaction The free-play sand-
box provides the opportunity to observe children
interacting in a natural way in an open but framed
setup. As the system can run on a single computer
platform it can easily be deployed in the ’wild’, in
places where the children naturally interact such
as classroom. The quantity and thoughtfulness of
information logged allows to keep a track of every
interaction happening around the game.

These advantages combined with the openness of
the task proposed make this setup a powerful tool
to observe and quantify a large spectrum of social
behaviours expressed by children when interacting
in a natural environment (might be interesting to
add a list here). The compactness of the system
makes it easy to compare data from different loca-
tions.

Child-Robot Interaction This free-play sand-
box provides the opportunity to explore child-robot
interactions in this open, real world environment as
shown in Figure 1.

Depending of the focus of the study, two modes
of control for the robot are available. If the in-
terest is on evaluating a specific robot behaviour,
the robot can be autonomously controlled using in-
puts from the different sensors. This setup allows
to explore the impact of different social behaviours
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on the children independently of the ‘game policy’
controlling by the robot.

On the other hand, if the focus is on the child
behaviour and the technical aspect is of a lower im-
portance, the robot can be controlled by a human
rather than an algorithm. This paradigm, where
the robot is tele-operated to interact with a naive
partner is called Wizard of Oz (WoZ) and is used
in numerous studies to explore the psychologic side
of HRI Riek (2012).

Deep Learning With the quantity of data
logged and the high number of interaction achiev-
able with the free-play sandbox, it supports the
type of requirement for recent Machine Learning
approaches such as deep learning. The similar po-
sition of the children in all interactions makes the
combination of data from different interaction eas-
ier than other less compact systems.

From the information collected on the children,
social behaviours can be extracted and used on a
robot.

3 Implementation

The software-side of the free-play sandbox is en-
tirely open-source1. It is implemented using two
main frameworks: Qt QML2 for the graphical inter-
face of the game, and the Robot Operating System
(ROS) for the modular implementation of the data
processing and behaviour generation pipelines. The
graphical interface interacts with the decisional
pipeline over a bidirectional QML-ROS bridge that
we have developed for that purpose.

Figure 3 presents the software architecture of the
sandbox.

3.1 Interactive game

The interactive game (Fig. 3.1) is coded using
QML, and displays a main background image on
top of which items (animals, humans and objects)
can be moved. The children can also use a draw-
ing mode to create coloured strokes on a layer be-
tween the background and the items, which adds
another layer of unconstrained interaction to the

1Source code: https://github.com/freeplay-sandbox/

core
2http://doc.qt.io/qt-5/qmlapplications.html

game (Figure 2). The game exposes the image of
the background, the drawings, and the positions of
the objects as ROS TF frames.

3.2 Sensing

Two Intel RealSense SR300 RGB-D cameras are
mounted at fixed positions on the sandtray frame,
with custom designed 3D-printed brackets that en-
sure that the cameras are oriented towards the
children’s face. Because the cameras are rigidly
mounted onto the sandtray’s frame, their accurate
geometric transformations with respect to the sand-
tray screen are known. Combined with hardware
calibration, it allows for accurate localisation of
the children and in particular, children’s faces. In
addition to the images, both cameras can perform
stereo audio recording. One ROS node per camera
(Fig. 3.2) publishes on dedicated topics the audio
and video streams.

A third ‘external’ (and non-calibrated) camera
is usually used as well to record the environment
of the experiment with a wider angle (environment
camera in Figure 1).

3.3 Robot Control

As stated in section 2.2, a robot (Fig. 3.9) can act
as play partner instead of one of the children. This
robot can either be autonomous selecting actions
based on the inputs provided by the sensors and
the game or be controlled by a human in a Wizard
of Oz fashion.

Autonomous The current implementation ex-
poses a large number of information on the game
and the state of the child that can be used in the
robot controller. The position of every item is ex-
posed as a TF frame, the background is segmented
in zones of identical colors (Fig. 3.5), social element
of the state the interaction are collected through
the RGBD camera and the microphone facing the
child. As visible on Figures 1 and 4, the camera
covers the head of the child as well as most of the
upperbody, and applying libraries such as DLib and
OpenPose, the position of facial feature and skele-
ton of the child are extracted and can be used to
obtain: head gaze, gaze and gestures such as point-
ing. All these inputs can be combined to provide

4



1

TF

Pose manager
(ROS TF)

TF

TF

Game interface

background drawing

touches

position of itemsfake touches

Head tracking RGB-D camera 1

RGB-D stream
Audio stream

Head tracking RGB-D camera 2

RGB-D stream
Audio stream

Environment camera
RGB stream

1

2

Play Policy Supervisor

plan requests
active zones

TF robot + gaze + items poses

3
Robot

joint commands

front camera

9

2

2

2

commands

Playground segmentation

playground drawing zones
5

7

Fake touch simulation

1fake touchesplans (A*)

8

TF

Fiducial marker
localisation

camera robot position

13

Experiment manager10 Wizard interface11

runs on the sandtray

TF

rosbag recording

runs on a tabletruns on a tablet

Motion planner for items

TF items poses plan (A*)

occupancy map

6
plan request

gaze

gestures

Behaviours
Supervisor

4

plan (A*)

Figure 3: Software architecture of the free-play sandbox. Left (purple) nodes are connected to the sand-
tray (game interface (1) and camera drivers (2)). Nodes in the centre (green) implement the behaviour
of the robot (play policy (3) and robot behaviours (4)). Several helper nodes are available, in particular,
segmentation of the children drawings into zones (5), A* motion planning for the robot to move in-game
items (6). Nodes are implemented in Python (except for the game interface, developed in QML) and
inter-process communication relies on ROS. 6D poses are managed and exchanged via ROS TF.

5



Figure 4: The free-play sandbox, viewed at run-
time within ROS RViz. Simple computer vision
is used to segment the background drawings into
zones (visible on the right panel). The poses and
bounding boxes of the interactive items are pub-
lished as well, and turned into an occupancy map,
used to plan the robot’s arm motion.

the robot with more social inputs to test the so-
ciability of a robotic controller (Fig. 3.3) and its
impact on the interaction.

The robot’s location is obtained by displaying
fiducial markers on the touchscreen before the start
of the interaction, so the transformation between
the robot coordinate system and the touchscreen
is known (Fig. 3.13). And this robot location can
also be used to identify gazes from the child to the
robot.

To make the children believe the robot is mov-
ing objects on the touchscreen, we synchronise a
moving pointing gesture of the robot (Fig. 3.4) and
a series of fake touches (Fig. 3.8) appied on the
screen, moving the desired object. Once an ob-
ject and a goal position have been selected, a plan-
ner (Fig. 3.6) generate a path for this image using
the A* algorithm on an occupancy map obtained
with the items footprints, then this plan is sent to
a nodes synchronising the actuation on the robot
and the fake touches on the game.

Other actions such as gaze, pointing or speech
are also exposed as simple ROS topics.

Wizard-of-Oz To allow an experimenter to con-
trol the robot, a GUI to control the robot
(Fig. 3.11) is provided and presents an identical
representation of the state of the game on an other
application which can be used on a tablet for exam-

ple. The wizard can drag the objects in a similar
fashion as what the child would do on the Sandtray,
and on the release, the robot executes the dragging
motion on the Sandtray, moving an object to a new
location. The source code can be easily modified to
add new specific buttons to execute other actions,
such as having the robot talk to the child.

3.4 Experiment Manager

We have developed as well a dedicated, web-based,
interface can be used by the experimenter to man-
age the whole experiment and data acquisition pro-
cedure (Fig. 3.10). This interface ensures that all
the required software nodes are running, allow the
experimenter to check the status and, if needed, to
start/stop/restart any of them. It also help man-
aging large data collection campaigns by providing
a convenient web interface (usually used by the ex-
perimenter on a tablet) to record the demograph-
ics, resetting the game interface after each session,
and automatically enforcing the acquisition proto-
col (see Table 1).

This interface has been extensively used to ac-
quire the dataset that we present at Section 5.

4 Canonical procedures for
data collection & analysis

The section presents canonical procedures to ac-
quire data during testing, to pre-process it, and
analyse it. We call them canonical because they
are standard procedures, and where relevant, well
integrated into the software pipeline of the sandbox
(e.g., ROS integration) and represent state-of-the-
art techniques. For the specific purpose of manu-
ally annotating the social interaction, we introduce
as well a novel coding scheme, resulting from the
synthesis of several existing techniques (Section 4.4
below).

However, these procedure are not normative. Re-
searchers interested in reusing the free-play sand-
box task for their own research would naturally
adapt and extend these protocols to their own
needs. Besides, certain aspects (most notably, the
audio processing) are yet to be properly investi-
gated.
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Table 1: Data acquisition protocol

Greetings (about 5 min)
• explain the purpose of the study: showing robots
how children play
• briefly present a Nao robot: the robot stands

up, gives a short message, and sits down.
• place children on cushions
• complete demographics on the tablet
• remind the children that they can withdraw at
anytime

Tutorial (1-2 min)
explain how to interact with the game, ensure
the children are confident with the manipula-
tion/drawing

Free-play task (up to 40 min)
• initial prompt: ”Just to remind you, you can use
the animals or draw. Whatever you like. If you run
out of ideas, there’s also an ideas box. For example,
the first one is a zoo. You could draw a zoo or tell
a story. When you get bored or don’t want to play
anymore, just let me know.”
• let children play
• once they wish to stop, stop recording

Debriefing (about 2 min)
• answer possible questions from the children
• give small reward (e.g., stickers) as a thank you

4.1 Protocol

We typically adhere to the acquisition procedure
described in Table 1 with all participants. To ease
later identification, each child is also given a differ-
ent and brightly coloured sports bib to wear.

Importantly, during the Greetings stage, we show
the robot both moving and speaking (for instance,
“Hello, I’m Nao. Today I’ll be playing with you.
Exciting!” while waving at the children). This is
meant to set the children’s expectations: they have
seen that the robot can speak, move, and even be-
have in a social way.

Also, the game interface of the free-play sandbox
offers a tutorial mode, used to ensure the children
know how to manipulate items on a touchscreen
and draw. In our experience, this has never been
an issue for children.

Table 2: List of datastreams typically recorded.
Each datastream is timestamped with a synchro-
nised clock to facilitate later analysis.

Domain Type

children audio
face (RGB + depth)

robot full 3D pose
environment RGB
touchscreen background drawing (RGB)

touches
position and orientation of in-game items

static transforms between touchscreen and facial cameras
cameras calibration informations

4.2 Data collection

Table 2 lists the datastreams that are collected dur-
ing the game. By relying on ROS for the data
acquisition (and in particular the rosbag tool),
we ensure all the ≈10 streams are synchronised,
timestamped, and, where appropriate, come with
calibration information (for the cameras mainly).
In our experiments, cameras were configured to
stream in qHD resolution (960×540 pixels) in an
attempt to balance high enough resolution with
tractable file size. It results in bag files weighting
≈1GB per minute.

In our own experiments, all the data (including
up to 5 simultaneous video streams) was recorded
on a single computer (quad core i7-3770T, 8GB
RAM) equipped with a fast 4TB SSD drive. This
computer was also running the game interface on its
touch-enabled screen (sandtray), making the whole
system compact and easy to deploy (one single de-
vice).

4.3 Data processing

Face and body pose analysis Off-line post-
processing can be done on the images obtained from
the cameras. We rely on the CMU OpenPose li-
brary Cao et al. (2017) to extract for both children
the upper-body skeleton, 70 facial landmarks in-
cluding the pupil position, as well as the hands’
skeleton (when visible).

Further processing is possible: As the position
of the camera, a potential robot and any object on
the game is known, this landmarks can be mapped
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to high level behaviours such as pointing or looking
at an object. Additional analysis can be done on
the facial landmarks to other social states, such as
main emotion felt by the child.

Audio processing Similar processing can be ap-
plied on the audio stream. Library such as OpenS-
MILE provide audio features such as pitch and
loudness contour, which inform on the general state
of the child.

As of today, no reliable speech recognition en-
gine exists for children Kennedy et al. (2017), but
in the future, the audio should provide textual in-
formation on the requests and comments produced
by the child.

Game interactions analysis Game features are
also produced by the different nodes involved in the
analysis of the game. The Playground segmenta-
tion produce a map of the regions based on the
colour which can be used with the positions of the
animal to identify from which zone to which zone
an animal has been moved. The relative position of
animal can also indicate if two animals have been
moved closer. These relations and the drawing in-
form on what high level action the child is doing
and can be used to infer the child’s goal or desire.

4.4 Annotation of Social interac-
tions

Annotating social interaction beyond surface be-
haviours is generally difficult. The observable, sur-
face behaviours typically result of a superposition
of the complex and non-observable underlying cog-
nitive and emotional states. As such, these deeper
socio-cognitive states can only be indirectly ob-
served, and their labelling is typically error prone.

Our aim is to provide insights on the social dy-
namics, and we have synthesised a new coding
scheme for social interactions that reuse and adapt
established social scales. Our coding scheme (Fig-
ure 5) looks specifically at three axis: the level
of task engagement (that distinguishes between fo-
cused, task oriented behaviours, and disengaged –
yet sometimes highly social – behaviours); the level
of social engagement (reusing Parten’s stages of
play, but at the micro-task level); the social atti-
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Figure 5: The coding scheme used for annotat-
ing social interactions occurring during free-play
episodes. Three main axis are studied: task en-
gagement, social engagement and social attitude.

tude (that encode attitudes like supportive, aggres-
sive, dominant, annoyed, etc.)

Task engagement The first axis of our coding
scheme aims at making a broad distinction be-
tween ‘on-task’ behaviours (even tough the free-
play sandbox does not explicitly require the chil-
dren to perform a specific task, they are still en-
gaged in an underlying task: to play with the
game) and ‘off-task’ behaviours. We call ‘on-task’
behaviours goal oriented : they encompass consid-
ered, planned actions (that might be social or not).
Aimless behaviours (with respect to the task) en-
compass opposite behaviours: being silly, chatting
about unrelated matters, having a good laugh, etc.
These Aimless behaviours are in fact often highly
social, and play an important role in establishing
trust and cooperation between the peers. In that
sense, they should not be discarded.

Social engagement: Parten’s stages of play
at micro-level In our scheme, we characterise
Social engagement by building upon Parten’s
stages of play. These 5 stages of play are normally
used to characterise rather long sequences (at least
several minutes) of social interactions. Here, we ap-
ply them at the level of each of the micro-sequences
of the interactions: one child is drawing and the
other is observing is labelled as solitary play for the
former child, on-looker behaviour for the later; the
two children discuss what to do next: this sequence
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is annotated as a cooperative behaviour; etc.

By suggesting such a fine-grained coding of so-
cial engagement, we enable proper analyses of the
internal dynamics of a long sequence of social in-
teraction.

Social attitude The constructs related to the so-
cial attitude of the children derive from the Social
Communication Coding System (SCCS) proposed
by Olswang et al. Olswang et al. (2006). The
SCCS consists in 6 mutually exclusive constructs
characterising social communication (hostile; pro-
social ; assertive; passive; adult seeking ; irrelevant)
and were specifically created to characterise chil-
dren communication in a classroom setting.

We transpose these constructs from the com-
munication domain to the general behavioural do-
main, keeping the pro-social, hostile (whose scope
we broaden in adversarial), assertive (i.e., domi-
nant), and passive constructs. In our scheme, the
adult seeking and irrelevant constructs belong to
Task Engagement axis.

Finally, we have added the construct Frustrated
to describe children who are reluctant or refuse to
engage in a specific phase of interaction because of
a perceived lack of fairness or attention from their
peer, or because they fail at achieving a particular
task (like a drawing).

Video coding The coding is performed post-hoc
with the help of a dedicated annotation tool (Fig. 6
which is part of the free-play sandbox toolbox. This
tool can replay and randomly seek in the three
video streams, synchronised with the recorded state
of the game (including the drawings as they are cre-
ated). An interactive timeline displaying the anno-
tations is also displayed.

The annotation tool offers a remote interface for
the annotator (made of large buttons, and visually
similar to Figure 5) that is typically displayed on
a tablet and allow the simultaneous coding of the
behaviours of the two children. Usual video coding
practices (double-coding of a portion of the dataset
and calculation of an inter-judge agreement score)
would have to be followed.

Figure 6: Screenshot of the dedicated tool devel-
oped for rapid annotation of the social interactions.

5 Baseline Datasets

We have been using the free-play sandbox task for
an initial, large scale, data collection over a period
of 3 months during Spring 2017.

This campaign aimed at (1) extensively evalu-
ating the task itself (would children engage and
exhibit a large range of social dynamics and be-
haviours?), (2) making sure the whole software ar-
chitecture and data acquisition pipeline were reli-
able (they were), and (3) establishing two experi-
mental baselines for the free-play sandbox task: the
‘human’ baseline on one hand (child-child condi-
tion), an ‘asocial’ baseline on the other hand (child
- non-social robot condition). These two baselines
are situated at the two ends of the spectrum of
social interaction. They aim at characterising the
qualitative and quantitative bounds of this social
spectrum and can be used by the research commu-
nity to evaluate given interaction policies.

A detailed description of the dataset is outside of
the scope of this paper, and we only provide here-
after cursory informations on the dataset. Specific
details regarding the methodology and the acqui-
sition procedure can be found on the dataset web-
site3. The dataset is open and accessible to any
interested researcher, subject to adequate ethical
clearance.

In total, 120 children were recorded for a total
duration of 45 hours and 48 minutes of data col-
lection. These 120 children (age 4 to 8) were split
into two conditions: a child-child condition and a

3https://freeplay-sandbox.github.io/
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Figure 7: Durations of the interactions for the two
conditions.

child-robot condition. In both condition, and after
a short tutorial, the children were simply invited
to freely play with the sandbox, for as long as they
wished (with a cap at 40 min).

In the child-child condition (as seen in Figure 6),
45 free-play interactions (i.e., 90 children) were
recorded with a duration M=24.15 min (SD=11.25
min).

In the child-robot condition, 30 children were
recorded, M=19.18 min (SD=10 min). In this later
condition, the robot behaviour was coded to be pur-
posefully asocial : the robot would autonomously
play with the game items, but would avoid any
social interaction (no social gaze, no verbal inter-
action, no reaction to the child-initiated game ac-
tions).

Over the dataset, the children faces are detected
on 98% of the images, which validates the location
of the camera and the children to use the cameras
to obtain facial social features.

Figure 7 presents an histogram of the durations
of the interactions for the two baselines. The dis-
tribution of the child-child interaction durations
shows that (1) all children engage easily and for
non-trivial amounts of time with the task; (2) the
task leads to a wide range of level of commitment,
which is desirable: it supports the claim that the
free-play sandbox is an effective paradigm to ob-
serve a range of different social behaviours; (3) long
interactions (¿30 min) can result, which is espe-
cially desirable to study social dynamics.

In contrast, and notwithstanding the smaller
number of participants, the distribution of the
child-robot interaction durations shows these inter-

actions are generally shorter. This is expected as
the robot was explicitly programmed not to inter-
act with the children, resulting in a rather boring
(and at time, awkward) situation where the child
and the robot where playing side-by-side – in some
case for rather long periods of time – without in-
teracting at all.

6 Discussion & Conclusion

6.1 Analysis of the free-play sand-
box

The free play sandbox elicits a loosely structured
form of play: the actual play situations are not
known and might change several times during the
interaction; the game actions, even though based
on a single interaction modality (the touchscreen),
are varied and unlimited (especially when consider-
ing the drawings); the social interactions between
participants are multi-modal (speech, body pos-
tures, gestures, facial expressions, etc.) and un-
constrained. This loose structure creates a fecund
environment for children to express a range of com-
plex, dynamics, natural social behaviours that are
not tied to an overly constructed social situation.

The interaction is loosely structure. It is
nonetheless structured: First, the physical bounds
of the sandbox (an interactive table) limit the play
area to a well defined and relatively small area. As
a consequence, children are mostly static (they are
sitting in front of the table) and their primary form
of physical interaction is based on 2D manipula-
tions on a screen.

Second, the game items themselves (visible in
Figure 2) structure the game scenarios. They are
iconic characters (animals or children) with strong
semantics associated to them (like ’crocodiles like
water and eat children’). The game background,
with its recognizable zones, also elicit a particular
type of games (like building a zoo or pretending we
explore the savannah).

These elements of structure (along with other,
less important, ones) make it possible for the free-
play sandbox paradigm to retain some key prop-
erties that makes it a practical and effective sci-
entific tool: because the game builds on simple
and universal play mechanics (drawings, pretend
play with characters), the paradigm is essentially
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cross-cultural; because the sandbox is physically
bounded and relatively small, it can be easily trans-
ported and practically deployed in a range of envi-
ronments (schools, exhibitions, etc.); because the
whole apparatus is well defined and relatively easy
to duplicate (it essentially consists in one single
touchscreen computer), the free-play sandbox fa-
cilitates replication of findings in HRI while pre-
serving ecological validity.

6.2 Towards the machine learning of
social interactions?

We presented a set-up and data set of relatively
unconstrained interaction between children and be-
tween a robot and a child. The set-up captures a
rich set of multimodal streams which can be used to
mine the social, verbal and non-verbal communica-
tion between two parties engaging in a rich free-play
interaction. The data holds considerable promise
for training social signal interpretation software,
such as engagement interpretation or eye gaze read-
ing. The dataset collected has sufficiently rich data
and a wide range of multi-modal dimensions mak-
ing it particularly suitable for Deep Learning of
social signal processing algorithms. It also allow
for very rich input to action selection mechanisms
needed for autonomous robot behaviour. Future
work will focus on mining the data for social pat-
terns occurring in play situations, as per Parten’s
classification, and will attempt to extract social sig-
nals relevant to drive the interaction. Some early
results show, for instance, that deep learning shows
considerable promise for high-resolution tracking of
eye gaze from the RGB video streams.
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Abstract An increasing amount of research has started to
explore the impact of robot social behaviour on the outcome
of a goal for a human interaction partner, such as cognitive
learning gains. However, it remains unclear from what prin-
ciples the social behaviour for such robots should be derived.
Human models are often used, but in this paper an alterna-
tive approach is proposed. First, the concept of nonverbal
immediacy from the communication literature is introduced,
with a focus on how it can provide a characterisation of social
behaviour, and the subsequent outcomes of such behaviour.A
literature review is conducted to explore the impact on learn-
ing of the social cues which form the nonverbal immediacy
measure. This leads to the production of a series of guide-
lines for social robot behaviour. The resulting behaviour is
evaluated in a more general context, where both children and
adults judge the immediacy of humans and robots in a similar
manner, and their recall of a short story is tested. Children
recall more of the story when the robot is more immedi-
ate, which demonstrates an effect predicted by the literature.
This study provides validation for the application of nonver-
bal immediacy to child–robot interaction. It is proposed that
nonverbal immediacy measures could be used as a means of
characterising robot social behaviour for human–robot inter-
action.
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1 Introduction

Robot tutors are increasingly being explored as a means of
delivering education to children in both dyadic [1–3] and
larger group scenarios [4,5]. However, it remains unclear
how a robot should behave socially in order to maximise
learning outcomes. In the education literature, the social
behaviour of a teacher is often assumed. For example, Kyri-
akides et al. [6] considers what makes teaching effective and
lists how lessons are structured, how learning is assessed,
how time is managed, and so on. The role of social behav-
iour is not mentioned; we believe that this is because it is so
fundamental that it is assumed to be present. A base level of
sociality can reasonably be expected when interactions occur
between humans, but when the tutor is a robot, this element
becomes unknown. The fundamental assumption of social
behaviour for teaching highlights it as an important element
to resolve.

Various researchers have begun to address certain aspects
of social behaviour for educational contexts in human–robot
interaction (HRI). Gordon et al. consider the impact that
the curiosity of a robot may have on reciprocal curios-
ity of a child and their subsequent learning of words.
The human–human interaction (HHI) literature predicts an
increase in learning as curiosity increases, however this
finding was not replicated with robots [1]. Saerbeck et
al. also consider language learning with a socially sup-
portive robot, where the socially supportive robot leads to
more retention than a robot without this social behaviour
[7].
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Personalisation of interactions has been explored in health
education for children with diabetes. In a dyadic interac-
tion with a robot, the robot would ask the child for various
items of personal information (name, favourite sports and
favourite colours) and use them during the interaction [8].
The personalised robot provided an indication that children’s
perceived enjoyment of learning was enhanced, although
too few subjects took part to make conclusions about
learning effects. Other authors have personalised human–
robot interaction in learning contexts through manipulating
the timing of lessons [9], or through setting personalised
goals [10]. However, this becomes more about teaching
strategy and does not help to generate lower-level social
behaviour.

Personalisation has also been incorporated into larger
scale social behaviour changes in interactions where chil-
dren learn about prime numbers [2]. A surprising result was
found where a robot designed to be ‘more social’ did not
lead to learning gains, whereas children interacting with a
‘less social’ robot did experience significant learning gains.
Such labelling raises questions about how HRI should char-
acterise sociality: what constitutes being more or less social,
and how can this be measured and expressed in experi-
mental reports? This is an important issue to resolve to
ease the understanding and interpretation of results, and for
comparisons to be made between studies, often in differing
contexts.

This paper seeks to explore one way in which social-
ity might be characterised for HRI: nonverbal immediacy.
The elements of nonverbal immediacy are broken down into
individual cues (such as gaze, gesture, and so on) and consid-
ered for use in an educational context, before being brought
back together into an implemented behaviour to evaluate
whether the concepts hold true in practice with robots. The
rest of this paper is structured as follows. First, the social
context of learning and the concept of nonverbal immediacy
are introduced (Sect. 2). Nonverbal immediacy will then be
considered in terms of the component social cues by which
it is measured; the effect of each social cue on learning
will be explored from both a HRI and a HHI perspective
(Sect. 3). This will culminate in a set of guidelines for robot
social behaviour during educational interactions (Sect. 5).
These guidelines are used as a basis for an evaluation in
which nonverbal immediacy is measured and compared to
recall. The study uses a 2 × 3 design, comparing nonverbal
immediacy scores and recall between children and adults,
depending on whether they have seen a high immediacy
robot, a low immediacy robot or a human reading a short
story (Sect. 6). A discussion of the potential benefits and
limitations of this approach will be carried out (Sect. 7), with
the suggestion that nonverbal immediacy is a useful means
of characterising and devising social behaviour for robot
tutors.

2 Sociality, Immediacy and Learning

It has long been posited that the role of society and social
signals are of great importance in teaching and learning,
most notably in Bandura’s Social Learning Theory [11] and
Vygotsky’s Social Development Theory [12]. The impor-
tance of social signals is apparent from a young age, with
social cues playing a role in guiding attention and learning
[13]. However, we still have relatively little understanding of
what impact combinations of multimodal social cues have on
learning in complex settings [14]. Correspondingly, we don’t
seem to be able to correctly identify highly effective teaching
when we see it, raising questions about how to define what
effective teaching consists of [15].

Social interaction can be considered as the bond between
cognitive processes and socio-emotional processes [16]. The
outcome of such interaction can be measured through social
performance or learning performance, either of which can
in turn reinforce the cognitive or socio-emotional processes
taking place in an individual (Fig. 1). This concept is sup-
ported through definitions of learning, which can be broken
down into ‘affective’ and ‘cognitive’ learning [17]. Social
interaction has the ability to influence both of these learn-
ing elements, and indeed HRI researchers have sought to
do just this. Some researchers have focussed on the social
behaviour of the robot with the aim of influencing cognitive
processes [18], whereas others have sought to influence the
socio-emotional processes to a greater extent [19].

Many studies considering the impact of social behaviour
use a human expert or model in order to inform the behav-
ioural design for a largely autonomous robot, for example
[2,20]. Additionally, many studies only vary a limited set
of social cues, often to tightly control the experimental con-
ditions [21–23]. Whilst these approaches allow us to learn
about the impact of some social behaviour on learning, there
are many difficulties in comparing between studies as there

social
interaction

cognitive
processes

socio-
emotional and

social
processes

learning
performance

social
performance

educational
dimension

social
dimension

= outcome = reinforcing

Fig. 1 A depiction of the role of social interaction for an individ-
ual, with two possible outcomes: social performance and learning
performance—adapted from Kreijns et al. [16]
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is no common metric for the overall social behaviour of the
robot. It is also unclear what would happen when multiple
social cues are modified together; it seems plausible that the
effects found from single cue manipulation would be addi-
tive, but there is evidence to suggest that humans do not
process social cues in this manner [24]. A means of char-
acterising social behaviour across multiple contexts would
therefore provide a great advantage to the field for making
cross-study comparisons.

One possible concept for making such social characteri-
sations is nonverbal immediacy. Immediacy can be defined
as “the extent to which communication behaviours enhance
closeness to and nonverbal interaction with another” [25],
with closeness referring to both proximity and psycho-
logical distancing. Nonverbal immediacy is a measure of
nonverbal behaviour which indicates a “communicator’s atti-
tude toward, status relative to, and responsiveness to” an
addressee [25]. Richmond et al. [26] developed a highly
reliable questionnaire to measure nonverbal immediacy in
communication contexts. The ‘Nonverbal Immediacy Scale-
Observer Report’ developed is freely available online1 and
incorporates the following social cues into a single measure:
gestures, gaze, vocal prosody, facial expressions, body ori-
entation, proximity, and touch.

Nonverbal immediacy emphasises the multimodal nature
of interaction and the consideration of all social cues taken
in context with respect to each other. The measure provides
a characterisation of ‘sociality’ which can then be correlated
against an outcome, such as learning, and compared against
another set of behaviour characterised in the same manner.
It has found extensive application in educational research,
most often in university lecture scenarios [27].

When reviewing the literature surrounding nonverbal
immediacy it is important to make the distinction between
‘affective learning’, ‘cognitive learning’ and ‘perceived cog-
nitive learning’. Affective learning considers constructs such
as attitudes, values and motivation towards learning [28].
Cognitive learning typically focusses on topic specificknowl-
edge and skills [29]. Perceived learning is a measure of how
much students believe they have learnt, or how confident
they are in what they have learnt, such as in [30]. Whilst
the correlation with measured cognitive learning gains is
only moderate, relatively few studies have used experimen-
tal measures; most have used perceived learning, which has a
particularly strong correlation with teacher immediacy [27].
It has been experimentally found that perceived learning and
actual recall are moderately correlated in such contexts [31],
so whilst perceived learning is not as strong as measuring
actual learning, it can at least be used as an indication of the
nature of relationships.

1 http://www.jamescmccroskey.com/measures/nis_o.htm.

A positive correlation between nonverbal immediacy and
perceived cognitive learning has been validated across sev-
eral cultures, including the United States, Puerto Rico,
Finland and Australia [32]. From this McCroskey et al. pos-
tulate that expectation of immediacy plays a key role in how
cues are interpreted, presenting opportunities for high imme-
diacy teaching to have a strong positive impact in generally
low immediacy cultures, but a negative impact for low imme-
diacy teaching in high immediacy cultures [32]. A similar
suggestion relating to the use of robot social cues in teaching
contexts has also been raised in HRI [33].

Both verbal and nonverbal immediacy behaviours have
been shown to lead to an increase in motivation, and, in turn,
student learning [34,35]. In some cases, such as in a task to
recall contents of a lecture [36], cognitive learning gains are
not found, but affect for the instructor and material increases
when the instructor is more nonverbally immediate. How-
ever, there are other examples demonstrating a link between
greater nonverbal immediacy and increased recall [37,38].
A more extensive review of the potential benefits of imme-
diacy (both verbal and nonverbal) can be seen in [39].

Nonverbal immediacy has been studied only briefly inHRI
contexts before. Szafir and Multu [23] use it as a means of
motivating and evaluating robot behaviour during a recall
task with adults. In line with literature studying nonver-
bal immediacy with humans, they find that as immediacy
increases, so does recall. The adults were also able to notice
when the nonverbal immediacy of the robot had increased,
confirming that people are sensitive to such cues in robots.
Nonverbal immediacy concepts have also been used by the
same lab to motivate behavioural manipulations for persua-
sive robots [40]. However, it should be noted that it doesn’t
appear that a complete nonverbal immediacy questionnaire
was used in either of the studies. This is important as it is
argued in this paper that a key motivator for using nonverbal
immediacy measures is the consideration of all cues taken
in context; this idea will be returned to and expanded upon
in Sects. 4 and 7. Finally, nonverbal immediacy has recently
been proposed for use in HRI studies to motivate exploring
the perception of a robot when posture and nodding behav-
iour is varied [41].

3 Social Cues of Nonverbal Immediacy

Based on the method used to calculate nonverbal immedi-
acy, if there is a linear relationship between learning and
immediacy (as suggested by [34]) then learning would be
maximised if the social cues used in nonverbal immediacy
are maximised. However, there are also suggestions that the
relationship may not be wholly linear in nature [42,43]. As
such, it remains slightly unclear how immediacy should be
utilised for social robots. The following subsectionswill con-
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sider each of the component cues which form the nonverbal
immediacy measure in turn to provide further insight into
how they can be applied in practice, with a particular focus
on findings fromHHI and HRI learning scenarios. The aim is
to generate guidelines for social behaviour in robot tutoring
scenarios that are informed by the concepts of the nonverbal
immediacy measure and supported by previous work in both
HHI and HRI (Sect. 5).

3.1 Gestures

Gestures play an important role in teaching and learning
[44,45]. Children are more likely to repeat the speech of a
teacher if a matching gesture accompanies the speech when
compared to the same speechwithout a gesture, but less likely
with a mis-matched gesture compared to no gesture [46,47].
This basic recall is a first step towards learning. Further-
more, these studies show that children can use gestures in
understanding problem-solving strategies, giving them the
potential to learn both through problem solving and how to
approach solving problems.

For young children, it has been suggested that gesture use
(specifically symbolic gestures) can facilitate cognition [48];
possibly because gestures can lighten cognitive load, lending
more resources to memory tasks [49]. Indeed when children
are slightly older (aged 8–10) gestures can help learning to
‘last’ for longer, with correct answers in an algebra follow-up
test four weeks after a learning session staying higher in a
gesture and speech condition than in a speech only condition
[50]. Equally, gesturesmade by children can be used to assess
their learning [51], with adults able to be more certain of
their judgements of children’s learning when their gestures
matched their verbal explanation.

Such findings are reinforced in studies concerning instruc-
tional communication for learning, with children’s perfor-
mance improvingmorewhengiven instructionswith gestures
as opposed to without in a symmetry recognition test [52].
These findings seem to have been partially replicated in
HRI, with a robot utilising contingent gesturing leading to
increased recall of material from a presentation [23]. How-
ever, precisely how to use gestures to influence learning in
HHI is an open field with many questions still necessitating
futher exploration [53]; this is even more true for HRI where
less work examining the use of gesture and learning has been
conducted.

The use of hands seems to be particularly important. It
is not just the orienting of attention, such as with a laser
pointer, but the fact that the gesture is done with a hand that
leads to an improvement in learning [54]. It has been shown
that humans can accurately interpret pointing by a humanoid
robot (an Aldebaran NAO), but that for best results, the arm
on the side which the object to be pointed at should be used
[55]. However, whether the hand of robot has the same atten-

tional and learning impact as that of a human is not known.
It has also been established that being present (as opposed to
on video) does not affect how much attention gestures draw
between humans [56], but no such study comparing humans
and robots could be found.

3.2 Gaze

From an early age, children use social cues such as eye gaze
to help direct their learning. Despite social cues distracting
briefly from the material to be learnt, infants learn more with
gaze cues present than when their learning is not directed by
such cues [57]. These positive effects have also been suc-
cessfully implemented in computational models [58]. Even
at 15 months old, children have a tendency to use the gaze of
a social interaction partner, instead of distracting and erro-
neous saliency cues for word learning associations [59]. The
power of gaze, or even just the eyes, in influencing behaviour
is still observed in adults, with surprisingly strong results.
For example, just an image of eyes near a donation point can
increase charitable donations by almost 50% [60].

Selective processing of social cues for learning has far-
reaching implications for human–robot interaction. Head
movement alongside eye gaze can assist humans in respond-
ing to robot cues [61]; use of this social cue could have
advantages in learning. However, this has not been found
in infants learning from robots, where they follow the gaze
direction of both a robot and a human, but only the human
gaze facilitated the learning of an object [62]. It was sug-
gested that this could signify a disposition of infants to
consider humans a superior source for learning. It remains
to be seen whether this holds true for slightly older chil-
dren, or with children more familiar with the concept of
robots. Equally, this result could be a demonstration that
humans process robot gaze in a cognitively different man-
ner, as argued in [63].

College students who receive gaze at the start of each
sentencewhen receiving verbal information can recall signif-
icantly more than those who receive no gaze [64]. This holds
true for both simple and difficult material, for both genders. It
is hypothesised that this is because the interaction feels more
‘intimate’ and prevents mind-wandering whilst receiving the
information. These findings have also been shown to occur
with younger children, aged between 6 and 7 [65]. Greater
gaze from a storyteller led to increased recall from children
when subsequently asked questions, compared to those in a
lesser (but still some) gaze condition. This study reveals a
trend towards possible interaction effects between the infor-
mation content, gender and gaze, speculating that females are
less affected by gaze than males when the material is more
difficult.

Logically, it follows that using appropriate robot gaze
towards a child might be beneficial for recall and learning.
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Work done in virtual environments demonstrates that cau-
tion must be used, as simply staring at a human interactant
actually reduces their willingness to engage in mutual gaze,
despite increased opportunity [66]. It should be noted that
this difference in mutual gaze did not actually translate to
a difference in task performance, but this was hypothesised
as being due to the relative simplicity of the task. A lack of
effect due to gaze has been observed in human–robot inter-
action studies as well. In both [67] and [68], a tutoring robot
received more gaze from children, which could theoretically
be beneficial for child learning (as the robot is delivering
learning content), but no learning differences were found.

Nevertheless, the outcome here is a message of balance:
gaze can clearly have positive effects on learning [58,62,64,
65], but if it is not meaningful, or is too abundant then it can
discourage mutual gaze, thereby limiting potentially positive
effects [66]. This remains a challenge, as it is not trivial to
decide how much gaze is ‘just right’, or precisely when a
gaze should be made by a robot.

3.3 Vocal Intonation/Prosody

The voice that an agent uses can dictate how much they are
liked and how hard humans try to understand the material
they are presented with [69]. Those who interacted with an
agent who had a human voice preferred the agent and also did
better in learning transfer tests when compared to those who
interacted with the same agent with a machine-synthesised
voice. The sound of a voice can have a significant impact
on retention and transfer of a novel subject when presented
through narration [70]. Retention is better when a voice has
a ‘standard’ (as opposed to foreign) accent and is human
rather than machine-like, as well as being more likeable in
both cases.

However, this result was found with college students and
virtual agents. It has not been established whether this effect
is also observed outside of this restricted demographic, nor
whether specific embodiments of robots create expectations
that violate these rules. For example, it may be less appropri-
ate to have a deepmale human voice when using a robot such
as the Aldebaran Nao2 than a RoboThespian.3 It is suggested
that a possible uncanny valley effect [71] may occur, where
participant expectations are violated when a human voice is
played alongside a not-convincing-enough animated agent.
An indication in this direction has been found with virtual
agents, where participants preferred an animated agent with
amachine-like voice and a non-animated agent with a human
voice [72].

Vocal intensity can also be used to influence learning.
Compliance, a factor in learning, can be increased through

2 https://www.aldebaran.com/en/humanoid-robot/nao-robot.
3 https://www.engineeredarts.co.uk/robothespian/.

raising vocal intensity, as in [73]. This HHI study was con-
ducted in a public spacewhere compliancewas greatestwhen
using a medium level of vocal intensity; around 70 dB. It is
likely that this level would need adjusting depending on the
ambient noise in the space a robot tutor would be acting in,
and how far from a student it would be. Vocal intensity has
successfully been combined with gestures in a model which
is based on nonverbal immediacy to improve attention and
recall of a human in anHRIpresentation scenario [23].Whilst
not confirming all of the results discussed in this section relat-
ing to vocal prosody, it certainly demonstrates that there is
great potential for many of the same principles from HHI
being applied to HRI with positive results.

Interestingly, speech rate appears to have a significant
impact upon perceptions of nonverbal immediacy, but not on
recall [74]. As speech rate increases, perceived immediacy
of a speaker goes up, but there is no significant difference
in recall as a change of immediacy might predict. This
could potentially be explained by the capacity of humans for
speech. The average human speech rate is 125–150words per
minute, but learners have twice as much cognitive capacity,
being able to process speech at 250–300 words per minute
[75]. This gives great scope for increasing speech rate, and
therefore immediacy, but without any great change in terms
of the listener’s cognitive processing.

3.4 Facial Expression

In a HHI study examining the relationship between the social
cue elements of nonverbal immediacy and cognitive learning
across a number of different cultures it was found that along-
side gaze and vocal prosody, smiling from the teacher was
one of the more strongly correlated cues to student learning
[32]. This result has also been replicated more recently [76],
additionally showing the positive relationship between non-
verbal immediacy and motivation (with facial expressions
having a large effect size).

Experimental data from human–computer interaction
(HCI) with an embodied conversational agent revealed no
significant difference in recall of subjects when interacting
with an agent which was either neutral, or able to express
joy and anger [77]. Several reasons are put forward as to
why this may have been the case, including a ceiling effect
within the task, the amount each emotion was displayed, or
that the facial expressions were simply ignored in favour of
focussing on the task. As such, it is unclear whether the ben-
efits of facial expression seen in HHI will translate to HCI
and HRI.

Despite the suggested impact of facial expressions on
learning or motivation in HHI, no data could be found
regarding the impact of learning and facial expressions of
robots. A possible explanation is that much of the research
to-date regarding learning in HRI is performed with robots
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such as the Aldebaran NAO, Keepon, and Wakamaru which
have largely non-manipulable faces. Due to the movement
required in expressing facial emotion, the uncanny valley
[71] could also be a current limitation for robots.

3.5 Proximity and Body Orientation

The proximity between interactants is correlated to compli-
ance effects [78]. It is suggested that a distance of 1–2 feet
(30–60cm) is optimally conducive to compliance between
humans (from studies conducted in Western cultures) [79],
however whether this is the same for HRI has not been
established. This is possibly because judging the physical
proximity at which a robot should be from a student would
not necessarily be as simple as a strict 1–2 feet (30–60 cm)
rule. In human interactions, verbal feedback can modulate
(positively and negatively) the proxemic impact on compli-
ance [80]. InHRI, comfortable distances are dictated through
the complex interplay of factors such as the size of the robot
[81], how much the robot gazes towards a human and how
likeable they previously perceive the robot to be [82].

Only about 60% of people conform to the same prox-
emic social norms with robots as they do with people [83].
That being said, compliance effects have been seen in educa-
tional interactions between children and robots at a distance
of about 2 feet (60 cm), although this hasn’t been compared
against a control with closer or further distances [84]. Addi-
tionally, it would appear that younger children have a smaller
personal space, presumably due to their smaller size, so fur-
ther work would need to be done for people of different sizes
[85].

Research conducted with a robot in a variety of task con-
texts show humans generally prefer the robot to be 0.46–1.22
m away [86]. However, it is warned that the dynamic nature
of interaction with a robot should not necessarily be reduced
to a simplistic rule. Indeed, the previous paragraph suggested
the impact of variable robot appearance and behaviour, but
there are also environmental and task factors to consider. For
instance, if it is important to hear speech in a noisy envi-
ronment, then it might be that a closer distance between
interaction partners is more comfortable, when outside of
these parameters it would usually not be.

Several design guidelines for robotic proximity are pre-
sented in [87]. It is suggested that people who are familiar to
the robot can be approachedmore closely, to direct gaze away
from the face of a human as an approach is made, and to fac-
tor in the human’s attitude towards robots when maintaining
distance. The impact of human attitude towards robots is fur-
ther supported experimentally in [88] where the necessity of
building rapport before increasing closeness is emphasised.
This could be an important factor in teaching in order to gain
compliance.

Studies directly examining the impact of body orien-
tation on learning could not be found; this is possibly
due to the entanglement of body orientation with many
other social cues. If not orientated to an interaction part-
ner only limited eye gaze will be possible, gestures may be
occluded and it may be more difficult to hear any speech.
Nor could any studies be found studying the specific impact
of co-located physical proximity on learning; most work
considers co-located learning against distance learning (not
co-located), but this then becomes about social presence
rather than proxemics. Logically, it would seem reasonable
that a middle-ground should be sought. The robot should not
be too far away as then the student may struggle to perceive
verbal instructions andnonverbal signals. Ifmore compliance
is required, then a closer distance should be sought. Further
research is required to decide what is to be considered ‘too
close’ in specific scenarios, with humans of certain ages and
certain robot sizes/designs; work such as [83,89] provides a
strong starting point in this direction.

3.6 Touch

Touch has been shown to lead to a positive affective state in
HHI, even with very short touches and when subjects were
unaware of the touch [90]. This positive response to touch has
also been shown inHRI.When a robot offered an ‘unfair pro-
posal’ to participants with touch, their EEG response showed
less negativity towards the robot than when the robot did not
touch as they made the proposal [91]. Of course, liking does
not necessarily result in better learning, but there are indica-
tions that if students like an instructor more they will achieve
more highly [92].

Touch has also been linked with compliance [93], a use-
ful tool for teachers when they need to influence students
in order to get them to engage with lessons. The poten-
tial for utilising touch in HRI and educational contexts
has previously been highlighted [94] but, as yet, remains
underexplored.

4 Synchrony and Multimodal Behaviour

Of course, social cues do not occur in isolation, neither from
other cues, nor from the environment and the interaction they
are being used in. Behaviour ismultimodal, and the cuesmust
be contingent with respect to the interaction and congruent
with other social cues being utilised in order to be interpreted
correctly and efficiently. Social cues could be perceived as a
single percept, which requires that cues be considered as an
integrated whole [24]. Nonverbal immediacy is measured by
takingmany social cues into considerationwith respect to one
another, and thus supports the principles behind interpreting
social behaviour in this manner.
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Table 1 Behavioural guidelines for robots in educational contexts derived from the nonverbal immediacy and social cue literature

Guidline Caveat (if applicable) Section Ref.

G1 In general, mutual gaze should be sought as more
mutual gaze leads to increased recall

A robot should not fixate its gaze at a human
for prolonged periods of time or they will
avoid mutual gaze

2.2

G2 HCI suggests that vocal intonation/prosody should be of
the same accent as the participant and human-like
rather than machine-like

This remains under-explored in HRI 2.3

G3 For best compliance, vocal volume should be 70 dB in
public spaces

Adaptivity to ambient noise may be required
depending on the scenario

2.3

G4 Gestures should be relevant to verbal content being
delivered and should be used to aid understanding

2.1

G5 Use of hands (as opposed to laser pointers, or similar) is
key in directing learner attention

2.1

G6 When using pointing to direct attention, it is important
to use the arm on the same side as the object being
pointed to

2.1

G7 Closer proximity should be sought for increased
compliance. For humans a guideline is around 1–2 feet
(30–60 cm)

Appropriate distances for robots are not well
established and could depend on the size of
the robot

2.5

G8 Nonverbal Immediacy measures suggest that a relaxed
body position, leaning forwards, is more immediate
(and therefore leads to increased learning gains)

2.5

These concepts are exemplified experimentally by Byrd
et al. [95] who further explored the conclusions drawn from
studies such as those done by Cook et al. [50] regarding
gestures and learning (discussed previously in Sect. 3.1).
They found that when children did not copy eye movements
accompanying gestures the lasting learning effect disappears.

Support for the role of synchrony in social cues can be
seen in [96,97]. Head gaze, gestures and spoken words were
all used to direct attention.When any of the cues were incon-
gruent (e.g. responses had to be made to head-gazes, whilst a
pointing gesture was made in a different direction), interfer-
ence effects were found, slowing down responses. If social
cues are not synchronous and congruent then interactions
will likely be impeded by this additional processing time.

Not just the cues being used, but also their contingency
can influence interactions. A robot which displays more con-
tingent social cues, such as appropriate gaze and pointing
gestures, can elicit greater participation in an interaction [98].
When applied to an educational context, it is reasonable to
suggest that greater participation will lead to an increase in
learning [99].

5 Guidelines

Based on the analysis of the individual cues that comprise
nonverbal immediacy (Sect. 2) we seek to derive a set of
design guidelines that can be applied to HRI in tutoring
contexts. Nonverbal immediacy and learning have been pos-

itively correlated in human–human studies, and there have
been indications that this may be supported in HRI as well
[23]. The social cues which make up nonverbal immediacy
have been explored through theHHI andHRI literature, often
revealing a connection with learning gains on an individual
basis, providing some insights into the practical application
of such cues for HRI. From this, guidelines for robot social
behaviour in educational interactions have been devised
(Table 1).

6 Evaluation

If an effect seen in HHI studies concerning nonverbal imme-
diacy can be replicated with robots, then this strengthens the
case for phenomena correlated with immediacy in HHI stud-
ies transferring to HRI as well. This could provide useful
links to a body of literature from which insights into design
of robot behaviour could be derived.

The guidelines in the previous section use nonverbal
immediacy as a basis for behaviour generation,which is com-
monlymeasured through observational reports, such as those
seen in [26]. This measure has seen limited application in
HRI evaluations before, though where it has, the immediacy
scores have not been explicitly stated [23,40]. As such, it
would be beneficial to validate that behaviour intentionally
created as more or less immediate is judged as such when
applied to robots, as it is with humans. Additional validation
with children (due to the educational context of this work)
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Fig. 2 Updated version of
Fig. 1 depicting the influence of
nonverbal immediacy on social
interaction, and the educational
dimension of social interaction
which this paper is concerned
with. Section references are
provided in the diagram for each
of the social cues that nonverbal
immediacy consists of social
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to check whether they interpret the behaviour in the same
manner as adults would allow the guidelines to be applied to
a larger range of HRI scenarios. A human condition is there-
fore used to provide a reference point for the child ratings
with respect to the adult ratings. This will enable an assess-
ment of the reliability of child ratings of immediacy (which
does not readily appear in the literature), as a basis for the
subsequent examination of child ratings of robot immediacy.
The comparison between child and adult interpretation of
human nonverbal immediacy serves as a useful intermediary
step between the existing literature and applications of non-
verbal immediacy with robots and children. The evaluation
here focuses on the outcome of the educational dimension
of social interaction (as opposed to the social dimension) as
influenced by nonverbal immediacy (Fig. 2).

6.1 Methodology

A 2× 3 condition study was devised to explore how nonver-
bal immediacy would impact recall; two factors which have
been shown to be positively correlated (Sect. 2). In order to
evaluate whether children and adults interpret the behaviour
of a robot and a human in the same way, a scenario which
could be understood by both groups was required. As such,
the study design started from the perspective of the children
(who are presumed to have a shorter attention span and more
limited knowledge in some areas such as vocabulary) and

was then applied to adults. Recall of a presented short story
was decided to be an appropriate task for this purpose as this
matched the methodologies of immediacy studies.

Participants A total of 117 participants took part in the
study, but one child had to be excluded due to an incomplete
questionnaire and two adults were excluded due to incon-
sistent online video timestamps; this will be expanded on
later in this section. 83 children (age M = 7.8 years, SD =
0.7; 47 F, 36 M) and 31 adults (age M = 23.5 years, SD =
3.9; 7 F, 24 M) remained for data analysis. All participants
consented to participation in the study and all children had
parental permission to take part. The children were recruited
from one school year group of a primary school in the UK;
the children were split across conditions based on their usual
school classes, which ensures an appropriate balance for gen-
der and academic ability. Adults in the robot conditions were
recruited through regular lectures, and through online adver-
tising for the human condition.

Short StoryAshort storywas created for the purposeof the
recall test. The storywas largely based on one freely available
from a website containing many short stories for children.4

This was done to make sure that the language and content
was appropriate for children. Some elements were added or
modified in order to create opportunities for recall questions,
and some of the phrasing was modified so that the robot text-

4 http://freestoriesforkids.com/children/stories-and-tales/robot-virus.
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to-speech sounded more accurate. The final version of the
story created can be seen in Appendix 1 and lasts for just
under 4 min when read in the experimental conditions. None
of the participants reported to have heard or read the story
before.

Measures Two measures were used: a nonverbal immedi-
acy observer report questionnaire and a recall test. The Robot
Nonverbal Immediacy Questionnaire (RNIQ; Appendix 2)
was based on the short form of the Nonverbal Immedi-
acy Scale, sourced from [100] and freely available online.5

Exactly the same questionnaire was given to both children
and adults. The questionnaire was modified from the origi-
nal to make it easier to understand and complete for children.
This was done in four ways:

1. “He/she” was changed to “The robot”, or “The man”
depending on the condition.

2. “while talking to people” was changed to “while talking
to you”.

3. The response of ‘occasionally’ was changed to ‘some-
times’.

4. Instead of filling in a number at the start of each line,
boxes labelled with the scale were presented for each
question. This prevents children from having to keep
referring back to the top of the page and potentially los-
ing their thought process, and also prevents mistakes in
interpreting their handwriting during analysis.

The recall test was devised based on information provided
in the short story and consisted of 10 multiple choice ques-
tions, with a final free text answer about the moral of the
story. The full list of questions and answer options can be
seen in Appendix 3. The questions were designed to vary in
difficulty based on how many times the piece of information
had been stated, how central it was to the plot, and howmany
answer options were similar to the correct one. An additional
question was added to the adult human condition regarding
the colour of the background in the video; this was part of
a series of checks to ensure that the video had actually been
watched.

Hypotheses and Conditions Based on the literature
explored in Sect. 2 and the guidelines in Sect. 5, four hypothe-
ses for the study were considered:

– H1: Robot behaviour designed to be more or less imme-
diate will be perceived as such, as measured through the
nonverbal immediacy scale.

– H2: Children and adults will perceive nonverbal immedi-
acy in the same manner for both robots and humans (i.e.
children and adults ranking of immediacy will agree).

5 http://www.jamescmccroskey.com/measures/nisf_srni.htm.

– H3: Recall of the story will be greater when read by a
character with higher nonverbal immediacy.

– H4: As nonverbal immediacy of the character reading the
story is perceived to increase by an individual, their recall
of the story will also increase.

In order to address these hypotheses, three conditionswere
devised which were shown to both children and adults:

1. High nonverbal immediacy robot (Fig. 3 centre)—
using the guidelines in Sect. 5, the robot behaviour was
maximised for immediacy where possible; full details of
the robot behaviour can be seen in the following para-
graph. Child n = 27; adult n = 9.

2. Low nonverbal immediacy robot (Fig. 3 left)—using
the guidelines in Sect. 5, the robot behaviour was min-
imised for immediacy where possible; full details of the
robot behaviour can be seen in the following paragraph.
Child n = 28; adult n = 9.

3. Human (Fig 3 right)—a human was recorded on video
reading the story. This was to ensure identical behaviour
between child and adult conditions and to time the story
to be at the same pace as the robot conditions in order to
have equivalent exposure time and reading speeds (which
can impact recall [74,101]). This condition enables the
immediacy ratings of children to be validatedwith respect
to adults. The human was not given explicit instructions
in terms of nonverbal behaviour, as their immediacy level
is not under consideration, but whether the children and
adults perceive their immediacy level in the same way is.
Therefore, the behaviour itself is not of concern, provided
that it is identical between conditions (the video recording
ensures that this is the case). Child n = 28; adult n = 13.

Robot Behaviour The high and low nonverbal immedi-
acy robot conditions were developed based on the guidelines
from Sect. 5. The conditions sought to maximise the dif-
ferences between the behavioural dimensions which the
guidelines address (and therefore also the dimensions mea-
sured by the nonverbal immediacy scale). Some dimensions
were not varied due to limitations in the experimental set-up.
Facial expressions were not varied as the robot being used
for the study, an Aldebaran NAO, is not capable of produc-
ing facial expressions such as frowning or smiling. Proximity
was not varied due to the group setting in which the study
was being conducted. When the robot is telling the story to a
classroom of children it is not feasible, or safe, to incorporate
touch or to approach the children. The operationalization of
behavioural manipulations that were carried out can be seen
in Table 2.

Procedure For the robot conditions, the robot was placed
at the front of the classroom on a table to be roughly at
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Fig. 3 Still images from the conditions used in the evaluation; left to
right: (1) low nonverbal immediacy robot, (2) high nonverbal immedi-
acy robot, (3) human. Red backgrounds for the robot were not used in

practice and are just used to ease visibility here; the video was shown in
widescreen format, with a black background covering the unused space,
as in the figure

Table 2 Operationalization of behavioural manipulations between robot immediacy conditions

Behavioural dimension High nonverbal immediacy Low nonverbal immediacy

Gesture Frequent gestures, occurring approximately every 12
seconds during the story. Slight randomness added
to joints to provide small constant movement

No gestures, no joint random movement

Gaze Head gaze directed forwards randomly at
approximately the same height as the robot towards
the centre of the movement range (towards
observers)

Head gaze directed randomly up and towards the
corners of movement range (over/away from
observers)

Vocal prosody No modifications to standard text-to-speech (TTS)
engine, allowing shaping of sentences and
responsiveness to punctuation

All strings passed to TTS have punctuation stripped
and are forced to be spoken with no context of the
sentence (resulting in words sounding identical
every time they are said). Additionally, vocal
shaping was reduced via a TTS parameter

Body orientation Leans towards observers by approximately 15
degrees

Leans away from observers by approximately 15
degrees

the head height of observers (either children or adults). The
experimenter would then explain that the robot would read a
story and that afterwards they would be required to fill in a
questionnaire aboutwhat they thought of the robot. The recall
test was explicitly notmentioned to prevent participants from
actively trying to memorise the story. The experimenter then
pressed a button on the robot’s head to start the story.Once the
story was complete, the nonverbal immediacy questionnaires
were provided to all participants. When the whole group had
completed this questionnaire, the recall test was introduced
and given to participants. For the children, this was followed
by a short demonstration of the robot. The human video con-
dition procedure was the same for the children. The video
was resized to match the size of the robot as closely as pos-
sible, and the volume was adjusted to be approximately the
same as well.

As the children did not know this person, the adults
should not either so that the reported immediacy score

is based purely on the behaviour seen in the video and
not prior interaction. The subjects for the video condition
were recruited online and completed a custom web form
which prevented the video from being paused or played
more than once, and recorded timestamps for the start of
the video, the end of the video, and the completion of
the questions. An additional question was also added to
the recall test to verify that the participants had actually
watched the video (as opposed to the rest of the recall ques-
tions which can be answered through listening alone). One
participant was excluded from analysis as the timestamps
for the start and end of the video indicated too little time
for the full video to have been viewed and another par-
ticipant was excluded as the time between watching the
video and completing the questions was in the order of
hours (all other participants completed all questions in under
10 min), indicating that the intended protocol had been
violated.
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Table 3 Mean nonverbal
immediacy scores by condition

Condition Adult M 95% CI ChildM 95% CI

High immediacy robot 50.2 [47.0, 53.5] 50.8 [48.6, 53.0]

Low immediacy robot 36.3 [33.5, 39.1] 46.5 [44.2, 48.8]

Human 41.5 [38.4, 44.5] 49.7 [47.0, 52.4]

6.2 Nonverbal Immediacy Results

Nonverbal immediacy scores were calculated from the ques-
tionnaires and produce a number which can be between 16
and 80. Immediacy scores and confidence intervals can be
seen for each condition in Table 3. Whilst these scores might
initially appear to be relatively low given the possibility of
scores as high as 80, the scores do fall in the range expected.
Due to the exclusion of certain aspects of the immediacy
inventory in the robot conditions in terms of moving towards
and touching observers, as well as producing facial expres-
sions, it is unlikely that the score would raise above 56. It is
however possible to be perceived differently and score more
highly (for example the robot could have been perceived
to have produced a smile, even though the mouth cannot
move).

A two-tailed t test on the adult data reveals a significant
difference between the nonverbal immediacy score for the
high immediacy robot (M = 50.2, 95% CI [47.0,53.5]) and
the low immediacy robot (M = 36.3, 95% CI [33.5,39.1]);
t(16) = 7.460, p < .001. The same test on the child data
also reveals a significant difference between the nonverbal
immediacy score for the high immediacy robot (M = 50.8,
95%CI [48.6,53.0]) and the low immediacy robot (M = 46.5,
95% CI [44.2,48.8]); t(53) = 2.793, p = .007 (Fig. 4). These
results confirm hypothesis H1, that robot behaviour designed
to be more or less immediate will be perceived as such when
measured using the nonverbal immediacy scale. This pro-
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Fig. 4 Robot nonverbal immediacy scores as rated by children and
adults, relating to hypothesis H1. Significance is indicated by *p <

.05, **p< .01, and ***p < .001. Error bars show the 95% Confidence
Interval

vides a useful check that the behaviour of the robot has been
interpreted as intended by both children and adults.

Support can be seen for hypothesis H2, that children and
adultswill perceive nonverbal immediacy in the samemanner
for both robots and humans (Table 3). The results show that
both children and adults score the high immediacy robot very
similarly, with almost identical means. The relative ranking
of immediacy between conditions is also the same, with the
high immediacy robot being perceived as most immediate,
then the human, followed by the low immediacy robot con-
dition.

However, there are also some differences as the child
scores are more tightly bunched together; this could reflect
their different (yet consistent) interpretation of negatively
formulated questions [102], or more limited language under-
standing impeding the data quality [103]. A two-way
ANOVA was conducted to examine the effect of age group
(child/adult) and condition (high/low robot, human) on the
immediacy rating. A significant interaction effect was found
between these two factors: F(2,108) = 5.29, p= .006. Signifi-
cantmain effectswere found for condition (F(2,108) = 16.96,
p< .001) and age (F(1,108) = 26.51,p< .001).However, due
to the interaction effect, exploration of simple main effects
splitting the conditions is also required to correctly inter-
pret the results. Significant simple main effects are found
for condition within each level of age group (child/adult):
adults—Wilks’ Lambda = .796, F(4,214) = 6.46, p<.001;
children—Wilks’ Lambda = .798, F(4,214) = 6.38, p< .001.
Significant simple main effects are also found for age group
(child/adult) within each condition: low immediacy robot—
Wilks’ Lambda = .664, F(2,107) = 27.11, p < .001; high
immediacy robot—Wilks’ Lambda = .862, F(2,107) = 8.54,
p< .001; human—Wilks’ Lambda = .811, F(2,107) = 12.49,
p< .001.

These findings suggest that some differences are present in
the way that children perceive (or at least report) the imme-
diacy of the characters when compared to adults. This is
not surprising given the tighter bunching of child nonverbal
immediacy scores. Nevertheless, there is a strong positive
correlation between the child scores and the adult scores,
r(1) = 0.91, although this is not significant (p = .272) due
to the low number of comparisons (3 conditions). Overall,
due to the strong positive correlation and the same ranking
of the conditions, it would seem that children perceive non-
verbal immediacy in a similar manner as adults, but there are
clearly some differences at least in terms of reporting. We
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would argue that there is a strong enough link to deemnonver-
bal immediacy an appropriate measure to use with children
(and to tie the findings here to the adult human immediacy
literature), but this is an area that would benefit from further
research.

Cronbach’s alpha values were calculated for the nonver-
bal immediacy questionnaire for adults and children, splitting
the human condition and the robot conditions. All alpha val-
ues are based on the 16 item scale. The reliability rating for
the adults with the robot is high (α = .79), whereas in the
human condition it is quite a bit lower (α = .45). This differ-
ence may be an effect of embodiment, and will be explored
further in the discussion Sect. 7.4. Reliability scores for chil-
dren are relatively low in both cases (human α = .55; robot
α = .30). In spite of the variation in child responses, the
questionnaire was sensitive enough to detect differences as
shown in this section. The implications of this are also dis-
cussed in Sect. 7.4.

6.3 Recall Results

Recall results are based on the 10 recall questions presented
to all participants; scores are given as the correct proportion
of answers, i.e. 8 correct answers = 0.8. Recall scores and
confidence intervals can be seen for each condition in Table 4
and are represented graphically in Fig. 5.

To explore hypothesis H3, a two-tailed t test was con-
ducted on the adult data to compare recall between observing
the high and low immediacy robot conditions. No significant
differences at the p < .05 level were found; t(16) = −0.577,
p = .572. However, significant differences are found for the
child data. A two-tailed independent samples t test reveals
that recall is higher in the high immediacy robot condition (M
= 0.58, 95%CI [0.52,0.64]) than in the low immediacy robot
condition (M = 0.49, 95% CI [0.46,0.53]); t(53) = 2.006,
p = .011.

These results provide partial support for hypothesis H3:
recall will be greater when the character reading the story is
more nonverbally immediate. It can be seen that this holds
true for the children, where recall is greater in the high
immediacy robot condition than in the low immediacy robot
condition, in accordance with this condition being perceived
as more immediate. However, there are no significant dif-
ferences in recall between the conditions for adults. This is
likely due to a ceiling effect with adults because the recall
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Fig. 5 Recall scores for high and low nonverbal immediacy robot con-
ditions relating to hypothesis H3. Significance is indicated by *p< .05,
**p< .01, and ***p< .001.Error bars show the 95%Confidence Inter-
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questions were designed so that they were suitable for chil-
dren. This may have made them too easy for adults overall,
leaving limited space to show differences between condi-
tions. If the questions were more difficult and exclusively
targeted towards adults then it is possible that differences
would be found. The partial support for H3 and replication
of findings from previous studies of nonverbal immediacy—
using robots—provides a proof-of-concept for the approach
proposed in this paper.

No support is found for hypothesisH4: that higher individ-
ual perception of nonverbal immediacy will lead to greater
recall for that individual. Correlations between nonverbal
immediacy ratings and recall scores are not significant for
children (r(81) =−0.047;p= .673) or adults (r(29) =−0.188;
p = .311). Indeed the correlations themselves are in the oppo-
site direction (although only with a small magnitude) to that
which was expected. This would suggest that in this study,
the rating of immediacy at the individual level has less of a
bearing on recall than the average as judged by the group,
but there is not enough evidence here to explain why this
occurred.

7 Discussion

This paper started from the established research field of non-
verbal immediacy which links behaviour to learning gains
in a measurable and comparable manner (Sect. 2). This was
broken down into its component social cues to explore their

Table 4 Mean recall scores by
condition

Condition Adult M 95% CI ChildM 95% CI

High immediacy robot 0.80 [0.69, 0.91] 0.58 [0.52, 0.64]

Low immediacy robot 0.83 [0.76, 0.91] 0.49 [0.46, 0.53]

Human 0.79 [0.73, 0.84] 0.63 [0.56, 0.70]
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effect on learning individually. The evaluation in this paper
applied a series of guidelines that were devised based on
nonverbal immediacy cues and informed by HHI and HRI
literature. It was found that both children and adults per-
ceive the immediacy of a robot designed to have low and
high nonverbal immediacy behaviours as intended, which
confirms and extends prior work in HRI [23]. Additionally,
both children and adults ranked the nonverbal immediacy of
robots and humans in the same order, although children’s
raw scores were more tightly grouped. This gives rise to the
possibility that much of the nonverbal immediacy literature,
which has mostly been conducted with adults, would also
apply to children.

Recall of a short story improved significantly for chil-
dren when the robot reading the story was more immediate
in behaviour, which does indeed confirm the hypothe-
sis derived from nonverbal immediacy literature, based on
human–human studies showing the same effect [37,38]. No
significant difference in recall was observed in the adult
data, but this may be due to the relative lack of difficulty
of the recall test, which had been designed specifically for
children.

The following subsections will discuss the findings here
in the wider context of research conducted in HRI and HHI.
First the impact of individual characteristics will be dis-
cussed in relation to hypothesisH4,whichwas not supported.
Secondly, the possible impact of novelty on the perception
of behaviour and recall will be explored. Thirdly, poten-
tial shortcomings of nonverbal immediacy as a measure for
characterising interactions are raised. Finally, we share the
lessons learnt from this study in applying nonverbal immedi-
acy measures to HRI and consider the influence of the study
design on the findings.

7.1 Students as Individuals

Out of necessity, most experiments observe the learning of
large samples of students, meaning that the effect is seen
on average, but does not necessarily apply to all students.
All children are individuals, with their own characteristics,
preferences for subjects and learning styles. It may be that
there are some educational scenarios, topics, or children,with
which technology is more suited to assisting [104]. Some
children may be impacted to a degree related to their person-
ality (and their ‘need to belong’) [105], or their learning style
[106], which can affect their sensitivity to social cues.

All studies here have been considering typically develop-
ing children/students, somanyof the outcomesmaynot apply
to individualswith, for example, attention-deficit hyperactive
disorder (ADHD) or autism spectrum disorder (ASD) who
might have difficulties in interpreting some social cues [107–
109].

Gender could also have an impact on learning and the use
of social cues. It has been found in both virtual environments
[110–112] and physical environments [113] that males do
not utilise gaze cues in the same way as females; or if they
do, it does not manifest in behaviour change or learning. The
gender of the teacher, at least in virtual environments, does
not however seem to impact on the learningwhich takes place
[114].

In the evaluation presented in Sect. 6, support was not
found for hypothesis H4, which sought to link individual
perceptions of the robot behaviour (as measured through
nonverbal immediacy) to recall scores. It is suggested that
this may be because the nonverbal immediacy scale does not
cater for the many other variables between individuals that
may influence their learning. However, this does not reduce
the utility of nonverbal immediacy as a characterisation of
robot social behaviour, with differences in robot behaviours
clearly demonstrated as part of hypothesis H1. Instead, we
highlight here the need to further develop means of including
perceptions of robot behaviour into broadermodels of learner
characteristics.

7.2 The Novelty Aspect

It is necessary to acknowledge that the use of social cues
is only partially responsible for positive learning outcomes.
The approach, content and assessment of teaching con-
tributes significantly to the learning process [115], as does
the knowledge of the teacher [116] and their beliefs towards
learning [117]. Of course, the students play an equal part
in learning too, with aspects such as their emotion play-
ing a role in the process [118]. Teachers and students often
have long-standing relationships; these relationships allow
for familiarisation with teaching and learning styles, which
is beneficial for learning: when teacher turnover increases,
attainment scores have been shown to drop, evidencing the
importance of consistent relationships [119]. This highlights
the need for long-term interaction if using social robots to
assist in education, alongside thorough development of learn-
ing materials.

Themajority of the studies considered as part of the analy-
sis conducted here only look at single interactions, rather than
interactions over time. There is evidence for changing pref-
erences (and thus possibly changes in subsequent learning
outcomes) over time, as seen in [120]. Of course, a relative
lack of long-term data in HRI is understandable because of
the immense challenge in enforcing methodological rigour
over extended periods of time and the ethical implications of
using atypical conditions (such as the low immediacy robot
condition from the evaluation in this paper) in real-world
learning.
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Fig. 6 Representation of the role of social cues in dyadic HRI. Social
cues are used as modulation behaviour within the interaction

7.3 Nonverbal Immediacy and Interaction

Due to the potentially great benefits of using robots as tutors
in one-on-one interactions [121,122], and the possibility of
personalisation in such contexts, this seems to be an apt
means of applying robots in education. Whilst nonverbal
immediacy addresses how competent a speaker is at commu-
nicating towards others, i.e. how well a teacher can convey
information to students, in one-to-one tutoring it is impor-
tant to be competent at two-way communication as well. As
such, it may be that the approach taken in this paper would
need adapting for one-to-one tutoring, incorporating more
principles from dyadic interaction work.

Social behaviour plays a key role in dyadic interaction and
on the outcome of communication within a dyad. The role
of communication, or the social interaction within the dyad,
in such a scenario is posited to be “the mutual modification
of two ongoing streams of behaviour of two persons” [123].
The behaviour of one party affects the behaviour of the other.
In this view, social cues are used as part of the modulating
behaviour in this process (Fig. 6) and can therefore be utilised
in many processes influencing education.

The joint modification of behaviour within the dyad gives
rise to the need for regulation and alignment of behaviour
in order to simultaneously transmit and receive informa-
tion [124]. All parties engaging in a social interaction must
continually adapt the social cues they are using in order to
effectively construct the interaction [125]; for example, ver-
bal turn-taking must be regulated through the use of various
social cues [123]. Such regulation is important in learning
interactions, indicating when it is appropriate for learners to
ask questions, and when it is time for them to receive infor-
mation; learning is more challenging without social cues or
conventions to manage this turn-taking [126]. This simple
coordination in interaction is vital and has been shown to
influence cognition from infancy [124]. Even in unstructured
interactionswith robots, children appear to actively seek such
turn-taking in interactions [127].

These kinds of interaction phenomena are not catered for
in nonverbal immediacy measures. The evaluation in this
paper saw positive results, but the interaction between the
robot and the humans was largely in one direction (the robot
instructing the humans); the robot was not responsive to

human social cues or behaviour. This is an area which needs
further exploration in HRI: the question is when the inter-
action becomes more interactional than those presentational
behaviours considered in the present study, do immediacy
principles hold, or are additional behaviours (such as turn-
taking policies) required? We propose that in the absence of
further evidence in such contexts, the application of the non-
verbal immediacy metric provides a suitable basis for initial
investigation.

7.4 Using Nonverbal Immediacy in HRI

Whilst the evaluation in this paper had positive results and
confirmed (or partially confirmed) three of the four hypothe-
ses, it should bemade clear that there are limitations imposed
by the study design which could inhibit how well these find-
ings translate to other scenarios. The human condition was
shown through a video, whereas the robots were physically
present. This means that a comparison between the recall and
nonverbal immediacy scores from the human and the robot
conditions could be influenced by embodiment, or social
facilitation effects [128]. It should be noted that in this study,
we do not directly compare between these conditions: com-
parisons are made within robot conditions, or from children
and adults, but not between the human and robot conditions.

The reliability metrics across the conditions demonstrate
the effectiveness of the nonverbal immediacy characterisa-
tion of social behaviour. Generally, the adult raters have high
reliability levels, which reflects the behaviour seen in the
literature. That this applies to ratings of robot behaviours
indicates the applicability of the metric. Whereas the alpha
statistic is lower for children, there are two points of note.
Firstly, there remains a reasonable consistency for the rat-
ings of the human condition—this extends the literature by
showing the ability of children (in addition to adults) to use
the nonverbal immediacy metric. Secondly, for both children
and adults, there was agreement in the ordering of relative
immediacy levels between the conditions—this indicates that
the non-verbal immediacy scale is sensitive enough for the
present study, for both adults and children.

A number of caveats apply however that require further
investigation. A high reliability score is found for the adults
who saw a robot condition, but this is not so high for those
who saw the human condition. This may be due to relatively
low subject numbers when considering only the human con-
dition (13 subjects), where inconsistency from one or two
individual subjects could have a large impact on the alpha
value. The reliability for the human is higher for children
than for adults, suggesting the difference in subject numbers
could be a factor. Alternatively, it could be a result of embod-
iment: the robot conditions were seen in person, whereas the
human was shown on screen, which may have influenced the
reporting of social behaviour on the questionnaire.
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The Cronbach’s alpha statistic for the children who saw a
robot condition is considerably lower than that of the adults.
This is not so surprising, given the complications highlighted
in the literature of using questionnaires with children [103].
However, it may also be a product of limitations in robot
social behaviour. Cronbach’s alpha measures the internal
consistency of questionnaire items. Whilst some inconsis-
tency is likely due in part to child interpretations of negatively
worded items [102], there are some itemswithin the question-
naire that the robot behaviour itself is probably not consistent
in. For example, the questions related to smiling and frowning
are opposites of each other in terms of calculating a value for
the scale, but could both be answered as ‘never’ performed,
as the robot does not have moveable facial features. Such
a response would provide maximum inconsistency between
these items. This would not necessarily reflect the reliabil-
ity of the questionnaire, but a limitation in the ability of the
robot to implement all of the questionnaire items. The same
argument could be made for the items concerning touch—it
could be considered that the robot never touches the observer,
whilst also not ‘avoiding’ touch, as the question is worded.
Inclusion of these two behavioural elements (that were not
possible in the evaluation here) in subsequent work explor-
ing the use of nonverbal immediacy for characterising robot
social behaviour would likely yield higher reliability scores.

The interaction was also over a very short period of time
(approximately 4–5 min) and the measurement of learning
was through recall. Although recall is a fundamental element
of learning, it is very different from understanding or apply-
ing knowledge, or from the higher dimensions of learning
as defined in the revised version of Bloom’s taxonomy [29].
Early results suggest that nonverbal immediacy can also be
applied in slightly longer interactions, and in dyadic contexts,
with learning positively improved as nonverbal immediacy
increases [18]. However, longer scale studies with a variety
of robots and learning materials would certainly add more
weight to the evidence of how well nonverbal immediacy
can be applied to HRI.

8 Conclusion

This paper introduced a variety of literature from the well-
established area of research studying nonverbal immediacy.
Nonverbal immediacy can be used to characterise social
behaviour through observer-reports on the use of social cues,
such as gaze and gesture. We explored HHI and HRI litera-
ture relating to these cues and brought the findings together
into a set of guidelines for robot social behaviour. These
guidelines were implemented in an evaluation that compared
an intended high nonverbal immediacy and a low nonverbal
immediacy robot. A human condition was also included to
link the work here to existing nonverbal immediacy literature

and provide validation for the use of nonverbal immediacy
with children. Several hypotheses derived from the nonver-
bal immediacy literature were confirmed. Both children and
adults judge the immediacy of humans and robots in a similar
manner. The children’s responses were more varied than the
adults, but it was still possible to identify a significant dif-
ference in their perception of the social behaviour between
the two robot conditions. Children also recalled more of
the story when the robot used more nonverbal immediacy
behaviours, which demonstrates an effect predicted by the
literature. While there are some limitations in the measure,
it is proposed that nonverbal immediacy could be used as an
effective means of characterising robot social behaviour for
human–robot interaction, for both adult and child subjects.
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Appendix 1: Short Story Script

The following is the short story script as used in all
evaluation conditions. The story is largely based on one
from the following website: http://freestoriesforkids.com/
children/stories-and-tales/robot-virus (produced here with
permission from the author).

Hello, I’m Charlie. Today I’m going to tell you one of
my favourite robot stories. It is about a boy, his name is
Ricky, and his robot helper, Johnny. Ricky lived in a lovely
futuristic house, which had everything you could ever want.
Though he didn’t help much around the house, Ricky was
still as pleased as punch when his parents bought him the
latest model of helper robot. As soon as it arrived, off it
went; cooking, cleaning, ironing, and—most importantly—
gathering up old clothes from Ricky’s bedroom floor, which
Ricky didn’t like having to walk on.

On that first day, when Ricky went to sleep, he had left
his bedroom in a truly disastrous state. When he woke up
the next morning, everything was perfectly clean and tidy.
In fact, it was actually too clean. Ricky could not find his
favourite blue skateboard. However much he searched, it did
not reappear, and the same was starting to happen with other
things. Ricky looked with suspicion at the gleaming helper
robot. He hatched a plan to spy on the robot, and began fol-
lowing it around the house.

Finally he caught it red-handed. It was picking up a toy to
hide it.Off hewent, running to his parents, to tell them that the
helper was broken and badly programmed. Ricky asked them
to have it changed. But his parents said absolutely not; it was
impossible, they were delighted with the new helper, and that
it was the best cleaner they had ever met. So Ricky needed to
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get some kind of proof; maybe take some hidden photos. He
kept nagging his parents for three whole weeks about how
much good stuff the robot was hiding. Ricky argued that
this was not worth the clean house because toys are more
important.

One day the robot was whirring past, and heard the boy’s
complaints. The robot returnedwith five of his toys, and some
clothes for him.“Here sire, I did not know it was bothering
you”, said the helper, with its metallic voice. “How could it
not you thief?! You’ve been nicking my stuff for weeks”, the
boy answered, furiously. The robot replied, “the objects were
left on the floor. I therefore calculated that you did not like
them. I am programmed to collect all that is not wanted, and
at night I send it to places other humans can use it. I am a
maximum efficiency machine. Did you not know?”.

Ricky started feeling ashamed. He had spent all his life
treating things as though they were useless. He looked after
nothing. Yet it was true that many other people would
be delighted to treat those things with all the care in the
world. And he understood that the robot was neither bro-
ken nor badly programmed, rather, it had been programmed
extremely well! Since then, Ricky decided to become aMax-
imumEfficiency Boy, and he put real care into how he treated
his things. He kept them tidy, and made sure that he didn’t
have more than was necessary. And, often, he would buy
things, and take them along with his good friend, the robot,
to help out those other people who needed them.

The end... I hope you enjoyed the story. Goodbye!

Appendix 2:RobotNonverbal ImmediacyQuestion-
naire (RNIQ)

The following is the questionnaire used by participants in
the evaluation to rate the nonverbal immediacy of the robot,
as based on the short-form nonverbial immediacy scale-
observer report. The directions are provided verbally by the
experimenter, so the top of the survey simply asks to ‘please
put a circle around your choice for each question’. Options
are provided in equally sized boxes below each question.
The options are: 1 = Never; 2 = Rarely; 3 = Sometimes; 4 =
Often; 5 = Very Often. The questions are as follows:

1. The robot uses its hands and arms to gesturewhile talking
to you

2. The robot uses a dull voice while talking to you
3. The robot looks at you while talking to you
4. The robot frowns while talking to you
5. The robot has a very tense body position while talking to

you
6. The robot moves away from you while talking to you
7. The robot varies how it speaks while talking to you

8. The robot touches you on the shoulder or arm while talk-
ing to you

9. The robot smiles while talking to you
10. The robot looks away from you while talking to you
11. The robot has a relaxed body position while talking to

you
12. The robot stays still while talking to you
13. The robot avoids touching you while talking to you
14. The robot moves closer to you while talking to you
15. The robot looks keen while talking to you
16. The robot is bored while talking to you

Scoring
Step 1 Add the scores from the following items:
1, 3, 7, 8, 9, 11, 14, and 15.
Step 2 Add the scores from the following items:
2, 4, 5, 6, 10, 12, 13, and 16.
Total Score = 48 plus Step 1 minus Step 2.

This questionnaire can also be downloaded online.6 The
online versionhas beenmodified from theversion shownhere
as children commonly did not understand the word ‘varies’
in question 7, so this now reads ‘changes’.

Appendix 3: Recall Quesionnaire

The following questions are those used in the recall ques-
tionnaire; in brackets after each question are the possible
answers.

1. What is the name of the boy in the story? {Ricky,Mickey,
Harry, Jeff}

2. What is the name of the robot in the story? {Rupert, John,
Johnny, George}

3. What was the most important thing for the robot to pick
up from the floor of the boy’s bedroom? {clothes, food,
toys, t-shirts}

4. What did the boy think about doing to get proof of the
robot taking his things? {taking photos, shouting at it,
taking video, telling his parents}

5. What toy couldn’t the boy find the first day after the
robot had tidied? {orange skateboard, games console,
blue skateboard, blue doll}

6. How many toys did the robot give back to the boy after
he complained? {eight (8), five (5), three (3), six (6)}

7. How long did the boy complain to his parents for? {three
(3) weeks, eight (8) days, three (3) days, four (4) weeks}

8. What type of boy did he decide to be at the end of the
story? {maximum efficiency, tidy, minimum efficiency,
messy}

6 http://www.tech.plym.ac.uk/SoCCE/CRNS/staff/JKennedy/Robot_
Nonverbal_Immediacy_Questionnaire.

123

Author's personal copy



Int J of Soc Robotics (2017) 9:109–128 125

9. What type of robot is the one in the story? {angry, purple,
helper, flying}

10. What is the robot in the story especially good at? {ironing,
swimming, jumping, cleaning}

11. What was the moral of the story? free text answer
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Abstract
The benefit of social robots to support child learning in an educational context over an

extended period of time is evaluated. Specifically, the effect of personalisation and adapta-

tion of robot social behaviour is assessed. Two autonomous robots were embedded within

two matched classrooms of a primary school for a continuous two week period without

experimenter supervision to act as learning companions for the children for familiar and

novel subjects. Results suggest that while children in both personalised and non-personal-

ised conditions learned, there was increased child learning of a novel subject exhibited

when interacting with a robot that personalised its behaviours, with indications that this ben-

efit extended to other class-based performance. Additional evidence was obtained suggest-

ing that there is increased acceptance of the personalised robot peer over a non-

personalised version. These results provide the first evidence in support of peer-robot beha-

vioural personalisation having a positive influence on learning when embedded in a learning

environment for an extended period of time.

Introduction

Social robots have the potential to make positive contributions to a range of human-centred

activities, from support of the elderly to therapeutic assistance to adults and children [1–4].

One domain of particular interest is education, where social robots may be used to supplement

existing teaching structures to provide additional support to children. A range of evidence

comes together to support this perspective: it is known that one-to-one tutoring leads to signif-

icant learning improvements [5], classroom engagement is a predictor for peer acceptance in

later years in young children [6], and that personalised social and academic support has been

shown to reinforce later achievement [7]. The role of robots to facilitate engagement in class-

room activities thus has potentially significant consequences for learning as well as for social

development. In these efforts, the role of adaptivity is considered central to the efficacy of

application: an adaptive robot will be able to take into account the specific needs, requirements

and preferences of the person(s) with whom they are interacting. This personalisation of robot
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behaviours is the focus of the present work. In this paper, we demonstrate the positive role that

personalised robot peer behaviours play (along a number of dimensions) for child learning in

a situated context.

Existing work has shown that the presence of robots confers a number of advantages over

other media (e.g. standard desktop computers or paper-based systems) for learning and beha-

vioural change in people [8]. This has been demonstrated, for example, in the domains of

adherence to weight-loss programmes [9], reducing puzzle solving times [10], learning words

[11], and motor task learning [12]. Further studies have shown that physical robots will attract

more attention than their virtual analogues [13–15], and will comply with their requests [16],

following evidence suggesting children regard social robots as psychological agents [17] and

are perceived as more enjoyable interaction partners [18, 19]. Taken together, these studies

indicate that robots take advantage of, and amplify, the human propensity to anthropomor-

phise inanimate objects, which results in subsequent behavioural change [20, 21]. Given this

effect of physical robots as a basis, the question of interest is therefore how the behaviour of

the robot can augment this to maximise the desired outcome for the human interactant.

Two prior studies in the domain of social robots for educational contexts have set bench-

marks for subsequent research. In the first (single experimental condition) study, a robot was

placed in a corridor outside two Japanese classrooms for two weeks (6-7 and 10-11 year-olds,

under experimenter supervision), with the nominal task of encouraging the children to learn

English in unstructured interactions in break times [22]. This study demonstrated significantly

increased vocabulary recall by the children. In the second study, a humanoid robot with a

gradually unfolding repertoire of social behaviours was placed within a classroom of 10-11

year-olds in Japan for two months (32 experimental days), although interactions took place

outside of normal lesson times and also under constant experimenter supervision [23]. While

the examination of learning outcomes for the children was not the focus of the study, with the

development of relationships between the children and robot the primary aim, it was shown

that children who maintained peer-like interactions with the robot maintained interactions

over the extensive experimental period. Extending significantly from these works, the present

study focusses explicitly on learning, and being simultaneously embedded both physically and

in terms of the curriculum in the classroom itself.

A number of other studies have recently followed from these seminal works to further

explore the specific potential role that such social robots can play in helping children to learn,

although typically these have taken place outside of school classrooms or over isolated interac-

tion sessions. While a number of studies demonstrate the benefit of social robots in terms of

preference [24] and for adult learning [25], studies with children have shown that personalisa-

tion of robot behaviour (e.g. using names) [26] and task content (e.g. increased coverage of

subjects in which the children struggle) [27] can lead to modest learning gains in short-term

and single interactions, and that collaborative learning between children is facilitated [28].

However, these studies are ambiguous regarding the actual impact of social behaviour on child

learning: the presence of robots appears to facilitate increased learning, but the role of social

behaviour to extend this effect remains unclear, in contrast to the human-centred theory [29].

In the present work, we specifically examine the role that robot personalisation can play in

supporting the learning of children in social interaction with a humanoid robot over longer

and more intensive periods of time. We conduct this study within the classrooms themselves,

integrated within the school curriculum, and with no experimenters present during proceed-

ings, so as to maximise the ecological validity of our observations, results, and potential utility

for real applications. Our findings broadly support the hypothesis that personalisation within

interactions facilitates learning.

Robot education peers in a situated primary school study
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Situated school study

In an education context, robots could take on a number of social roles, such as tutor or peer,

each of which gives rise to certain behavioural expectations. As noted above, both have been

found to result in child learning, and both come with the expectation of social behaviour [30,

31]. However, whereas a tutor can be reasonably expected to not make mistakes, there is not

necessarily such an expectation for a peer: indeed, it has been found that the robot making

mistakes will further encourage child learning [32]. A robot with a more cooperative interac-

tion style has been found to elicit higher levels of engagement when interacting with children

[33]. Finally, in terms of preferences, it has been shown that in comparison with a tutor, a peer

role is preferred [34]: in the domain of robot companions for diabetic children for example,

the robot playing the role of a peer appears to be preferred over a tutor [4, 35]. For the present

study, we therefore focus on the role of social robot as peer; a learning companion.

This focus on the peer role entails a greater emphasis on collaborative (involving multiple

parties attempt to learn something together [36]) rather than didactic (in the manner of a

teacher) interactions between the child and robot. Technology is broadly being highlighted as

a means of ameliorating this [37]: child-child interaction studies have shown that collabora-

tions are more effective with jointly visual and manipulable objects [38]. The touchscreen-

based task environment we use takes advantage of this effect by implicitly constraining the

content of the interaction to the task [39], thus encouraging collaboration and participation

(active learning) [40] in a shared task space. It has been previously shown how such a task

environment provides an engaging context for child-robot interactions [15, 41, 42].

Our application context is a primary school classroom, with the intent that the robots act

autonomously whilst embedded within them. We seek to achieve ecological validity for the

study [43]: we emphasise that the robots are not under experimenter supervision during the

experiment (the teacher themselves provide this) and thus also not whilst the children interact

with the robot, as this detracts from relevance to potential deployment scenarios. Furthermore,

we consider the robot to be embedded within the classroom, both in terms of physical presence

(in the classroom, and in operation during lesson time), but also in terms of the incorporation

of learning material from the children’s curriculum. These two points (embeddedness and

unsupervised operation) constitute novel extensions to studies in the existing literature.

These considerations contextualise the broad hypothesis of the present study: that persona-
lisation in a robot learning peer will lead to greater learning effects for children in an embedded
educational context. Four aspects of this broad hypothesis require specification. Firstly, we

hold learning to incorporate generalisation in addition to memorisation, following a revision

of Bloom’s taxonomy [44], which identifies cognitive processes (from remembering to crea-

tion) as well as knowledge (from factual to meta-cognitive) as essential educational objectives.

Our learning evaluation thus specifically incorporates aspects of application of knowledge to a

new context. Secondly, we note that there are a range of potential targets for learning for the

children in their educational environment. For this reason, we examine both topics that are

part of their existing curriculum (familiar subjects), and ones that are not (novel subjects).

Thirdly, the novelty of our classroom-embedded application necessitates an examination of

the attitudes of the children in addition to their performance, to begin to assess the wider

implications of such an application. We thus attempt to characterise the wider experience of

the children over the experimental period. The fourth aspect is the nature and extent of robot

behaviour personalisation, which has been stated as “. . .reflect[ing] the needs and require-

ments of the (social) environment where the robot is operating in” [45] (p20). Consistent with

this definition, Lee et al [24] describe three non-exclusive means of increasing robot personali-

sation that include aspects of behaviour that are not related directly to adaptation per se, but
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also to the creation of a personable character: increasing friendliness, alteration to fit user pref-

erences, and adaptation over repeated encounters. This indicates a broad and integrated per-

spective on personalisation; a position that we here subscribe to.

A range of evidence in HRI studies, grounded in multiple other disciplines, may be brought

together to further support this perspective for the present work. Mapping onto the definition

and characterisation of behaviour personalisation discussed in the previous paragraph, we

identify three particular facets of personalisation that are particularly relevant to our task con-

text: adaptation of non-verbal behaviour, personable language content, and alignment to task

performance. These encompass both adaptive (non-verbal and task performance adaptation)

and personable (language content) behaviours that match the social interaction context

(repeated peer-peer interactions in an education setting). Following the phenomenon that

humans align their actions to one another, such as linguistic content [46], non-verbal behav-

iour adaptation follows from and encompasses those aspects of the robot behaviour that are

manipulable based on observation of the child’s behaviour [47], based on the phenomenon

that humans will adapt their behaviour to that of a robot [48]. Personable language content

refers to the explicit taking into account of the specific person with which the interaction takes

place: for the present study, this entails using the interacting child’s name during the interac-

tion [26], and using an informal style for instruction and feedback utterances [49]; being per-

sonable as opposed to imperative. Finally, performance alignment is the modification of

aspects of the task to align them with the performance of the child [25, 50]. In the present

study, such performance alignment is employed at two levels: firstly at the task level, where the

children could repeat an individual task, and secondly at a behavioural level, where the perfor-

mance of the robot is aligned with that of the child [47]. The first and third facets of personali-

sation effectively constitute a memory of prior interactions, which may subsequently be

applied to further interactions.

As stated above, we consider these three facets of personalisation together as a single con-

cept [24]. Evidence from a range of sources indicates that the consideration of single modality

interaction cues is insufficient to account for human behaviour, and that instead a fundamen-

tally integrated perspective needs to be taken [51]. For example, emotion perception has been

found to require conceptual processing, and is thus open to contextual influences (e.g. visual

and social) [52]. Furthermore, recent theoretical developments in the domain of social cogni-

tion, emphasising contingent behaviours, suggest that the context of the interaction shapes the

individual’s disposition to engage in interaction, resulting in a difficulty in handling out-of-

context cues [53]. Given that the context is at least partly determined by the interaction part-

ner, this further indicates the importance of coherency of context. Human social interactions

naturally integrate all these aspects of personalisation, and so we anticipate that such coher-

ency would also be expected of a nominally social robot. Taken together, and as a first truly

embedded study of this type, these lines of evidence motivate and justify our decision to main-

tain the integration of the three facets of personalisation for the present study.

The study described in this paper seeks to address the broad hypothesis by using a two-con-

dition, between-subject experimental design. Two age- and ability-matched groups of 7-8

year-old children in a U.K. primary school form the subject groups. A single robot is deployed

in each group in the same room in which the children engage in their daily lessons (Fig 1), dur-

ing which time individual children interact with the robot. They engage in a collaborative sort-

ing task with the robot on novel (history—the stone age) and familiar (mathematics—times-

tables) topics using a large mediating touchscreen [54] (Fig 1(b)). There are no experimenters

present during the interactions, which took place over a continuous two-week period. In the

“Personalised” condition (P), the robot personalises its behaviour along the three defined
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dimensions; in the “Non Personalised” condition (NP) the robot displays non-adaptive, non-

personalised behaviour (see the Methods section for details).

Materials and methods

The aim of the study conducted was to investigate whether personalised robots embedded

within a classroom for an extended period of time (part of normal classroom activities, and

with no experimenters present) can lead to increased child learning. The primary hypothesis

of the study is therefore that children in the Personalised robot condition would learn more

than children in the Non-Personalised robot condition, on the given set of topics. In addition

to this, we seek to explore some of the wider implications of having the robots embedded

within the classrooms, and whether the personalisation had any additional effects beyond the

target learning outcomes.

Ethics statement

Approval for conducting this study was granted by the Plymouth University Faculty of Science

and Technology Human Ethics Committee, as part of a thematic programme of research

involving the robot and touchscreen setup, and children in local schools. An opt-out informed

consent was obtained in writing from the parents/guardians of all participating children, and a

separate opt-in written informed consent was obtained for video recording the interactions

between the children and the robots. Children were withdrawn from the study if consent was

not obtained, and it was made clear that they could withdraw if and when they wished to.

Subjects

A total of 59 children aged 7-8 (in U.K. year 3) took part in the study (summer term). All chil-

dren attended a single U.K. primary school, but were divided into two classes. This division

Fig 1. Typical physical setup of the system within the classroom. The robot, Sandtray—a touchscreen device—and camera setup was located in one

corner of the room in which the children had their normal lessons. Interactions took place during normal lesson time. Both classrooms had similar

arrangements. Not to scale.

https://doi.org/10.1371/journal.pone.0178126.g001
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was not on the basis of ability. Gender balance favoured girls, although this applied equally to

both the first (12 boys, 18 girls, 30 in total) and second (12 boys, 17 girls, 29 in total) classes.

Each class was based in a different room where the majority of their lessons took place

(Information Technology lessons and Sports took place in different areas of the school). These

classrooms were located on the same corridor on the first floor of the school building (one

other empty classroom was on the same floor). The children in the two classes were separated

in these classes, although break times were held in communal areas of the school. Each class

was randomly assigned an experimental condition for the duration of the experiment. Each

class had a separate teacher who remained with the class for the duration of the experiment

period. In addition, each class was assigned a teaching assistant (TA), who varied by day. Both

teachers and TAs were briefed regarding the experimental setup; none of these were told of the

experimental conditions, nor that there were different robot behaviours deployed in the two

classes. This arrangement of children and classes provided the greatest degree of homogeneity

possible between the conditions by controlling for a number of potentially confounding sub-

ject and environment factors.

Materials

The same hardware setup was employed in both classrooms (Fig 1(a)). This consisted of a

touchscreen (the Sandtray), Nao humanoid robot (58cm tall, made by Aldebaran Robotics),

aluminium extrusion frame, and recording devices (Fig 1(b)). The robot and touchscreen were

synchronised over a wireless network such that the robot could manipulate virtual ‘objects’

displayed on the screen [54]. The aluminium frame served the dual purpose of maintaining

the arrangement of the equipment (e.g. reducing cable trip hazards) and providing a minimal

barrier to discourage the children from interfering with the hardware. The only difference

between the robots used was the highlight colour of the plastic panels: orange was used in the

Personalised condition, and grey was used in the Non-Personalised condition. One such hard-

ware setup was deployed in each classroom, where it remained for the continuous two week

period of the experiment.

Learning task

Taking into account the children’s current curriculum, two topics for learning in the interac-

tion with the robot were chosen, since there is a suggestion that multiple activities support the

maintenance of engagement [55]. The first was novel to the children, but was due to be learned

in the following academic year. The second was familiar as it had already been the ongoing

subject of learning. This dual-topic learning task was chosen to assess whether, in the context

of a familiar learning environment, a robot learning companion could be applied as an inter-

vention for an existing learning process as well as to a novel task.

The familiar learning task was chosen to be the times-tables, up to and including 12. This

formed part of the curriculum that the children studied throughout the year. As such, the chil-

dren were used to the concept involved, but varied in ability across the subject group. The

novel learning task concerned the stone age. This was a new subject matter for the children in

the school environment, with it due to appear on the syllabus in the following year. Learning

gains made in this topic would thus have been beneficial to the children in the future.

Both topics were administered using the Sandtray, and were structured in the form of a

series of two-category sorting tasks played with the robot (e.g. Fig 2(c)). A library of images is

placed on the screen, each library comprised of two static category images, and a number of

movable images. The task is to sort each movable image into the correct category: visual feed-

back is displayed on the screen to indicate a correct (or incorrect) categorisation. The child
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uses the touchscreen, and the robot can virtually drag the same images, thus establishing parity

of potential interaction affordances with the screen, and facilitating interaction between the

child and robot [54]. This methodology has been employed in a number of previous studies [4,

15] and has proven to be an effective strategy to engage children with robot interaction tasks.

Given that both novel and familiar learning tasks are displayed on the touchscreen, the tasks

are interleaved: i.e. times-tables and stone age libraries are alternated (Table 1).

The image libraries were the same for all children, in both conditions. Each image library

formed a two-category sorting task, of which half were uniquely associated with one of the two

categories, and half to the other. The stone-age libraries were each comprised of 14 images,

and the times-tables libraries were comprised of 12 images. The images appearing in the image

libraries did not appear in the pre- and post-experiment knowledge tests. The order of the

times-tables is according to difficulty (as specified by the teachers prior to the study), whereas

the stone-age image libraries each covers a different topic (where the task is to recognise

whether each image displayed belongs in the stone-age or not).

There were two additional learning-related components that were tested in this experiment.

In the first, an item of factual information was stated by the robot to the children during their

interaction, with recall of this fact tested for at the end of the experiment (with the multiple-

choice question “how long ago was the stone-age?”, options: {two years, two hundred, two

thousand, two million, two trillion, two bazillion}; last option a fake large number, correct

answer is two million years ago). The second component was tracking child performance in a

class-based task that was independent of either the familiar or novel learning tasks (incidental
task): spelling test scores were chosen as they were assessed on a weekly basis. In this way, per-

formance prior to, during and after the experiment could be tracked.

Conditions

Two experimental conditions were employed: a Personalised (P) interactive robot condition,

and a Non-Personalised (NP) robot condition. The robot behaviour differed between the

Fig 2. Interaction structure and contents. (a) structure of each interaction, with five minutes on the collaborative sorting task itself; (b) example of a child

engaged in the task with the robot (hardware and classroom setup as shown in Fig 1); (c) two sample image libraries, showing a 3 times-table task, and a

stone-age animals task.

https://doi.org/10.1371/journal.pone.0178126.g002
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robots in three distinct respects: non-verbal behaviour (gaze, movement alignment), verbal

behaviour (friendliness, personalisation), and adaptivity of progression through the learning

content (to personal performance). In neither condition were the children or teachers made

aware of the differing aspects of behaviour, nor of the differences between the conditions. In

both conditions, the robots acted autonomously, i.e. not under the control of an experimenter

or teacher.

In the Personalised condition, the robot was animated (actively seeking to match gazes to it

by the interacting child, and exhibiting life-like idling movements), responsive to the approach

of a child at the start of an interaction (it would stand up), and varied its behaviour according

to the characteristics of each child, as observed in the interaction. In terms of non-verbal

behaviour, this constituted adaptation of the drag speed of the robot movements on the screen,

the accuracy of the movements (in terms of percentage correct and incorrect categorisations),

and the length of time between successive moves [47]. In terms of verbal behaviour, the robot

would use the interacting child’s name, and employ a more friendly (as opposed to imperative)

demeanour. Full details may be found in the supplementary materials (S1 File). Progression

through the lesson image libraries was partially dependant on performance: assuming that the

child completed more than four image categorisations, then the image library was considered

to be successfully completed if the success rate for the child (i.e. not including robot moves)

exceeded 65%, with performance below this resulting in the library being repeated (up to a

maximum of three times). This personalisation of lesson progress provides a greater degree of

opportunity for practice on those topics where performance was low.

For the Non-Personalised condition, the robot’s behaviour remained constant throughout

all interactions, independent of the characteristics of each child, and was not responsive to the

Table 1. Image libraries used for the sorting tasks. Shown are the type of sorting task for each library, and

the categories used for the sorting itself. There were 14 images per stone age library, and 12 images per

times-table library. Stone age libraries are in italics: the fifth and sixth of these were combinations of images

from the first four stone-age libraries.

Library Library topic Library contents Sorting task

1 Times-table 2x table In/Out

2 Stone age Lifestyle Yes/No

3 Times-table 10x table In/Out

4 Stone age Animals Yes/No

5 Times-table 5x table Odd/Even

6 Stone age Tools Yes/No

7 Times-table 2, 10 & 5 division Odd/Even

8 Stone age Art Yes/No

9 Times-table 3x table Odd/Even

10 Times-table 4x table In/Out

11 Times-table 6x table In/Out

12 Times-table 3, 4, & 6 division Odd/Even

13 Stone age mix of subjects Yes/No

14 Times-table 7x table In/Out

15 Times-table 8x table In/Out

16 Times-table 9x table Odd/Even

17 Times-table 11x & 12x tables Odd/Even

18 Stone age mix of subjects Yes/No

https://doi.org/10.1371/journal.pone.0178126.t001
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approach of a child. This included movement speed, accuracy of moves, and delay between

moves. Imperative non-personal phrases were used (matched for number and length of utter-

ances used in the Personalised condition), and the progression through the learning material

was set at a constant rate for each child: each image library was completed only once before

moving on.

In neither condition was there a mechanism to explicitly consider turn-taking behaviours;

nevertheless, previous work has indicated that if the children perceive the robot to be a social

agent, turn-taking will emerge in the interaction [41].

Protocol

The class teachers were not informed of the hypotheses of the study, nor of the differences in

robot behaviour between the classrooms. The teachers administered pre-experiment knowl-

edge tests and questionnaires, and did so again for post-experiment tests and questionnaires.

During the experiment period itself, the teachers collected child performance on the normal

spelling tests and maths times-table tests, which were administered weekly. Maths lessons were

postponed for the two-week duration of the experimental period. A final debriefing interview

was conducted with the teachers after the experimental period. These additional data were col-

lected to enable a broader perspective on the influence of the robot in the classroom beyond

the interactions themselves.

During the experiment, there were no experimenters in the room: the robot system ran

autonomously, with experimenters only present at the start and end of the day to initialise and

shut down the system, respectively. In both conditions, the teachers designated the next child

to interact with the robot. The child would approach the robot setup (from the right-hand side

of Fig 1(b) for example), kneel down, and press a large ‘start’ button on the screen. Following a

verbal acknowledgement from the robot (differing by condition), the child would then proceed

to select their name on the screen. On name confirmation, the robot would begin the interac-

tion (differing by condition) with the last uncompleted image library.

After five minutes of interaction time, during which both the child and robot were able to

sort the images on the screen, the robot would announce that it had to rest (differing by condi-

tion). The child would be asked to answer a multiple-choice question on the screen, the robot

would return to it’s rest position, and the child would return to their seat in the classroom. The

next child could then be called to interact by the teacher.

Metrics

Four types of metric were used: pre- and post-experiment knowledge tests, within-interaction

performance data, questionnaires assessing opinion of and engagement with the robot, and

measures of performance in the classroom not involved in the experiment.

The pre- and post-experiment knowledge tests were administered on paper on the subject

of the novel learning task. They consisted of 24 images, 12 of which belonged to the stone-age

category, 12 did not. The same test was administered for both pre and post, but the children

were not given any feedback after the pre-test; the images in the test did not appear in the

robot interaction stage (Table 1), thereby testing an aspect of generalisation.

Within the interactions, all aspects of the child’s performance as detectable by the touchsc-

reen and robot were logged. This included the number of correct and incorrect classification

attempts per image library (including repeats in the Personalised condition). The change in

performance over interaction time per child could therefore be assessed. In addition to this, at

the end of each interaction, the child was asked to answer a multiple-choice question on the

screen before returning to their seat in the classroom (Table 2, the precise phrasing depended
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on the condition, shown in table S1 File). The questions after interactions two and three were

same in order to explore the changes in response over time. The questions varied according to

the interaction number, and are shown in Table 2. If the child did not respond within 30 sec-

onds, the interaction would end, and a ‘no response’ entry was made.

The third type of metric used was the administering of standard questionnaires. A prelimi-

nary pre-study questionnaire was administered to provide an indication of prior expectations,

following prior work [23]. The main battery of questionnaires was administered after the

experiment had been completed. Three questionnaires were used at this time. The first was

comprised of two sub-scales of the Intrinsic Motivation Inventory [56, 57]: interest/enjoyment

and perceived competence. The second was to assess the perception of social presence of the

robot [58], as previously validated [59]. The third was to assess the perceived social support

provided by the robot [60], an adaptation of a version validated with children (peer subscale)

[61]. All questionnaires may be found in the supplementary materials (S1 File).

The final evaluation metric was performance of the children in a classroom task not related

to the topics of the familiar and novel learning tasks. Spelling was determined as a suitable

choice for this as it was assessed on a weekly basis, which allowed change in performance to be

tracked over the course of the experiment.

Data analysis

For all results, the 95% confidence interval (CI) is provided for both within condition data and

between condition comparisons. Where appropriate, normality of data is tested for using the

Shapiro-Wilk test [62]; unless otherwise stated, the data are found to be consistent with nor-

mality, if not, then the Wilcoxon (non-parametric) test was employed. Homogeneity of data

variance is tested for using the Levene’s test [63]. Bootstrapping is employed to provide estima-

tions of population hypothesis testing from our collected sample [64]: 106 replications are used

and the studentized bootstrap 95% CI reported [65].

When considering learning effects, it should be noted that the pre- and post-tests used have

a maximum (and minimum) possible score, leading to a negative correlation of absolute learn-

ing gain and pre-test score [66]. Given this limit on maximal attainable increase in score, the

normalised learning gain metric, g = (scorepost − scorepre)/(scoremax − scorepre), is employed,

which normalises change in score to pre-test score, while being uncorrelated with pre-test

score [67]. This enables an assessment of the extent of learning irrespective of prior (starting)

performance. Normalised learning gain is calculated for all individuals, with the mean normal-

ised learning gain for each condition subsequently derived (and associated 95% CI).

Results

Two primary aspects of the results are considered. Given the main hypothesis, the effect of the

personalisation of robot behaviours on learning outcomes is considered. Then, given the con-

tinued presence of the robots in the two classrooms for the two week period, an assessment is

Table 2. End-of-interaction questions. Multiple choice questions displayed on the screen after each interaction, each of which had five possible responses.

Int. Question Option 1 Option 2 Option 3 Option 4 Option 5

1 Did you enjoy playing? Not at all No A bit Yes Yes a lot

2 What would you prefer to play with next? Robot Classmates Read a book Play outside Games console

3 What would you prefer to play with next? Robot Classmates Read a book Play outside Games console

4+ What do you think of the robot? Boring OK Good Bad Brilliant

https://doi.org/10.1371/journal.pone.0178126.t002
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made of how the children’s perceptions varied over time, both within and between conditions.

All data may be found in the supplmentary materials (S2 File). First however, we summarise

the characteristics of the interactions in the two conditions.

Expectations and interaction characteristics

As part of the pre-experiment questionnaires, the expectations of the children were assessed,

following [23]. Four questions were asked of the children regarding their perceptions of the

robot and how they expected their interactions to be (please refer to S2 File for full wordings

and possible responses). The results of this show no effective differences between the two con-

ditions, reinforcing the notion that the subject population is equivalent between conditions.

The children generally expected the robot to be like a friend (66.7%, followed by games con-

sole, 15.8%, and toy, 10.5%), wanted to know how the robot worked (across conditions, scale

1–5, M = 4.53, n = 59, 95% CI = [4.34, 4.72]), and wanted to be friends with the robot (across

conditions, scale 1–5, M = 4.71, n = 59, 95% CI = [4.57, 4.85]).

Both robot setups were permanently located in the two classrooms for a two week period.

This encompassed nine school days (a school closure occured on one day in the second week).

Over the two conditions for the experimental period, a total of 199 interactions took place

between the children and the robots—note that each of these took place in the classroom dur-

ing normal lesson time, and thus other children were present (albeit under the direct supervi-

sion of the teacher). Overall, the children completed an average of M = 4.56 image libraries

(n = 59, SD = 1.10) per interaction with the robot.

Given the touchscreen-centred nature of the interactions, performance of the individual

children on individual image libraries could be recorded and compared between conditions.

This progression through the image libraries is shown in Fig 3. In all cases, performance in the

Personalised condition exceeds that in the Non-Personalised condition, however, significance

is only present in a few of these cases (S2 File). While not a statistically significant effect, note

that the difference between the conditions generally increases as progression through the

image libraries increase.

Learning outcomes

Three learning topics were considered, and one recall task. The novel topic was recognition of

stone-age items; the familiar topic was the maths times tables (from two to twelve, inclusive);

and the incidental topic was a weekly spelling test. The recall task was a fact introduced by the

robot in its interactions with the children, the memory for which was tested after the experi-

mental period.

The two classes used in this study were not divided on the basis of ability, although they

were of the same age. In order to verify that the abilities of the children involved were ability

matched with respect to the learning metrics used, we consider the pre-experiment scores in

each of the three topics examined. Each of these indicates that the performance is indeed simi-

lar in the novel (MP = 0.731, nP = 30, 95% CI = [0.695, 0.766], MNP = 0.759, nNP = 29, 95% CI =

[0.718, 0.799], independent samples two-tailed t-test: t(57) = 1.097, p = .277), familiar (MP =

0.557, nP = 30, 95% CI = [0.478, 0.635], MNP = 0.520, nNP = 29, 95% CI = [0.467, 0.574], inde-

pendent samples two-tailed t-test: t(57) = 0.821, p = .415) and incidental tasks (MP = 0.617, nP

= 29, 95% CI = [0.526, 0.708], MNP = 0.654, nNP = 28, 95% CI = [0.553, 0.755], independent

samples two-tailed t-test: t(56) = 0.437, p = .664). This justifies the examination of differential

learning outcomes in the two conditions.

From the pre-test scores described above, consideration of the post-test scores provides an

initial and illustrative indication of the change in performance. For the novel (MP = 0.807, nP =
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30, 95% CI = [0.782, 0.832], MNP = 0.800, nNP = 24, 95% CI = [0.767, 0.834]), familiar (MP =

0.563, nP = 30, 95% CI = [0.485, 0.640], MNP = 0.537, nNP = 27, 95% CI = [0.481, 0.592]) and

incidental (MP = 0.800, nP = 29, 95% CI = [0.697, 0.903], MNP = 0.532, nNP = 28, 95% CI =

[0.417, 0.648]) tasks, this indicates similar outcomes between conditions (Fig 4(a)). Only in the

incidental task is there an indication of a significant difference between the conditions in the

post-test (independent samples two-tailed t-test: t(55) = 3.396, p = .0013).

Fig 3. Library scores per image library. Overview of mean scores per library, by condition, error bars are 95% CI: (a) performance in each of the image

libraries, see Table 1 for library contents; (b) scores for the first four stone-age image libraries (novel subject): ‘*’ denotes significance at the .05 level.

https://doi.org/10.1371/journal.pone.0178126.g003

Fig 4. Child learning performance between conditions. (a) summary of mean percentage test scores (for pre and post experimental period) for the familiar

learning task (times-tables), the novel learning task (the stone age), and the independent task (spelling, for which there was also a mid-experiment test); (b)

normalised learning gain exhibited in the familiar, the novel, and the independent learning tasks. Error bars show 95% CI.

https://doi.org/10.1371/journal.pone.0178126.g004
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However, consideration of only the difference between pre- and post-test scores (whether

by group or by individual) is a flawed metric since there is a ceiling on the maximum attainable

score (100%), and thus also on the maximum attainable increase in score given a pre-test

score. To counter this issue, we employ the ‘normalised learning gain’ metric (see Methods

section), which normalises score change to pre-test score. Applied to all subjects in both condi-

tions (i.e. all children in the study, minus exclusions), this indicates no significant learning

results for the novel (M = −0.026, n = 54, 95% CI = [−0.309, 0.256]), familiar (M = 0.002,

n = 57, 95% CI = [−0.085, 0.090]) or incidental (M = −0.082, n = 59, 95% CI = [−0.379, 0.214])

learning tasks.

Applied on a condition-basis (Fig 4(b)) to the data shows that for the novel task (stone-age)

the 95% confidence interval around the observed mean learning gain for the Personalised con-

dition does not include zero (MP = 0.253, nP = 30, 95% CI = [0.179, 0.328]), whereas the Non-

Personalised condition does (MNP = −0.376, nNP = 24, 95% CI = [−0.983, 0.231]). For the

familiar (MP = −0.026, nP = 30, 95% CI = [−0.179, 0.128], MNP = 0.033, nNP = 27, 95% CI =

[−0.040, 0.107]) and incidental (MP = 0.253, nP = 28, 95% CI = [−0.133, 0.639], MNP = 0.429,

nNP = 27, 95% CI = [−0.881, 0.022]) tasks, all confidence intervals include zero, indicating that

no learning is not an unexpected event (i.e. no significant learning effect).

A bootstrapping process was applied to provide estimations of population hypothesis test-

ing, examining whether the observed difference between the condition means lies outside of

the non-parametric bootstrapped distribution (Table 3). The analysis shows that this is the

case for the novel (MP−NP = 0.629, 95% CI = [−0.557, 0.589]) and the incidental (MP−NP =

0.682, 95% CI = [−0.588, 0.589]) learning tasks, indicating positive learning effects in these

learning tasks. This is not observed in the familiar learning task (MP−NP = −0.059, 95% CI =

[−0.174, 0.175]).

The final learning-related metric applied was a recall task. After the second image library

(the first stone-age library, see Table 1), the robot would introduce a fact related to the stone-

age: how long ago it was. In the experiment post-test (paper-based), a multiple-choice question

(six options, see Method section) assessed retention of this fact: correct responses in the P con-

dition (57.1%) exceed those in the NP condition (48.1%), both of which exceed chance (1/6,

16.7%). Application of the Fisher exact test (due to small/null values present in the 6x2 contin-

gency table) reveals a marginal effect (p = .059). Collapsing the contingency table into 2x2 (cor-

rect/incorrect responses) reveals no significant effect (χ2(2, 55) = 0.446, p = .504). That both

condition groups of children perform greater than chance (multinomial probability for both P

and NP given 1/6 chance level, p<.001) indicates a learning effect. However, given the pres-

ence of the robot in the classroom during the interactions, the marginal effect between the con-

ditions could, for example, be due to social contagion effects between individuals of the class.

Table 3. End-of-Interaction Questions Bootstrapping. 106 replications on the difference between the conditions (P—NP), compared to observed differ-

ence. Numbers in bold denote that observed difference of means lies outside of the bootstrapped 95% CI of the difference of means.

Metric Difference of the Mean (P—NP) 95% CI of bootstrapped difference of means

StoneAge Learning Gain (novel task) 0.629 [−0.557, 0.589]

Maths Learning Gain (familiar task) −0.059 [−0.174, 0.175]

Spelling Learning Gain (incidental task) 0.682 [−0.588, 0.589]

Social Presence Questionnaire 0.184 [−0.368, 0.368]

Social Support Questionnaire 0.249 [−0.395, 0.396]

IMI Interest/Enjoyment Questionnaire 0.177 [−0.328, 0.333]

IMI Perceived Competence Questionnaire 0.016 [−0.460, 0.464]

https://doi.org/10.1371/journal.pone.0178126.t003
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These results indicate that the interaction with the personalised robot leads to a significantly

increased learning outcome for the children in the novel task than with the non-personalised

robot, although this is not the case for the familiar task. There is a similar suggestion of

increased learning performance for the incidental task, since this was assessed at the same time

and in the same way for both condition groups. However, while this result is significant, we

only tentatively claim the beneficial role of the personalised robot on other aspects of class-

room-based work (as with the familiar task) since there are number of factors for which there

was no control put in place (e.g. potential exposure to the material to be learned in the inter-

vening time, or social interaction effects between subjects). This result does however lend sig-

nificant support to a further exploration of this issue.

Child perceptions and correlations

After each of the interactions, a multiple-choice question was displayed on the screen, with the

robot asking the children to choose one of the options prior to returning to their seat (see

Table 2). The question posed after the first interaction (“did you enjoy playing?”) reveals high

levels of agreement for both conditions: 96.7% chose “yes a lot” or “yes” in the personalised

condition (n = 30), compared with 89.7% in the non-personalised condition (n = 29), with no

significant difference between the two. This is not a surprising result, given the initial enthusi-

asm due to the novelty effect.

The questions posed after interactions two and three were the same (“what would you prefer
to play with next?”, with answers classified as either robot or other), and enable an examination

of changes in response over time, possibly as the novelty effect increasingly wore off. The

results show (Fig 5(a)) that in both conditions there is a reduction in children choosing the

robot over other options, with this effect being greater in the NP condition. This difference

between interaction numbers is not significant in either the P (dint2−int3 = 0.033, χ2(2, 60) =

1.355, p = .508) or NP (dint2−int3 = 0.137, χ2(2, 54) = 2.703, p = .259) conditions. In addition,

the effect size is weak for the P condition (Cramer’s VP = 0.150), and moderate for the NP con-

dition (Cramer’s VNP = 0.224). These results suggest that the novelty effect was reducing over

the course of the interactions.

The post-experiment questionnaires assessed four aspects of the children’s perceptions of

the robot: social presence (SPQ), social support (SSQ), interest and enjoyment, and perceived

competence; please refer to the supplementary materials for full details of the questionnaires

(S1 File). Overall questionnaire reliability (Cronbach’s α) was high (listwise deletion for miss-

ing values) for the SPQ (α = 0.878), SSQ (α = 0.899), interest and enjoyment (α = 0.817), and

for the perceived competence (α = 0.812), which indicates good internal consistency.

Overall, the robot was rated highly in terms of social support, the children expressed high

levels of interest and enjoyment in the activity and in their own competence, with slightly

lower levels of perceived social presence for the robot.

There are however no significant differences between the conditions for any of the four

questionnaire-based results: SPQ (MP = 3.783, nP = 28, 95% CI = [3.545, 4.022], MNP = 3.599,

nNP = 26, 95% CI = [3.311, 3.887], independent samples two-tailed t-test: t(50) = 0.965, p =

.339), SSQ (MP = 4.247, nP = 28, 95% CI = [4.012, 4.482], MNP = 3.998, nNP = 26, 95% CI =

[3.673, 4.323], independent samples two-tailed t-test: t(46) = 1.215, p = .231), Enjoyment/

Interest (MP = 4.648, nP = 28, 95% CI = [4.411, 4.884], MNP = 4.470, nNP = 26, 95% CI = [4.239,

4.702], independent samples two-tailed t-test: t(52) = 1.051, p = .298), or Competence (MP =

4.125, nP = 28, 95% CI = [3.785, 4.465], MNP = 4.109, nNP = 23, 95% CI = [3.795, 4.423], inde-

pendent samples two-tailed t-test: t(49) = 0.069, p = .945). Bootstrapping supports this by
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showing a lack of significant difference between the conditions with respect to these four

aspects of robot perception (Table 3).

It is also of interest to examine the relationship between the performance levels, responses,

and questionnaire answers. Correlations are used for this (as opposed to linear regression)

since all variables are measured rather than manipulated (except for the conditions them-

selves): we seek to explore the data rather than generate predictions. The majority of correla-

tions are not significant, or are the same in both conditions. However, a number of

observations can be made based on the significance (or not) of the correlations in both the P

(Table 4) and NP (Table 5) conditions. In the NP condition, the score attained in the first

interaction is strongly and positively correlated with the first question response (whether they

enjoyed the interaction: r(26) = 0.542, p = .003), whereas this is not the case for the P condition

(r(28) = 0.097, p = .610), despite the mean scores (MP = 0.798, MNP = 0.756) and responses

(MP = 2.867, MNP = 2.643) being equally high. Conversely, however, the response in

Fig 5. End-of-interaction question responses. (a) end of interaction responses after the second and third interactions to the question “what would you

prefer to play with next?”, with “none” recorded if an answer is not given within 30 seconds (multiple choice from: robot, classmates, read a book, play outside,

games console, or no answer); (b) box-plots showing child ratings for the four questionnaires (end of bars represent last datum within the 1.5*IQR; circles

denote outside values; no outliers): social presence, social support, interest/enjoyment and perceived competence. Crosses indicate the mean, numbers

below the bars denote sample size.

https://doi.org/10.1371/journal.pone.0178126.g005

Table 4. P-condition correlations. Pearson product-moment correlation coefficients for the P condition between the post-experiment questionnaires, first

interaction score and response, and the overall learning gain. Cells in bold denote correlations significant at least at the .05 level.

SPQ SSQ Int / Enj Comp Int1 score Int1 resp SA-gain M-gain S-gain

SPQ 1

SSQ 0.675 1

Int/Enj 0.466 0.518 1

Comp 0.467 0.378 0.498 1

Int1 score 0.094 0.042 0.026 −0.108 1

Int1 resp 0.251 0.214 0.743 0.359 0.097 1

SA-gain 0.175 −0.076 −0.208 −0.011 0.327 −0.095 1

M-gain −0.151 0.159 0.138 −0.234 −0.172 0.083 −0.250 1

S-gain −0.189 0.079 0.253 −0.102 0.127 −0.066 −0.344 0.065 1

https://doi.org/10.1371/journal.pone.0178126.t004
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interaction one is strongly and positively correlated with the interest/enjoyment post-experi-

ment questionnaire response in the P condition (r(26) = 0.743, p<.001), but not in the NP con-

dition (r(24) = −0.032, p = .877). This appears to suggest that the levels of enjoyment

experienced in the first interaction are maintained throughout the experiment in the P condi-

tion, but not necessarily in the NP condition. The correlations between the post-experiment

questionnaire responses are similar between the two conditions, with the exception of a signifi-

cant positive correlation between perceived competence and interest/enjoyment for the P con-

dition (r(26) = 0.498, p = .001), but not for the NP condition (r(21) = 0.101, p = .655).

Taken together, these results indicate a high level of continued engagement with the robot

is sustained in both conditions, even after the two-week experimental period. There is some

indication that, where this existed in the first place, this is sustained somewhat more in the P

condition than in the NP condition.

Discussion and conclusion

In general terms, the results show that children exhibit significantly increased learning in the

novel learning task in the personalised condition compared with the non-personalised condi-

tion. This effect is also apparent in the incidental learning task, but not in the familiar learning

task. Personalisation encompasses three distinct aspects (non-verbal behaviour, linguistic con-

tent, and performance alignment) that we consider as contributing to the integrated percep-

tion of a single agent: in addition to the cue integration framework [51], discontinuities

between different aspects of the robot behaviour (e.g. personalisation in one respect, but not in

another) may impair the overall perception [68]. This motivated our decision to provide the

comparison between an integrated personalisation agent and one that did not, with the subse-

quently observed differences in learning outcome.

One aspect of the results that may have been impacted by this amalgamation of features in

the implementation of personalisation is the perceived ‘friendliness’ of the robot, which has

been characterised as including gentle, predictable movements [69]. It is thus possible that the

difference in robot personalisation between conditions leads to a difference in perception of

friendliness, which in turn could have an effect on the learning outcomes. However, the out-

come of the post-study questionnaires indicates that that this is not the case. Specifically, the

Social Presence (SPQ), Social Support (SSQ), and interest and enjoyment questionnaires all

showed non-significant differences between the conditions. To the extent that the SPQ and

Table 5. NP-condition correlations. Pearson product-moment correlation coefficients for the NP condition between the post-experiment questionnaires, first

interaction score and response, and the overall learning gain. Cells in bold denote correlations significant at least at the .05 level.

SPQ SSQ Int / Enj Comp Int1 score Int1 resp SA-gain M-gain S-gain

SPQ 1

SSQ 0.748 1

Int/Enj 0.443 0.335 1

Comp 0.400 0.363 0.101 1

Int 1 score −0.074 0.046 −0.224 −0.307 1

Int 1 resp 0.049 0.014 −0.032 0.142 0.542 1

SA-gain 0.271 0.228 0.126 −0.001 0.079 0.207 1

M-gain −0.089 0.124 0.326 0.017 −0.135 −0.077 −0.157 1

S-gain −0.476 −0.311 −0.272 0.071 0.262 0.243 −0.057 0.097 1

https://doi.org/10.1371/journal.pone.0178126.t005
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SSQ responses are related to friendliness, this indicates that friendliness is not a confounding

factor for the learning results.

In terms of behaviour, two further characteristics in particular can be incorporated beyond

the three aspects of personalisation currently used, namely personality and affective respon-

siveness. Adaptation to personality has, with adults for example, been shown to be beneficial

in the domains of the home [70], rehabilitation [71], and human-robot collaboration [72]. The

incorporation of such adaptation for children in an educational context may thus be of interest

in the future, even if the reliability of child self-report personality assessments may be ques-

tionable [73]. Affective responsiveness for a robot, as a more reactive phenomenon, has been

associated with a greater perception of social support [60], with the face of the robot a particu-

larly important feature [74]. A limitation in the current study regards the expressivity of the

hardware platform, particularly in terms of variation in facial expression (the Nao robot used

has a minimal static face, see Fig 1(b)), which limited the degree to which affective responsive-

ness, and hence potential for engagement [75], could be achieved. However, the present study

nevertheless provides a foundation for further investigation into such issues, by establishing

the importance of personalisation for learning.

The embedded nature of the present study methodology contributes to its novelty: we wish

to reiterate that the robots became permanent fixtures in the two classrooms over the two

week experimental period, and that there were no experimenters/technicians present with the

robots during the school day. This remains a rarity in social robotics research. With only the

teacher (and occasionally a teaching assistant) present with the children in the classroom, this

enabled us to approximate ‘natural’ conditions for the experiment, thus supporting the eco-

logical validity of our results. There is necessarily however a trade-off for the levels of control

over potential influences in an experimental sense [43]. For example, we did not, and indeed

could not given the lack of experimenter present, prevent the interaction of individual children

with their classmates during their turn with the robot. Furthermore, given that the children of

the two separate classes had breaks at the same time, we cannot exclude the possibility that the

two groups did not exchange ideas regarding the robot and its behaviour.

The lack of significance between conditions in the familiar task may be due to four effects,

apart from the possibility that there are no actual differences to be found. Firstly, robot perso-

nalisation as instantiated in the present study may not be sufficient to give rise to outcome dif-

ferences, or the robot personalisation aspects used were insufficient. However, given the

learning differences seen for the novel learning material, we suggest that this is not the case.

We certainly acknowledge the possibility of further behavioural refinements, but the demon-

stration of significantly different learning gains supports our primary hypothesis. Secondly, it

is possible that the novelty factor of having robots in the classroom increased overall motiva-

tion and hence performance in the tasks. This is unlikely for two reasons: (a) given the same

hardware setup in both classrooms, there is nevertheless an increased performance in the

novel task for the personalised condition but not the non-personalised condition, indicating

the influence of condition differences over a novelty factor; and (b) the qualitative results indi-

cate that the novelty factor decreased in the second week (also see point below). Thirdly, given

the potential mixing of children between the conditions outside of the classroom as noted

above, there is a possibility of some degree of cross-condition contamination. Whilst the prev-

alence of this is not possible to rule out, we note in mitigation that the teachers in their debrief-

ings did not suggest that this occurred. We further note that our efforts to maximise the

ecological validity of the study necessarily prevented an explicit control for the possible pres-

ence of this phenomena. Finally, we recognise that there are limitations in the administration

of questionnaires to children, in terms of the ceiling effect, or social desirability distortion [76].
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Although our use of standardised questionnaires mitigates the impact of this, the effect

remains potentially apparent in the results (Fig 5(b)).

Nevertheless, the experimental design (developed in conjunction with the teachers them-

selves) sought to avoid and minimise any potential confounds. For example, the teachers were

not informed of the specific hypotheses nor conditions of the study, and were involved only in

the learning task content and procedural issues (to ensure that similar methods would be used

by the teachers when interacting with and referring to the robot in their classroom). Similarly,

the classes were balanced in terms of age, gender and ability (as evidenced by the lack of signif-

icant difference in the pre-experiment scores and attitudes), reinforced by equivalent pre-

experiment expectations, resulting in homogeneous condition groups, which validates our

results and observations [77].

The children who took part in the study were primary school children, an age range that

has recently seen increasing use in HRI studies [4, 27, 50, 60], as means of supplementing exist-

ing educational practice [29]. In terms of generalising the results to other children of the same

age, the UK government Office for Standards in Education, Children’s Services and Skills

(Ofsted) conducts regular school inspections and compiles national statistics and performance

tables [78]. For the school at which this study was conducted, the proportion of children who

attained the expected standard in reading, writing and mathematics (72%, 2014 rating) for the

age group (Key Stage 2, level 4) is consistent with the regional (74%) and national (78%) mean

ratings. Based on this characterisation, we suggest that the results could be reasonably general-

ised to other primary school populations (at least in the U.K.), thus supporting the wider appli-

cability of the findings.

One further point of note is the wider effect of the presence of the robots in the classroom.

The teacher debriefing highlighted the impact of novelty: in the first week of the experiment,

some disruption to the class occurred as children were distracted by the robot actions and

speech. However, they noted that in both classrooms, this distracting effect dissipated in the

second week, although they reported still being able to use the robots as a motivator for the

children [79]. This is supported by the high levels of interest/enjoyment in the activity at the

end of the study (non-significantly higher for the personalised condition). This maintenance

of motivation speaks to the wider role of technology, including social robotics, in the class-

room and how it is handled (‘orchestrated’) by the teachers [80]. While acceptance was high in

the present study, this may be a self-selection bias (i.e. the school and teachers were enthusias-

tic about the study prior to implementation), and further examination of the effort required

on the part of the teachers and the school versus the learning benefits afforded by the type of

personalised social robot systems we have demonstrated here is necessary, particularly in

embedded applications (i.e. inside the classroom itself), as we have achieved in the present

study.

The methodology employed, with the autonomous robots embedded (both physically and

in terms of curriculum) within primary school classes without experimenter supervision, max-

imises the ecological validity of the study, and thus the implications for educational practice

and application. This study found that a robot peer exhibiting personalised behaviours in a col-

laborative learning task with individual children facilitated improved learning for the children

in a novel task over a non-personalised robot behaviour. This effect was not seen for the famil-

iar task, and whilst a differential improvement was observed in the incidental task, these results

require further verification in light of the non-significant differences between the child percep-

tions. We conclude that while further empirical study is required to distinguish between, and

indeed maximise the impact of, the different aspects of personalisation employed, we have

shown that robot personalisation provides a positive influence on child learning in the

classroom.
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Several studies have indicated that interacting with social robots in educational contexts 
may lead to a greater learning than interactions with computers or virtual agents. As such, 
an increasing amount of social human–robot interaction research is being conducted 
in the learning domain, particularly with children. However, it is unclear precisely what 
social behavior a robot should employ in such interactions. Inspiration can be taken from 
human–human studies; this often leads to an assumption that the more social behavior 
an agent utilizes, the better the learning outcome will be. We apply a nonverbal behavior 
metric to a series of studies in which children are taught how to identify prime numbers 
by a robot with various behavioral manipulations. We find a trend, which generally agrees 
with the pedagogy literature, but also that overt nonverbal behavior does not account 
for all learning differences. We discuss the impact of novelty, child expectations, and 
responses to social cues to further the understanding of the relationship between robot 
social behavior and learning. We suggest that the combination of nonverbal behavior 
and social cue congruency is necessary to facilitate learning.

Keywords: human–robot interaction, robot tutors, social behavior, child learning, nonverbal immediacy

1. inTrODUcTiOn

The efficacy of robots in educational contexts has been demonstrated by several researchers when 
compared to not having a robot at all and when compared to other types of media, such as virtual 
characters (Han et al., 2005; Leyzberg et al., 2012; Tanaka and Matsuzoe, 2012; Alemi et al., 2014). 
One suggestion for why such differences are observed stems from the idea that humans see comput-
ers as social agents (Reeves and Nass, 1996) and that robots have increased social presence over other 
media as they are physically present in the world (Jung and Lee, 2004; Wainer et al., 2007). If the 
social behavior of an agent can be improved, then the social presence will increase and interaction 
outcomes should improve further (for example, through social facilitation effects (Zajonc, 1965)), 
but it is unclear how robot social behavior should be implemented to achieve such aims.

This has resulted in researchers exploring various aspects of robot social behavior and attempting 
to measure the outcomes of interactions in educational contexts, but a complex picture is emerging. 
While plenty of literature is available from pedagogical fields which describe teaching concepts, there 
are rarely examples of guidance for social behavior at the resolution required by social roboticists 
for designing robot behavior. The importance of social behavior in teaching and learning has been 
demonstrated between humans (Goldin-Meadow et al., 1992, 2001), but not enough is known for 
implementation in human–robot interaction (HRI) scenarios. This has led researchers to start 
exploring precisely how a robot should behave socially when information needs to be communicated 
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to, and retained by, human learners (Huang and Mutlu, 2013; 
Kennedy et al., 2015d).

In this article, we seek to establish what constitutes appropriate 
social behavior for a robot with the aim of maximizing learning 
in educational interactions, as well as how such social behavior 
might be characterized across varied contexts. First, we review 
work conducted in the field of HRI between robots and children 
in learning environments, finding that the results are somewhat 
mixed and that it is difficult to draw comparisons between studies 
(Section 2.1). Following this, we consider how social behavior 
could be characterized, allowing for a better comparison between 
studies and highlighting immediacy as one potentially useful 
metric (Section 2). Immediacy literature is then used to generate 
a hypothesis for educational interactions between robots and 
children. In an evaluation to test this hypothesis, nonverbal 
immediacy scores are gathered for a variety of robot behaviors 
from the same context (Section 3). While the data broadly agrees 
with the predictions from the literature, there are important 
differences that are left unaccounted for. We discuss these differ-
ences and draw on the literature to hypothesize a possible model 
for the relationship between robot social cues and child learning 
(Section 2.5). The work contributes to the field by furthering our 
understanding of the impact of robot nonverbal social behavior 
on task outcomes, such as learning, and by proposing a model that 
generates predictions that can be objectively assessed through 
further empirical investigation.

2. relaTeD WOrK

2.1. robot social Behavior and child 
learning in hri
There are many examples of compelling results, which sup-
port the notion that the physical presence of a robot can have 
a positive impact on task performance and learning. Leyzberg 
et  al. (2012) found that adults who were tutored by a physical 
robot significantly outperformed those who interacted with a 
virtual character when completing a logic puzzle. A controlled 
classroom-based study by Alemi et al. (2014) employed a robot to 
support learning English from a standard textbook over 5 weeks 
with a (human) teacher. In one condition, normal delivery was 
provided, and in the other, this delivery was augmented with 
a robot that was preprogrammed to explain words through 
speech and actions. It was found that using a robot to supple-
ment teaching over this period led to significant child learning 
increases when compared to the same material being covered by 
the human teacher without a robot. This is strong evidence for 
the positive impact that robots can have in education, which has 
been supported in other scenarios. Tanaka and Matsuzoe (2012) 
also found that children learn significantly more when a robot is 
added to traditional teaching, both immediately after the experi-
ment and after a delayed period (3–5  weeks later). Combined, 
these findings suggest that the use of a physically embodied robot 
can positively contribute to child learning.

Aspects of a robot’s nonverbal social behavior have been inves-
tigated in one-on-one tutoring scenarios with mixed results. Two 
studies in the same context by Kennedy et al. (2015c) and Kennedy 

et al. (2015d) have found that the nonverbal behavior of a robot 
does have an impact on learning, but that the effect is not always 
in agreement with predictions from the human–human interac-
tion (HHI) literature. These studies will be considered in more 
detail in Section 3. Similarly, Herberg et al. (2015) found that the 
HHI literature would predict an increase in learning performance 
with increased gaze of a robot toward a pupil, but the opposite was 
observed: an Aldebaran NAO would look either toward or away 
from a child while they completed a worksheet based on material 
they had learnt from the robot, but this was not found to be the 
case. However, Saerbeck et al. (2010) varied socially supportive 
behaviors of a robot in a novel second language learning scenario. 
These behaviors included gestures, verbal utterances, and emo-
tional expressions. Children learnt significantly more when the 
robot displayed these socially supportive behaviors.

The impact on child learning of verbal aspects of robot behavior 
has also been investigated. Gordon et al. (2015) developed robot 
behaviors to promote curiosity in children with the ultimate aim 
of increased learning. While the children were reciprocal in their 
curiosity, their learning did not increase as the HHI literature 
would predict. Kanda et al. (2012) compared a “social” robot to 
a “non-social” robot, operationalized through verbal utterances 
to children when they are completing a task. Children showed a 
preference for the social robot, but no learning differences were 
found.

Ultimately, it is a difficult task to present a coherent overview 
of the effect of robot social behavior on child learning, with many 
results appearing to contradict one another or not being compa-
rable due to the difference in learning task or behavioral context. 
More researchers are now using the same robotic platforms and 
peripheral hardware than before (quite commonly the Aldebaran 
NAO with a large touchscreen, e.g., Baxter et al. (2012)), but there 
remain few other similarities between studies. Behavior of various 
elements of the system is reported alongside learning outcomes, 
but it is difficult to translate from these descriptions to something 
that can be compared between studies. As such, it becomes almost 
impossible to determine if differing results between studies (and 
discrepancies with HHI predictions) are due to differences in 
robot behavior, the study population, other contextual factors, or 
indeed a combination of all three. It is apparent that a charac-
terization of the robot social behavior would help to clarify the 
differences between studies and provide a means by which certain 
factors could be accounted for in analysis; this will be explored in 
the following section.

2.2. characterizing social Behavior 
through nonverbal immediacy
To allow researchers to make clearer comparisons between 
studies and across contexts, a metric to characterize the social 
behavior of a robot is desirable. Various metrics have been used 
before in HRI. Retrospective video coding has been used in sev-
eral HRI studies as a means of measuring differences in human 
behavioral responses to robots, for example, the studies by Tanaka 
and Matsuzoe (2012); Moshkina et  al. (2014); Kennedy et  al. 
(2015b). However, this method of characterizing social behavior 
is incredibly time consuming, particularly when the coding of 
multiple social cues is required. Furthermore, it provides data 
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for social cues in isolation and does not easily provide a holistic 
characterization of the behavior. It is unclear what it means if the 
robot gazes for a certain number of seconds at the child in the 
interaction and also performs a certain number of gestures; this 
problem is exacerbated when a task context changes. The percep-
tion of the human directly interacting with the robot is also not 
accounted for. It is suggested that the direct perception of the 
human within the interaction is an important one, as they are the 
one being influenced by the robot behavior in the moment. This 
cannot be captured through post hoc video coding.

The Godspeed questionnaire series developed by Bartneck 
et al. (2009b) has been used in many HRI studies to measure users’ 
perception of robots (Bartneck et  al., 2009a; Ham et  al., 2011). 
The animacy and anthropomorphism elements of the scale in par-
ticular consider the social behavior and perception of the robot. 
However, it is not particularly suited to use with children due to the 
language level (i.e., use of words such as “stagnant,” “organic,” and 
“apathetic”). It may also be that the questionnaire would measure 
aspects of the robot not directly related to social behavior as it is 
asking about more general perceptions. While this could be of use 
in many studies, for the aim of characterizing social behavior in 
the case here, these aspects prevent suitable application.

Nonverbal immediacy (NVI) was introduced in the 1960s by 
Mehrabian (1968) and is defined as the “psychological availabil-
ity” of an interaction partner. Immediacy is further introduced as 
being a measure that indicates “the attitude of a communicator 
toward his addressee” and in a general form “the extent to which 
communication behaviors enhance closeness to and nonverbal 
interaction with another” (Mehrabian, 1968). A number of 
specific social behaviors are listed (touching, distance, forward 
lean, eye contact, and body orientation) to form a part of this 
measure, which were later utilized by researchers that sought to 
create and validate measuring instruments for NVI. However, 
it is also this feature that makes NVI a particularly enticing 
prospect for designers of robot behavior, as the social cues used 
in the measure are explicit (which is often not the case in other 
measures of perception commonly used in the field, e.g., Bartneck 
et al. (2009b)). A reasonable volume of data also already exists 
for studies considering immediacy, with over 80 studies (and 
N nearly 25,000) from its inception to 2001 (Witt et  al., 2004) 
and more since. This provides a context for NVI findings in HRI 
scenarios and a firm grounding in the human–human literature 
from which roboticists can draw.

Several versions of surveys have been developed and validated 
for measuring the nonverbal immediacy of adults (Richmond 
et al., 2003). Surveys have also been developed for verbal imme-
diacy (Gorham, 1988), but their ability to measure precisely 
the concept of verbal immediacy remains the subject of debate 
(Robinson and Richmond, 1995). Both verbal and nonverbal 
measures consider observed overt behavior more than, but not 
excluding, perceptions. Immediacy has recently been used in HRI 
as a means of motivating robot behavior manipulations (Szafir 
and Mutlu, 2012) and characterizing social behavior (Kennedy 
et al., 2017).

There is a consensus on the instruments used to measure 
nonverbal immediacy (whereas this is less clear for verbal imme-
diacy), and it is also transparent in terms of how participants are 

judging the robot. The Godspeed questionnaire is a useful tool for 
gathering perceptions, but nonverbal immediacy is clearly meas-
uring overt social behavior, and so it is ideal given our scope of 
trying to characterize social behavior (often with children). Use 
of the NVI metric brings several other advantages to researchers 
in HRI and for robot behavior designers. The NVI metric can 
be used as a guideline for an explicit list of social cues available 
for manipulation as a part of robot behavior. Characterization 
of robot social behavior at this relatively low level is not read-
ily available in other metrics. This provides a useful first step 
in designing robot behavior but also a means of evaluating and 
modifying future social behaviors. NVI constitutes part of an 
overall social behavior; hence NVI is treated as a characterization 
of the overall behavior, not a complete description or definition. 
Not all aspects of sociality or interaction are addressed through 
the measure, but to the knowledge of the authors, nor are these 
aspects fully covered by any other validated metric.

The NVI metric can be used with either the subjects them-
selves or with observers (during or after the interaction). This 
permits flexibility depending on the needs of the researcher. It 
is not always practical to collect such data from participants (for 
example, when they are young children or following an already 
lengthy interaction), so having the flexibility to gather these data 
post hoc is advantageous. Due to this mixture of practical and 
theoretical benefits, nonverbal immediacy (NVI) will be adopted 
as a social behavior characterization metric for this article.

Immediacy has been validated through physical manipulation 
of some of the social cues, specifically eye gaze and proximity, 
to ensure that the phenomenon indeed works in practice and is 
not a product of affect or bias in survey responses (Kelley and 
Gorham, 1988). It was indeed found that the physical manipula-
tions that were made which would lead to a higher immediacy 
score (standing closer and providing more eye gaze) did lead to 
increased short-term recall of information. While there is clearly 
a difference between recall and learning, recall of information is 
a promising first step to acquiring new understanding and skills. 
These results were hypothesized to exist in the other immediacy 
behaviors (such as gestures) as well. Overall, the link between 
teacher immediacy and student learning is hypothesized to be a 
positive one, as reflected in the meta-review by Witt et al. (2004) 
and many studies (Comstock et al., 1995; McCroskey et al., 1996; 
Christensen and Menzel, 1998). Thus, this prediction can be 
tested in human–robot interaction, where the robot takes the 
role of the tutor. As a result, we generate the following hypothesis:

H1. A robot tutor perceived to have higher immediacy leads 
to greater learning than a robot perceived to have lower 
immediacy.

3. aPPlYing nOnVerBal iMMeDiacY 
TO hri

In this section, an evaluation of nonverbal immediacy (NVI) in 
the context of cHRI is described. The aim is to explore whether the 
characterization that it provides can account for the differences 
between robot behaviors and learning outcomes of children. The 
wealth of literature that explores NVI in educational scenarios is 



FigUre 1 | (left) still image from a human–robot interaction (specifically, the “social” condition), and (right) still image from the human–human 
condition. The tutor (either robot or human) teaches children how to identify prime numbers using the Sieve of Eratosthenes method using a large horizontal 
touchscreen as a shared workspace. The robot can “virtually” move numbers on screen (numbers move in correspondence with robot arm movements, but physical 
contact is not made with the screen).
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generally in agreement that higher NVI of an instructor is posi-
tively correlated with learning outcomes of students. We evaluate 
4 differently motivated robot behaviors and a human in a one-to-
one maths-based educational interaction with children. The aim 
is to use these data to provide a comparison between behavioral 
manipulations to test predictions from the HHI immediacy lit-
erature regarding social behavior.

3.1. Task Design and Measures
All five behaviors under consideration use the same context 
and broader methodology. Children aged 8–9 years are taught 
how to identify prime numbers between 10 and 100 using a 
variation on the Sieve of Eratosthenes method. They interact 
with a tutor: in 4 conditions, this is an Aldebaran NAO robot, 
and in 1 condition, this is a human (Figure 1). Children complete 
pretests and posttests in prime number identification, as well 
as pretests and posttests for division by 2, 3, 5, and 7 (skills 
required by the Sieve of Eratosthenes method for numbers 
in the range used) on a large touchscreen. The tutor provides 
lessons on primes and dividing by 2, 3, 5, and 7 (Figure  2). 
In all cases, an experimenter briefs the child and introduces 
the child to the tutor. The experimenter remains in the room 
throughout the interaction, but out of view of the child. Two 
cameras record the interactions; one is directed toward the child 
and one toward the tutor. Interactions with the tutor would 
last for around 10–15  min, with an additional 5  min required 
afterward in conditions where nonverbal immediacy surveys 
were completed (details to follow).

At the start of the interaction, the children complete a pretest 
in prime numbers on the touchscreen without any feedback 
from the screen or the tutor. A posttest is completed by the 
children at the end of the interaction; again no feedback is 
provided to the child so as not to influence their categorizations. 
Two tests are used in a cross-testing strategy, so children have 
a different pretest and posttest, and the tests are varied as to 
whether they are used as a pretest or posttest. The tests require 
the children to categorize numbers as “prime” or “not prime” 
by dragging and dropping numbers on screen into the category 
labels. Each test has 12 numbers, so by chance, a score of 6 
would be expected (given 2 possible categories 50% is chance). 
Learning is measured through the improvement in child score 

from the prime number pretest to posttest. By considering the 
improvement, any prior knowledge (correct or otherwise) or 
deviation in division skill is factored in to the learning measure. 
The mean and SD score (of 12) for the pretests are compared 
to those of the posttest to calculate the learning effect size 
(Cohen’s d) for each condition.

The prime number task was selected in consultation with 
education professionals to ensure that it was appropriate for the 
capabilities of children of this age. Children of this age have not 
yet learnt prime number concepts in school, but do have sufficient 
(but imperfect) skills for dividing by 2, 3, 5, and 7 as required 
by the technique for calculating whether numbers are prime. 
During the division sections of the interaction, the tutor provides 
feedback on child categorizations.

Nonverbal immediacy (NVI) scores are collected through 
questionnaires. For children, this was done after the interaction 
with the tutor had been completed, for adults, this was online 
(details in Section 3.4). A standard nonverbal immediacy ques-
tionnaire was adapted for use with children by modifying some 
of the language; the original and modified versions alongside the 
score formula can be seen online.1 Both the Robot Nonverbal 
Immediacy Questionnaire (RNIQ) and Child-Friendly Nonverbal 
Immediacy Questionnaire (CNIQ) were used depending on 
condition for children. Adults had the same questionnaire but 
with “the child” in place of “you” as they were observing the 
interaction, rather than participating in it. The questionnaire 
consists of 16 questions about overt nonverbal behavior of the 
tutor. Each question is answered on a 5-point Likert scale, and a 
final immediacy score is calculated by combining these answers. 
Some count positively toward the nonverbal immediacy score, 
whereas some count negatively, depending on the wording of the 
question. The version in the Appendix shows the questionnaire 
used for this study when a robot (as opposed to a human) tutor 
was used as this has been validated for use in HRI (Kennedy 
et al., 2017) and corresponds to the validated version from prior 
human-based literature (Witt et al., 2004).

Existing immediacy literature extensively uses adults (often 
students) as subjects; studies with children are rare. Prior work 

1 http://goo.gl/UoL5QM, also included as an Appendix.



FigUre 2 | Task structure—the top section is led by the tutor and is aimed at teaching children how to calculate whether a number is prime. The 
bottom section consists of completing the nonverbal immediacy questionnaire—this is done after the interaction for 3 of the child conditions and via online videos to 
get adult responses. Dark purple boxes (pretest, posttest, and immediacy questionnaire) are the metrics under consideration in this article.
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has been conducted with the adapted nonverbal immediacy 
scale for use with robots and children (Kennedy et al., 2017); 
however, the task in this article is novel in this context (one-
to-one interactions instead of group instruction). Children 
present unique challenges when using questionnaire scales, 
such as providing different answers for negatively worded 
questions to positively worded ones (Borgers et  al., 2004) or 
trying to please experimenters (Belpaeme et al., 2013), which 
can consequently make it difficult to detect differences in 
responses (Kennedy et al., 2017). As children are not well rep-
resented in immediacy literature, using adults for NVI scores 
more tightly grounds our hypotheses and assumptions to the 
existing literature. However, NVI ratings are collected from 
children in robot conditions in which NVI is intentionally 
manipulated. As the nonverbal immediacy was intentionally 
manipulated between these conditions, and the adult results 
can provide some context, we can observe whether children do 
perceive the manipulation on this scale, potentially broadening 
the applicability of our findings.

3.2. conditions
A total of 5 conditions are used in this evaluation.2 As described in 
the introduction, an often adopted approach to social behavioral 
design is to consider how a human behaves and reproduce that 
(insofar as is possible) on the robot. As such, we use 2 conditions, 
seeking to follow and also invert this approach. We additionally 
use 2 conditions derived from the NVI literature, again seeking to 
maximize and minimize the behaviors along this scale. The final 
condition is a human benchmark. Further details for each can be 
seen in Table 1 and below:

 1. “Social” robot (SR)—this condition is derived from observa-
tions of an expert human–human tutor completing this task 
with 6 different children. This condition reflects a human 

2 Please note that while some data have previously been published for all of these 
conditions (Kennedy et al., 2015c,d, 2016), this article presents both novel data 
collection and different analysis perspectives in a new context to the prior work.



TaBle 1 | Operationalization of the differences in nonverbal behavior 
between the conditions considered in the study presented in this article.

condition Motivation nonverbal behavior Other 
manipulations

“Social” 
robot (SR)

Based on 
a human 
model of  
the task

Seeks mutual gaze with child, 
frequent arm gestures

Uses child name, 
personalizes 
number of 
items in division 
posttests, 
“positive” 
feedback, 
variable 
feedback

“Asocial” 
robot (AR)

“Inverse” of 
the above 
human 
model

Avoids child gaze, frequent but 
mistimed arm gestures

Blunt feedback, 
repetitive 
feedback

High NVI 
robot (HNVI)

Intended to 
maximize the 
nonverbal 
immediacy

Seeks mutual gaze with child, 
frequent head/gaze movement, 
frequent arm gestures, lean 
forwards, continuous small 
upper body movements

Low NVI 
robot (LNVI)

Intended to 
minimize the 
nonverbal 
immediacy

Avoids child gaze, infrequent 
head/gaze movement, no arm 
gestures, TTS parameters 
modified to give “dull” voice, 
lean backward, rigid/no upper 
body movements

Human (HU) Human 
benchmark

No instructions given for 
nonverbal behavior

Further notes are provided about any other manipulations made besides nonverbal 
behavior.
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model-based approach to designing the behavior. The social 
behavior of the tutor was analyzed through video coding, 
and these behaviors were implemented on the robot where 
possible.

 2. “Asocial” robot (AR)—this condition considers the behav-
ior generated for the SR condition and seeks to “invert” it. 
That is, the behavior is intentionally manipulated such that 
an opposite implementation is produced, for example, the 
SR condition seeks to maximize mutual gaze, whereas this 
condition actively minimizes mutual gaze. The quantity of 
social cues used in this condition is exactly the same as the 
SR condition above; however, the placement of these cues is 
varied (for example, a wave would occur during the greeting 
in SR, but during an explanation in AR).

 3. High NVI robot (HNVI)—this condition uses the literature to 
drive the behavioral design. The behavior is derived from con-
sidering how the social cues within the nonverbal immediacy 
scale can be maximized. For example, the robot will seek to 
maximize gaze toward the child and make frequent gestures.

 4. Low NVI robot (LNVI)—this condition is intended to be 
the opposite to the HNVI condition. Again, the nonverbal 
immediacy literature is used to drive the design, but in this 
case, all of the social cues are minimized. For example, the 
robot avoids gazing at the child and makes no gestures.

 5. Human (HU)—this is a human benchmark. The human fol-
lows the same script for the lessons as the robot, but they are 

not constrained in their social behavior. The intention here is 
that we can then acquire data for a “natural”, non-robot inter-
action where the social behavior is not being manipulated; this 
can then be used to provide context for the robot conditions.

A summary of the motivations for the conditions and the 
operationalization of the differences between conditions can be 
seen in Table 1. Further implementation details can be seen in 
“Robot Behavior.” While the Aldebaran NAO platform cannot 
be manipulated for some of the cues involved in the nonverbal 
immediacy measure given the physical setup and modalities of 
the robot (i.e., smiling and touching), it has been manipulated on 
all of the other cues possible. This leaves only 4 of the 16 questions 
(2 of 8 cues) not manipulated in the metric. Specifically, these are 
questions 4, 8, 9, and 13, as seen in the Appendix, pertaining to 
frowning/smiling and touching.

3.2.1. Robot Behavior
Throughout the division sections of the interaction, the tutor 
(human or robot) would provide feedback on child categoriza-
tions and could also suggest numbers for the child to look at 
next. This was done through moving a number to the center of 
the screen and making a comment such as “why don’t you try 
this one next?” The tutor would also provide some prescripted 
lessons (Figure 2) that would include 2 example categorizations 
on screen. These aspects are central to the delivery of the learn-
ing content, so are maintained across all conditions to prevent a 
confound in learning content.

All robot behavior was autonomous, apart from the experi-
menter clicking a button to start the system once the child was sat in 
front of the touchscreen. The touchscreen and a Microsoft Kinect 
were used to provide input for the robot to act in an autonomous 
manner. The touchscreen would provide information to the robot 
about the images being displayed and the child moves on screen, 
the Kinect would provide the vector of head gaze for the child 
and whether this was toward the robot. Through these inputs, 
the robot behavior could be made contingent on child actions, 
for example, by providing verbal feedback after child moves (in 
all conditions), or manipulating mutual gaze. In all robot condi-
tions, the robot gaze was contingent on the child’s gaze, but with 
differing strategies depending on the motivation of the condition. 
The AR and LNVI conditions would actively minimize mutual 
gaze by intentionally avoiding looking at the child, whereas the 
SR and HNVI conditions would actively maximize mutual gaze 
by looking at the child when data from the Kinect indicated that 
the child was looking at the robot. Robot speech manipulation 
executed in the LNVI condition to make the robot voice “dull” 
was achieved through lowering the vocal shaping parameter of 
the TTS engine (provided by Acapela).

Due to the human model-based approach, some personaliza-
tion aspects such as use of child name were included as part of the 
social behavior in the SR condition. This was not done in the NVI 
conditions as these manipulations are not motivated through the 
NVI metric. The HNVI condition also addresses more of the NVI 
questionnaire items (leaning forward and continuous “relaxed” 
upper body movements) than the SR condition due to this dif-
ference in motivation. The AR condition has the same quantity 



TaBle 2 | subject numbers by condition and average ages for adult 
participants by condition.

condition child N adult N adult M age, SD in 
brackets

child 
immediacy 

scores 
collected?

Low NVI robot 12 33 31.5 (12.2) Yes
High NVI robot 11 31 35.6 (11.7) Yes
Social robot 12 33 29.0 (10.4) No
Asocial robot 11 30 39.0 (12.2) No
Human 11 30 32.9 (12.3) Yes

TaBle 3 | adult and child nonverbal immediacy ratings and child learning 
(as measured through effect size between pretests and posttests for 
prime numbers) by tutor condition.

condition adult M nVi rating  
[95% CI]

child M nVi 
rating [95% CI]

child  
learning (d)

Low NVI robot 40.2 [38.1, 42.2] 51.0 [47.6, 54.4] 0.30
High NVI robot 48.4 [46.9, 50.0] 55.1 [52.3, 57.6] 0.67
Social robot 49.0 [47.6, 50.4] N/A 0.51
Asocial robot 48.5 [46.1, 50.8] N/A 0.89
Human 47.7 [45.3, 50.1] 54.4 [52.9, 55.9] 0.89
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of behavior as the SR condition, whereas the LNVI has a lack 
of behavior. As a concrete example, the AR condition includes 
inappropriately placed gestures, whereas the LNVI condition 
includes no gestures. Consequently, the LNVI and HNVI condi-
tions provide useful comparisons both to one another and to the 
SR and AR conditions.

3.3. Participants
To provide NVI scores for all 5 conditions, video clips of the con-
ditions were rated by adults. Nonverbal immediacy scores were 
also acquired at the time of running the experiments for 3 of the 
5 conditions (high and low NVI robot and human) from children 
through paper questionnaires (Table  2). These scores allow a 
check that the NVI manipulation between the robot conditions 
could be perceived by the children, with the adult data provided 
context for these ratings. Written informed consent from parents/
guardians was received for the children to take part in the study, 
and they additionally provided verbal assent themselves, in 
accordance with the Declaration of Helsinki. Written informed 
consent from parents/guardians and verbal assent from children 
were also received for the publication of identifiable images. The 
protocol was reviewed and approved by the Plymouth University 
ethics board. Table 2 shows numbers of participants per condi-
tion and average ages for the adult conditions; all children were 
aged 8 or 9 years old and were recruited through a visit to their 
school, where the experiment took place.

3.4. adult nonverbal immediacy  
score Procedure
Videos shown to adults to acquire nonverbal immediacy scores 
were each 47 s long. The videos contained both the interaction 
video (42 s) and a verification code (5 s; details in the following 
paragraph). The length of video was selected to be 42  s as the 
literature suggests that at least around 6 s are required to form a 
judgment of social behavior (Ambady and Rosenthal, 1993), and 
there was a natural pause at 42 s in the speech in all conditions so 
that it would not cut part-way through a sentence. The interaction 
clips were all from the start of an interaction, so the same infor-
mation was being provided by the tutor to the child in the clip.

To provide sufficient subject numbers for all of the conditions, 
an online crowdsourcing service3 was used. The participants were 

3 http://www.crowdflower.com/.

restricted to the USA and could only take part if they had a reliable 
record within the crowdsourcing platform. A test question was 
put in place whereby participants had to enter a 4 digit number 
into a text box. This number was shown at the end of the video 
for 5 s (the video controls were disabled so it could not be paused 
and the number would disappear after the video had finished). 
A different number was used for each video. If the participants 
did not enter this number correctly, then their response was dis-
carded. The crowdsourcing platform did not allow the prevention 
of users completing multiple conditions, so any duplicates were 
removed, i.e., only those seeing a video for the first time were kept 
as valid responses. A total of 366 responses were collected, but 209 
were discarded as they did not answer the test question correctly, 
the user had completed another condition,4 or the response was 
clearly spam (for example, all answers were “1”). This left 157 
responses across 5 conditions; 90M/67F (Table 2).

4. resUlTs

When performing a one-way ANOVA, a significant effect is 
found for condition seen, showing that the robot behavior 
influences perceived nonverbal immediacy; F(4,152)  =  14.057, 
p < 0.001. Post hoc pairwise comparisons with Bonferroni cor-
rection reveal that the adult-judged NVI of the LNVI condition 
is significantly different to all other conditions (p  <  0.001 in 
all cases), but no other pairwise comparisons are statistically 
significant at p <  0.05. The nonverbal immediacy score means 
and learning effect sizes for each condition can be seen in Table 3. 
Children learning occurs in all conditions. Generally, it can be 
seen that the conditions with higher rated nonverbal immediacy 
lead to greater child improvement in identifying prime numbers.

While significance testing provides an indication that most 
of the conditions are similar (at least statistically) in terms of 
NVI, additional information for addressing the hypothesis can 
be gleaned by considering the trend that these data suggest 
(Figure  3). A strong positive correlation is found between the 
(adult) NVI score of the conditions and the learning effect sizes 
(Cohen’s d) of children who interacted in those conditions 
(r(3) = 0.70, p = 0.188). This correlation is not significant, likely 
due to the small number of conditions under consideration, but 
the strength of the correlation suggests that a relationship could 
be present.

4 The majority of exclusions were due to users having completed another condition, 
thereby impairing the independence of the results.



FigUre 4 | nonverbal immediacy scores as judged by the children in the interaction and learning effect sizes for the prime number task. The dotted 
green line indicates a trend toward greater perceived nonverbal immediacy of the tutor leading to increased learning. Error bars show 95% confidence interval.

FigUre 3 | nonverbal immediacy scores as judged by adults and learning effect sizes for the prime number task. The dotted green line indicates a trend 
toward greater nonverbal immediacy of the tutor leading to increased learning. Error bars show 95% confidence interval.
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When the immediacy scores provided by the children who 
interacted with the robot are also considered, a similar pattern 
can be seen (Figure 4). The adult and child immediacy ratings 
correlate well, with a strong positive correlation (r(1)  =  1.00, 
p  <  0.001). There is also a strong positive correlation for the 
children between immediacy score of the conditions and the 
learning effect sizes (Cohen’s d) in those conditions (r(1) = 0.86, 
p  =  0.341). Again, significance is not observed, but the power 
of the test is low due to the number of data points available for 
comparison. The strong positive correlations between child 
immediacy scores and learning and adult immediacy scores and 
learning provide some support for hypothesis H1 (that higher 
tutor NVI leads to greater learning), but further data points 
would be desired to explore this relationship further. It should 
be noted that we consider the results of 57 children and 157 
adults across 5 conditions; acquiring further data points for more 

behaviors (and deciding what these behaviors should be) would 
be a time-consuming task.

5. DiscUssiOn

There is a clear trend in support of hypothesis H1: that a tutor 
perceived to have higher immediacy leads to greater learning. 
As such, increasing the nonverbal immediacy behaviors used 
by a social robot would likely be an effective way of improving 
child learning in educational interactions. However, nonverbal 
immediacy does not account for all of the differences in learn-
ing. Three of the conditions have near identical NVI scores as 
judged by adults, but quite varied learning results (high NVI 
robot: M  =  48.4 NVI score/d  =  0.67 pre–post test improve-
ment, asocial robot: NVI M = 48.5/d = 0.89, social robot: NVI 
M  =  49.0/d  =  0.51). This partially reflects the slightly mixed 
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picture of immediacy that the pedagogy literature presents; 
for example, the disagreement as to whether NVI has a linear 
(Christensen and Menzel, 1998) or curvilinear (Comstock et al., 
1995) relationship with learning. Nonetheless, there are further 
factors that may be introduced by the use of a robot that may 
have had an influence on the results. Nonverbal immediacy only 
considers overt observed social behaviors, so by design does not 
cover all possible aspects of effective social behavior for teaching. 
While this seems to be enough in HHI (Witt et al., 2004), it may 
not be for HRI since various inherent facets of human behavior 
cannot be assumed for robots. Several possible explanations as 
to why this learning variation is present will now be discussed. 
From this, a possible model (suggested to be more accurate) of 
the relationship between social behavior and learning is pro-
posed. Such a model may be useful in describing (and testing) 
the relationship between social behavior and child learning for 
future research.

5.1. Timing of social cues
The quantity of social cues used in both the social robot and the 
asocial robot conditions is exactly the same; however, the timing 
is varied. Timing is not considered as part of the nonverbal imme-
diacy metric—the scale measures whether cues have, or have not, 
been used, rather than whether their timing was appropriate. The 
cues used in the asocial robot condition were intentionally placed 
at inappropriate times (for example, waving part-way through the 
introduction, instead of when saying hello). This is not factored 
into the nonverbal immediacy measure, but could impact the 
learning (Nussbaum, 1992).

The timing of social cues in the human condition may also 
explain why the learning in this condition was higher than the 
others. The robot conditions are contingent on aspects of child 
behavior, such as gaze and touchscreen moves, but are not 
adapted to individual children (for example, the number of feed-
back instances the robot provides would not be based on how well 
the child was performing). However, the human is presumably 
adaptive in both the number of social cues used and the timing 
of these cues. Again, this would not be directly revealed by the 
immediacy metric, but could account for some of the learning 
difference. Indeed, the nonverbal immediacy metric comes from 
HHI studies and has been validated in such environments. In 
HHI, there is a reasonable assumption that the timing of social 
cues will be appropriate, and so it may not be necessary to include 
it as part of a behavioral metric for HHI. However, when applied 
to social robotics, the assumption of appropriate timing no longer 
applies, and so to fully account for learning differences in HRI, 
timing may need more explicit incorporation into characteriza-
tions of social behavior. This constitutes a limitation of the NVI 
metric, but also an opportunity for expansion in future work to 
capture timing aspects.

5.2. relative importance of social cues
One substantial difference between the robot conditions and the 
human condition is the possibility of using facial expressions. The 
robotic platform used for the studies was the Aldebaran NAO. 
This platform has limited ability to generate facial expressions as 
none of the elements of the face can move, only the eye color can 

be changed. On the other hand, the human has a rich set of facial 
expressions to draw upon.

While the overall nonverbal immediacy scores for the asocial, 
social, and human conditions are tightly bunched, the make-up 
of the scores is not. For example, the robot scores (asocial and 
social combined) are higher for gesturing, averaging M  =  4.3 
(95% CI 4.1, 4.5) out of 5 for the nonverbal immediacy question 
about gesturing (the robot uses its hands and arms to gesture 
while talking to you), compared to M  =  3.1 (95% CI 2.7, 3.5) 
for the human. However, the human is perceived to smile more 
(M = 2.5, 95% CI 2.1, 2.8) than the robot (M = 1.8, 95% CI 1.5, 
2.0). Through principle component analysis, Wilson and Locker 
(2007) found that different elements of nonverbal behavior do not 
contribute equally to either the nonverbal immediacy construct 
or instructor effectiveness. Facial expressions (specifically smiles) 
have a large impact on both the nonverbal immediacy construct 
and the instructor effectiveness, whereas gestures do not have 
such a large effect (although still a meaningful contribution; 
smiles: 0.54, gestures: 0.30 component contribution from Wilson 
and Locker (2007)).

In the nonverbal immediacy metric, all social cues are given 
equal weighting. However, this may not always be the most 
appropriate method for combining the cues given the evidence, 
which suggests that some cues may contribute more than others 
to various outcomes (McCroskey et al., 1996; Wilson and Locker, 
2007). This could be a further explanation as to why several of 
the conditions in the study conducted here have near identical 
overall nonverbal immediacy scores, but very different learning 
outcomes.

5.3. novelty of character and Behavior
The novelty of both the character (i.e., robot or human) and the 
behavior itself could have had an impact on the learning results 
found in the study. Novelty is often highlighted as a potential issue 
in experiments conducted in the field (Kanda et al., 2004; Sung 
et  al., 2009). The novelty of the robot behavior could override 
the differences between the conditions and subsequently influ-
ence the learning of the child. In the social robot condition here, 
novel behavior (such as new gestures) was often introduced when 
providing lessons to the child. Between humans, this would likely 
result in a positive effect (Goldin-Meadow et al., 2001), but when 
done by a robot, the novelty of the behavior may counteract the 
intended positive effect.

There may also be a difference in the novelty effect for the chil-
dren seeing the robot when compared to the human. Although 
the human is not one that they are familiar with, they are still 
“just” a human, whereas the robot is likely to be more exciting and 
novel as child interaction with robots is more limited than with 
humans. The additional novelty of the robot could have been a 
distraction from the learning, explaining why the learning in the 
human condition is higher.

Finally, the novelty may have impacted the nonverbal immediacy 
scores themselves. It is possible that observers (be they children 
or adults) score immediacy on a relative scale. It is reasonable to 
suggest that the immediacy of the characters is judged not as a 
standalone piece of behavior, but in the context of an observer’s 
prior experience, or expectations for what that character may be 



TaBle 4 | guttman’s λ6 and learning effect size by condition.

condition learning effect size (cohen’s d) guttman’s λ6 (g6)

Asocial robot 0.89 0.84
Social robot 0.51 0.83
High NVI robot 0.67 0.69
Low NVI robot 0.30 0.78
Human 0.89 0.87

λ6 is used as an indicator of social cue congruency, with a higher value indicating 
greater congruency between cues.
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capable of. Clear expectations will likely exist for human behavior, 
but not for robot behavior, which may lead to an overestimation of 
robot immediacy. This would impact on the ability of considering 
the human and robots on the same nonverbal immediacy scale 
and drawing correlations with learning and cannot be ruled out 
as a factor in the results.

5.4. (in)congruency of social cues
As previously discussed, the robot is limited in the social cues that 
it can produce (for example, it cannot produce facial expressions). 
This meant that the conditions all manipulated the available robot 
social cues, but if social cues are interpreted as a single percept by 
the human (as suggested by the literature (Zaki, 2013)), then this 
could lead to complications.

In the case of the social robot, many social cues are used to 
try and maximize the “sociality” of the robot. This means that 
there is a lot of gaze from the robot to the child, and the robot 
uses a lot of gestures. However, it still cannot produce facial 
expressions. This incongruency between the social cues could 
produce an adverse effect in terms of perception on the part of 
the child and subsequently diminish the learning outcome. There 
are clear parallels here with the concept of the Uncanny Valley 
(Mori et al., 2012), with models for the Uncanny Valley based on 
category boundaries in perception indicating issues arising from 
these mismatches (Moore, 2012).

The expectation the child has for the robot social behavior is 
suggested to be of great importance (Kennedy et al., 2015a). If 
their expectations are formed early on through high quantities of 
gaze and gestures, then there would be a discrepancy when facial 
expressions do not match this expectation. Again, this expectation 
discrepancy may lead to adverse effects on learning outcomes, as 
in the case of perceptual issues due to cue incongruence. These 
issues may become exacerbated as the overall level of sociality 
of behavior of the robot increases as any incongruencies then 
become more pronounced. As stated in the study by Richmond 
et al. (1987), higher immediacy generally leads to more commu-
nication, which can create misperceptions (of liking, or expected 
behavior).

As the nonverbal immediacy scale has been rigorously 
validated (McCroskey et  al., 1996; Richmond et  al., 2003), 
it is known that it does indeed provide a reliable metric for 
immediacy in humans (Cronbach’s alpha is typically between 
0.70 and 0.85 (McCroskey et  al., 1996)). Typically, internal 
consistency measures of a scale would be used to evaluate the 
ability of items in a scale to measure a unidimensional con-
struct, i.e., how congruent the items are with one another. As 
such, a consistency measure could be used as an indicator of 
the congruency between the cues. The robot lacks a number of 
capabilities when compared to humans, and there are several 
scale items that are known to be impaired on the robot, such 
as smiling/frowning. Using an internal consistency measure 
across all NVI questionnaire items (with the negatively worded 
question responses reversed) can reveal cases in which the cues 
are relatively more or less congruent. Greater internal consist-
ency indicates lower variability between questionnaire items 
(the social cues) and, therefore, more congruence between 
the social cues. Lower internal consistency indicates larger 

variability between scale items and thus greater incongruency 
between the cues.

Guttman’s λ6 (or G6) for each condition has been calculated,5 
revealing that indeed there are differences in how congruent the 
cues could be considered to be (Table  4; Figure  5). All of the 
NVI questionnaire items are included in the λ6 calculation. The 
behavioral conditions used here are restricted in such a way that 
a lower reliability would be expected (as several cues of the scale 
are not utilized) for some conditions. Indeed, these values fall 
in line with predictions that could be made based on the social 
behavior in each of the conditions. The human reliability score 
provides a “sanity check” as it is assumed that human behavior 
would have a certain degree of internal consistency between social 
cues, which is reflected by it having the highest value. In addition, 
the LNVI robot condition has intentionally low NVI behavior, 
so the lack of smiling or touching (high NVI behaviors) does 
not cause incongruency (signified by a lower λ6 score), whereas 
the HNVI robot condition has intentionally high NVI behavior 
where possible on the robot, so the lack of smiling and touching 
cause greater overall incongruency, resulting in a considerably 
lower λ6 score.

5.5. a hypothesis: social cue congruency 
and learning
Taking Guttman’s λ6 to provide an indication of the congruency 
of social cues, then it is clear that this alone would not provide 
a strong predictor of learning (Figure  5). However, these data 
can be combined with the social behavior (as measured through 
immediacy) to be compared to learning outcomes. In the resulting 
space, both congruency and social behavior could have an impact 
on learning, as hypothesized in the previous section (Figure 6).

Our data show that learning is best with human behavior, 
which is shown to be highly social and reasonably congruent. 
When the social behavior used is congruent, but not highly 
social, then the learning drops to a low level. The general trend of 
our data shows that when the congruency of the cues increases 

5 Cronbach’s alpha tends to be the de facto standard for evaluating internal con-
sistency and reliability; however, its use as such a measure has been called into 
question (Revelle and Zinbarg, 2009)—including by its own creator (Cronbach 
and Shavelson, 2004). Instead λ6 is used, which considers the amount of variance 
in each item that can be accounted for by the linear regression of all other items 
(the squared multiple correlation) (Guttman, 1945). This provides a lower bound 
for item communality, becoming a better estimate with increased numbers of 
items. This would appear to provide a logical (but likely imperfect) indicator for 
the congruency of cues as required here.



FigUre 5 | guttman’s λ6 against learning effect size for each of the prime tutoring conditions. The dotted line indicates a trend toward greater internal 
consistency (measured through λ6) leading to greater learning.
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(indicated by Guttman’s λ6), learning also increases, and the same 
is true for social cues. The combination of congruency and social 
behavior as characterized by nonverbal immediacy provides a 
basis for learning predictions, where the combination of high 

social behavior and social cue congruency is necessary to maxi-
mize potential learning.

Such a hypothesis is supported by the view of social cues 
being perceived as a single percept, as suggested by Zaki (2013).  

FigUre 6 | learning, congruency, and social behavior for each of the 5 conditions. Learning is measured in effect size between pretest and posttest for 
children. Congruency is indicated through Guttman’s λ6 of the adult nonverbal immediacy scores. Social behavior is characterized through nonverbal immediacy 
ratings from adults. An interactive version of this figure is available online to provide different perspectives of the space: https://goo.gl/ZNPxc8.
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Experimental evidence with perception of emotions would 
seem to provide additional weight to such a perspective (Nook 
et al., 2015). This has clear implications for designers of social 
robot behavior when human perceptions or outcomes are of 
any degree of importance. The combination of all social cues 
in context must be considered alongside the expectations of 
the human to generate appropriate behavior. Not only does 
this give rise to a number of challenges, such as identifying 
combinatorial contextual expectations for social cues, but it 
could also have implications for how social cues should be 
examined experimentally. The isolation of specific social cues 
in experimental scenarios would not describe the role of that 
social cue, but the role of that social cue, given the context of all 
other cues. This is an important distinction that leads to a great 
deal more complexity in “solving” behavioral design for social 
robots, but that would also contribute to explanations of why 
a complex picture is emerging in terms of the effect of robot 
behavior on learning, as discussed in Section 2.1. The NVI 
metric and the predictions (that can be objectively examined) 
we put forward below provide a means through which robot 
behavior designers can iteratively implement and evaluate 
holistic social behaviors in an efficient manner, contributing to 
a more coherent framework in this regard. In particular, three 
predictions can be derived from the extremities of the space 
that is presented:

P1. Highly social behavior of a tutor robot (as characterized by 
nonverbal immediacy) with high congruency will lead to 
maximum potential learning.

P2.  Low social behavior of a tutor robot with low congruency 
will lead to minimal potential learning.

P3.  A mismatch in the social behavior of a tutor robot and 
the social cue congruency will lead to less than maximum 
potential learning.

Guttman’s Lambda, as providing a measure of consistency, 
is used here as a proxy for the congruency of cues as observed 
by the study participants. We argue that this provides the 
necessary insight into cue congruency; however, the mapping 
between this metric and overtly judged congruency remains 
to be characterized. This would not necessarily be something 
that would be straightforward to achieve due to the potentially 
complex interactions between large numbers of social cues. For 
these predictions, use of the NVI metric as the characterization 
of social behavior would still suffer from some of the issues 
outlined earlier in this discussion: lack of timing information, 
relative cue importance, and novelty of behavior. The predictions 
are based on the general trends observed here, and it is noted that 
NVI is not a comprehensive measure of social behavior; indeed 
the SR condition in particular would not be fully explained 
using this means alone when compared to other results such as 
the AR condition. In addition, the data used for the learning 
axis were collected with relatively few samples (just over 10 per 
condition) in a specific experimental setup. Ideally, many further 
samples would be collected in both short and long term. The 
data collected here are over the short term and with children 

unfamiliar with robots. As longer term interactions take place, 
or as robots become more commonplace in society, expectations 
may change.

6. cOnclUsiOn

In this article, we have considered the use of nonverbal imme-
diacy as a means of characterizing nonverbal social behavior in 
human–robot interactions. In a one-to-one maths tutoring task 
with humans and robots, it was shown that children and adults 
provide strong positively correlated ratings of tutor nonverbal 
immediacy. In addition, in agreement with the human–human 
literature, a positive correlation between tutor nonverbal 
immediacy and child learning was found. However, nonverbal 
immediacy alone could not account for all of the learning differ-
ences between tutoring conditions. This discrepancy led to the 
consideration of social cue congruency as an additional factor 
to social behavior in learning outcomes. Guttman’s λ6 was used 
to provide an indication of congruency between social cues. The 
combination of social behavior (as measured through nonverbal 
immediacy) and cue congruency (as indicated by Guttman’s λ6) 
provided an explanation of the learning data. It is suggested that 
if we are to achieve desirable outcomes with, and reactions to, 
social robots, greater consideration must be given to all cues 
in the context of multimodal social behavior and their possible 
perception as a unified construct. The hypotheses we have gener-
ated predict that the combination of high social behavior, and 
social cue congruency is necessary to maximize learning. The 
Robot Nonverbal Immediacy Questionnaire (RNIQ) developed 
for use here is offered as a means of gathering data for such 
characterizations.
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aPPenDiX

a. robot nonverbal immediacy 
Questionnaire (rniQ)
The following is the questionnaire used by participants in the 
evaluation to rate the nonverbal immediacy of the robot, based 
on the short-form nonverbal immediacy scale-observer report. 
Options are provided in equally sized boxes below each ques-
tion (or equally spaced radio buttons in the online version). The 
options are: 1 = Never; 2 = Rarely; 3 = Sometimes; 4 = Often; 
5 = Very Often. The questions are as follows:

 1. The robot uses its hands and arms to gesture while talking to 
you

 2. The robot uses a dull voice while talking to you
 3. The robot looks at you while talking to you
 4. The robot frowns while talking to you
 5. The robot has a very tense body position while talking to you
 6. The robot moves away from you while talking to you

 7. The robot changes how it speaks while talking to you
 8. The robot touches you on the shoulder or arm while talking 

to you
 9. The robot smiles while talking to you

 10. The robot looks away from you while talking to you
 11. The robot has a relaxed body position while talking to you
 12. The robot stays still while talking to you
 13. The robot avoids touching you while talking to you
 14. The robot moves closer to you while talking to you
 15. The robot looks keen while talking to you
 16. The robot is bored while talking to you

Scoring:
Step 1. Add the scores from the following items:
1, 3, 7, 8, 9, 11, 14, and 15.
Step 2. Add the scores from the following items:
2, 4, 5, 6, 10, 12, 13, and 16.
Total Score = 48 plus Step 1 minus Step 2. 
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In child-robot interactions focused on language 
learning, tablets are often used to structure the 
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1.    INTRODUCTION 
In recent years, robots have been employed more 

and more for language tutoring purposes. In many of 
these child-robot interactions, a tablet is used to 
establish common ground and to ensure a successful 
interaction between the robot and the child [4,6]. 
However, it is not clear how the use of tablets in these 
interactions affects learning gains.  
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The embodied-cognition approach, which states that 
language is grounded in real-life sensorimotor 
interactions [3], predicts that children’s interactions 
with real-life objects benefit vocabulary learning 
[2,5]. From this approach, one would expect children 
to learn new words better if they manipulate physical 
objects rather than virtual objects on a tablet, as the 
former allow children to experience sensorimotor 
interactions with the objects. It is not yet clear, 
however, whether this actually is the case. Here, we 
report data from an  experiment comparing the effect 
of  real objects versus virtual objects on a tablet 
screen on L2 word learning.  The main research 
question is whether there is a difference in L2 
vocabulary learning gains between children who 
manipulate physical objects and children who 
manipulate 3D models of the same objects on a tablet 
screen. This question is not only relevant for 
language-learning theories, but to the field of robotics 
as well, for its implications on the design of robot-
assisted language learning tasks.  
 

2.    PRESENT EXPERIMENT 
Participants: Forty-six Dutch kindergartners (M = 

60.6 months, age range = 50-73 months, SD = 6.77; 
26 girls) with no knowledge of English participated in 
the experiment. Most children had experience 
working with touch screens, and all practiced with the 
tablet prior to the training.  

Procedure: A pre-test was used to make sure the 
children did not know the target words. The training 
immediately followed the pre-test, using a between-
subjects design such that children were randomly 
assigned to either the tablet or objects condition (n = 
25 in the tablet condition; n = 21 in the object 
condition). Various tests were administered to 
measure the children’s knowledge of the target 
words. One week later, the same tests were re-
administered to measure children’s retention of the 
target words.  

Materials: In the training, children were presented 
with a story in Dutch containing six L2 (English) 
target words (i.e., ‘heavy’, ‘light’, ‘full’, ‘empty’, ‘in 
front of,’ and ‘behind’). These targets  were chosen as 
children should benefit from sensorimotor 
interactions with objects in learning them. For 
example, learning the word “heavy” could be easier 
when actually holding a heavy object than seeing a 3D 
model of this object on a tablet screen. The  target  



words were each presented ten times. During the 
training, children were asked to repeat each target 
word once, translate the Dutch word to its English 
equivalent, and perform simple actions in relation to 
these words on either the tablet or with the real 
objects (e.g., put a “heavy” elephant in its cage).  

The immediate and delayed post-tests included 
several tasks to assess children’s learning of the L2 
words. Two translation tasks (English to Dutch and 
Dutch to English; maximum score six) were used to 
measure productive vocabulary. To measure 
receptive vocabulary, a comprehension task in which 
children were asked to select the picture (out of four 
options) which best matched the target words 
(maximum score twenty-four), and a sorting task was 
used in which children had to sort pictures in trays 
according to their meaning, per word pair of 
antonyms (i.e., all the “heavy” pictures in one tray; all 
the “light” pictures in the other tray; maximum score 
thirty). Last, a story  comprehension task was used to 
measure the child’s recall of the narrative (maximum 
score six).  
 

3.    RESULTS 
Independent-samples t-tests revealed no significant 
differences between using a tablet or physical objects 
on any of the tasks, as indicated by children’s mean 
accuracy scores on the direct and delayed post-tests 
(see Figure 1 and 2; all ps > .243). In the receptive 
tests (the comprehension task and sorting task), 
children scored significantly above chance level 
(indicated by the black line), irrespective of condition 
(all ps < .001). In the production test (the translation 
tasks), children accurately produced one or two 
translations. Children also showed proper recall of 
the narrative, as indicated by the data of the story 
task in both conditions. Interestingly, in both 
conditions, the mean scores on the Dutch-to-English 
translation task were higher for the delayed post-test 
than for the immediate post-test (both ps <.001), 
possibly indicating some sort of sleep effect (see [1] 
for an overview).  
 

4.    DISCUSSION 
The data show that children’s manipulations of 
physical objects or virtual objects on a tablet screen 
do not affect L2 vocabulary learning gains differently. 
These results may be due to the fact that we studied 
L2 word learning as opposed to L1 learning. In L1 
word learning, one has to learn both the word form 
and the concept, while in L2 learning, one can often 
make use of the L1 knowledge and connect it to the 
L2 word form. It is possible sensorimotor 
interactions with objects do not affect learning gains 
as much when one has already acquired a concept in  

 
Figure 1. Mean accuracy scores on the direct post-
test (dark grey = object condition; light grey = 
tablet condition) 

 
Figure 2. Mean accuracy scores on the delayed post-
test (dark grey = object condition; light grey = 
tablet condition) 
 

their L1, and can subsequently use this knowledge 
in learning the L2 word.   
Future research should therefore look into L1 word 
learning with objects or tablets, or L2 words of which 
the concepts do not match the L1 concept the child 
has acquired. However, present data indicate virtual 
objects on a tablet screen can be incorporated in 
child-robot interaction studies on L2 vocabulary 
learning.   
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ABSTRACT
�e L2TOR project explores the use of social robots for second lan-
guage tutoring. �is paper presents an experiment in preparation
to investigate the e�ects of two educational sca�olding features
(adaptation/personalization and iconic gestures), when used by a
robot tutor, on children’s comprehension of animal names in a
foreign language. Participants will be children between the ages of
four and �ve. �e study is scheduled to take place in March 2017.
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1 INTRODUCTION
�e L2TOR project aims to design and develop a robot tutor capable
of supporting children of four to �ve years old in the acquisition
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of a second language by interacting naturally with them in their
social and referential environment through one-to-one tutoring
interactions [1]. �e robot used for the L2TOR project is the So�-
Bank Robotics NAO humanoid robot. �e NAO robot is capable of
speaking multiple languages, readily able to switch between them,
which provides the possibility to vary the amount of the child’s
native language (L1) and the second language (L2) to be taught.
Furthermore, the physical presence of a robot is shown to improve
learning gains compared to its two-dimensional counterparts (e.g.
Leyzberg et al. [12]).

�is three-year project will result in an integrated lesson plan,
which is expected to contain 24 lessons spanning three di�erent
domains (math, space, andmental state). To design these lessons, we
analyze theway human tutors interact with children and investigate
how di�erent functionalities of the robot can be used to ensure
a natural and productive interaction. In this paper, we propose
an experiment to evaluate two such functionalities: personalized
lessons by adjustment of the level of di�culty of the subject ma�er
to the level of pro�ciency of the learner and the use of gestures
when introducing the L2 words. We expect that both concepts will
help to create and maintain common ground with the child, while
also increasing comprehension and memorization potential of new
words in the L2.

�e importance of personalized adjustments in the robot’s be-
havior has been substantiated in recent research showing that par-
ticipants who received personalized lessons from a robot (based
on heuristic skill assessment) outperformed others who received
a non-personalized training [12]. Suboptimal robot behavior (e.g.
distracting, incongruent or in other ways inappropriate social be-
havior) can even hamper learning [10].

One of the main advantages of choosing a humanoid robot as a
tutor is its physical presence in the world, allowing for interactions
similar to those between humans. Because of its anthropomorphic
appearance, we tend to expect human-like communicative behavior

∗Tilburg center for Cognition and Communication
∥Cluster of Excellence Cognitive Interaction Technology
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answer

Figure 1: Dynamic Bayesian Network for BKT: With the current skill-belief the robot chooses the next skill St and action At

for time step t (le�). A�er observing an answerOt from the learner, this observation together with actionAt and the previous
skill-belief St are used to update the skill-belief St+1 at time t + 1 (right) [18].

from the robot, including proper use of non-verbal communication.
Robots that perform gestures are perceived in a more positive way
than those that use only speech [16].

In Section 2 we explain our previous work to evaluate adap-
tive learning, which is used as a starting point for the experiment
described in this paper. We then introduce iconic gestures and
describe how they could be used to increase learning gain in a
human-robot tutoring context in Section 3, followed by our main
research questions in Section 4. Section 5 outlines the design of the
proposed experiment. We intend to start data collection in March
2017.

2 PREVIOUS WORK
2.1 Adaptive language tutoring with a robot
In previous work we developed a novel approach to personalize
language tutoring in human-robot interaction [18]. �is adaptive
tutoring is enabled through a model of how tutors mentalize about
learners – by keeping track of their knowledge state and by selecting
the next tutoring actions based on their likely e�ects on the learner.
�is is realized via an extended model that combines knowledge
tracing (of what the learner learned) with tutoring actions (of the
tutor) in one causal probabilistic model. �is allows for selecting
skills and actions based on notions of optimality – here the desired
learner’s knowledge state as well as optimal task di�culty – to
achieve this for a given skill.

�e approach is based on Bayesian Knowledge Tracing (BKT) [4],
a speci�c type of Dynamic Bayesian Networks (DBNs). �e model
consists of two types of variables, namely the latent variables repre-
senting the belief state of ‘skills’ to be acquired (e.g. whether a word
has been learned or not) and the observed variables representing the
observable information of the learning interaction (e.g. whether
an answer was correct or not). In our proposed model, each latent
variable can a�ain six discrete values, corresponding to six bins for
the belief state (0%, 20%, 40%, 60%, 80%, 100%) representing whether
a skill is mastered or not as a discretized probability distribution.
�at is, we reduce the complexity we would get through continuous

latent variables but also a�ain more �exibility. �e observed vari-
ables remain binary and still represent whether a learner’s response
is correct or not (see Figure 1). Moreover, the following update
of the belief state of the skill, i.e. the skill-belief, at time t + 1 is
not only based on the previous skill-belief, but also on the chosen
action and the previous observation at time t .

Based on this model, two types of decisions are made, (1) which
skill would be the best to address next, and (2) the choice of action
to address that skill. Regarding the former, we employ a heuris-
tic maximizing the beliefs of all skills while balancing the single
skill-beliefs among each other. �is strategy is comparable to the
vocabulary learning technique of spaced repetition as implemented,
for instance, in the Leitner system [11]. Regarding the choice of
action, the model enables the simulation of the impact each action
has on a particular skill. To keep the model simple, the action
space of the model consists of three di�erent task di�culties (easy,
medium, hard). Consider an example where the skill-belief appears
relatively high, such that the skill is nearly mastered by the learner.
In this case, a less challenging task would only result in a relatively
minor bene�t for the training of that skill. In contrast, if we assume
the skill-belief to be rather low and a very di�cult task is given,
the student would barely be able to solve the task, likewise result-
ing in a smaller (or non-existent) learning gain. Instead, a task of
adequate di�culty, not needlessly simple nor too complicated for
the student to solve, will result in a higher learning gain [5]. �is
helps to position the robot as a capable instructor that uses these
sca�olding techniques to help children acquire new skills beyond
what they could have learned without help, by bringing them into
the zone of proximal development (ZPD) [22].

2.2 Evaluation
When implemented in the robot language tutor, the model will
enable the robot tutor to trace the learner’s knowledge with respect
to the words to be learned, to decide which skill (word) to teach
next, and how to address the learning of this skill in a game-like
tutoring interaction. For the experiment as described in [18], partic-
ipants were asked to learn ten vocabulary items German – ‘Vimmi’
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(Vimmi is an arti�cial language that was developed to avoid associ-
ations with other known words or languages for language-related
experiments [13]). �e items included colors, shapes and the words
‘big’ and ‘small’. During the game, the robot would introduce one
of the Vimmi words. A tablet then displayed several images, one of
which satis�ed the Vimmi description (e.g. one object that is blue)
and a number of distractors. �e participant was then asked to
select the image corresponding to the described item. Participants
learned vocabulary items in one of two conditions, either in the
condition with the adaptive model or in a non-adaptive (random)
control condition. In the adaptive condition, the skill to be taught
and the action to address the skill were chosen by the model as
described above. Participants’ performance was assessed with two
measures: (1) learners’ response behavior was tracked over the
course of the training to investigate the progress of learning, and
(2) a post-test was conducted on the taught vocabulary in the form
of both L1-to-L2 translations and L2-to-L1 translations to assess
participants’ state of knowledge following the intervention.

Analysis of participants’ response behavior over the course of
training indicated that the participants learned the L2 words during
the human-robot interaction (see [18] for more detailed results). Im-
portantly, they learned more successfully with our adaptive model
as compared to a randomized training. �at is, the repeated trials
addressing still unknown items as chosen by the adaptive model
(until the belief state about these words equaled that of known
items) outperformed the tutoring of the same material (same num-
ber of trials and items) but in randomized order. In the post-test,
however, there was no signi�cant di�erence across experimental
conditions, despite a trend towards increased performance in the
adaptive model conditions as compared to the controls.

3 ICONIC GESTURES
A growing body of evidence suggests that iconic gestures bear a
great potential to enhance learners’ memory performance for novel
L2 words. Iconic gestures are movements that have a formal rela-
tion (in form or manner of execution) to the semantic content of
the linguistic unit they describe [14]. In other words, the gesture
elicits a mental image that relates strongly to the word or words
that it links to. As an example, the word bird could be described by
an iconic movement of stretching both arms sideways and moving
them up and down, symbolizing the �apping of wings. �e support-
ing e�ect of iconic gestures on L2 vocabulary learning by providing
a congruent link between the words to be learned and gesture be-
ing observed or imitated has been shown in various studies (e.g.
[6, 9, 13, 15, 19]). A recent overview of how gestures contribute to
foreign language learning and possible explanations for this e�ect
is given by Hald et al. [8]. Although they focus mainly on students
performing or re-enacting the gestures, merely observing a gesture
is shown to aid learning as well. Research conducted by Tellier
[19] and De Nooijer et al. [6] investigated the role of gestures with
respect to children and word learning. �e e�ect of gestures is
shown to depend on the students’ gender, language background
and existing experience with the L1 [15].

When considering the use of an arti�cial embodied agent as a
tutor, the positive e�ects of gesturing seem to apply as well, as
shown by Bergmann and Macedonia for a virtual tutor [2], and by

Figure 2: Attempt at showing an iconic gesture for a rabbit.
�e unnatural angle of the arm, positioning of the hand, and
movement of the �ngers, may lead to confusion and, conse-
quently, adverse e�ects with respect to learning.

Figure 3: Stills of iconic gestures as depicted by the robot.
Le�: imitating a chicken by simulating the �apping of its
wings; right: imitating a monkey by simulating the scratch-
ing of the head and armpit with the right and le� extremi-
ties, respectively.

Van Dijk et al. for a robotic tutor [20]. An additional bene�t of
implementing non-verbal behavior is to improve the way the robot
is perceived, making it seemmore human-like[17]. �e challenge of
mapping non-verbal behavior to the robot lies in the fact that each
act needs to be carefully designed and choreographed to coincide
with the corresponding word or sentence. �ere are limits to the
degrees of freedom, the working space (i.e. the physical reach) and
smoothness of motion that the robot has to o�er. As an example,
Figure 2 shows an a�empt at making an iconic gesture for rabbit.
�e right arm has to take an unnatural position, which may result
in an uncanny feeling for the observer. �e NAO robot also has
only three �ngers and they cannot move independently, therefore
�nger-counting and similar subtle motions do not transfer to the
robot without modi�cation. �e challenge lies in �nding ways
to work around these limitations, while still taking advantage of
the added value of non-verbal communication. �e gestures that
were designed for this experiment have been exaggerated beyond
what the human alternatives would look like. For example, when
imitating a monkey the robot will bend its knees and shi� its weight
from side to side (see Figure 3).
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4 RESEARCH QUESTIONS
With the upcoming experiment we intend to answer two research
questions. �e �rst question relates to the previous work described
in Section 2. We aim to investigate to what extent children will ben-
e�t from adaptive language tutoring. We hypothesize an increase in
learning gain when children are taught words through an adaptive
language tutoring system as compared to a non-adaptive (random)
language tutoring system. We anticipate a di�erence in the exact
words that are learned: in the adaptive condition, we expect chil-
dren to learn those words that were the most challenging during
training (having the most incorrect answers) because of the higher
repetition rate of these words. In the random condition, the words
learned might depend on other factors such as word complexity or
a�itude towards the animal described by the word.

Our second research question focuses on the e�ect of gestures
on L2 comprehension for children. We hypothesize an increase
in learning gain when target words are accompanied by (iconic)
gestures during learning, as compared to the absence of gestures.
Furthermore, we expect a reduced knowledge decay over time of
the words in the gesture condition, similar to the discoveries by
Cook et al. in the math problem solving domain with a human tutor
[3]. We intend to investigate, using the retention test one week a�er
the experiment, whether these �ndings carry over to the language
learning domain with gestures performed by the robot. It should
be noted that participants are not required but also not prohibited
from using gestures during the experiment and pre- and post-tests.
We are interested in seeing whether children will produce gestures
spontaneously following training and, if so, to what extent these
gestures will prove to be similar to the ones depicted by the robot.

5 PROPOSED EXPERIMENT
Following the two research questions, our experiment has a 2 (adap-
tive versus non-adaptive) x 2 (gestures versus no gestures) between-
subjects design. We aim to recruit 80 participants, all native Dutch
speaking children between the ages of four and �ve.

Although the proposed experiment is largely a replication of the
experiment described in Section 2 and presented in [18], changes to
the design had to bemade to accommodate the younger participants,
as the previous experiment was tailored to adults. Instead of the
�rst interaction between the children and the robot taking place as
part of the experiment, the robot will be introduced to the children
in a group session the week prior to the experiment to build trust
and rapport. We will refer to the robot by a proper name (Robin)
and present a background story to stimulate a friendly and open
a�itude towards the robot [21].

Rather than teaching children the �ctional Vimmi words, the
target words are the English names of six animals: chicken, monkey,
horse, spider, bird, and hippo (used instead of the more di�cult
hippopotamus). �e number of words was reduced to six (from
ten in the original experiment, see Schodde et al. [18]) to account
for the lower word memory span of children [7], which should
be around four words for children of age �ve. All target words
have been selected based on the (varying degrees of) dissimilarity
between the words in the L1 (Dutch) and the L2 (English) as well as
the feasibility of designing suitable iconic gestures to be performed
by the robot to depict the animals. We will conduct a pre-test

Figure 4: Mock-up of the training phase of the proposed ex-
periment. �ree animals appear on the tablet screen, one
of which matches the animal picked by the robot. �e ro-
bot asks the child in their L1 to point out the correct ani-
mal based on its name in the L2. In the gesture condition,
as shown in this image, the robot performs the associated
iconic gesture when mentioning the animal.

to verify that participants are familiar with all six target words
in their L1 (Dutch) and to test the underlying assumption that
participants have no prior knowledge of the target words in the L2
(English). �is pre-test will be presented on a di�erent computer
screen than the one on which the game is played and without the
robot being present, so that there is a clear distinction between this
testing environment and the training (game) stage. On the computer
screen, the participant will be presented with the pictures of all six
animals, one by one. For each picture, the experimenter will ask
the participant for the name of the animal in the L1. �e computer
will then show the pictures of all animals on the screen and name
the animals, one a�er another, in the L2 in random order. Each time
the child is prompted with a name in the L2, they are asked to pick
the correct image for this animal from the six animals displayed.

�e experimental setup uses a Microso� Surface Pro 4 tablet and
the So�Bank Robotics NAO robot. �e robot plays a game of “I
spy with my li�le eye”, where it picks a certain animal displayed
on the tablet screen and names it in the L2, a�er which the child
is expected to tap the corresponding animal picture (see Figure 4).
�e experimenter inputs the name of the child, so that the robot can
personally address the participant, and starts the game. A�er a brief
explanation, the tablet will ask participants to indicate whether they
understand the concept of the game. If they indicate that they do
not, the experimenter will intervene to provide further explanations.
�e experiment can be stopped at any time via an experimenter-
controlled control panel. Once the actual game commences, the
experimenter pretends to be preoccupied so as to avoid participants
actively looking for feedback.

In the adaptive learning condition the next target word to train
is selected based on the knowledge model (i.e. skill-beliefs) of
the participant. A�er each trial in which the robot exposes the
child to one animal, this knowledge model is updated based on the
responses of the child. �e updated model is then used to select the
next target word to be presented. In the random condition, target



E�ect of Gestures and Adaptive Tutoring on Children’s L2 Comprehension R4L workshop at HRI 2017, March 2017, Vienna, Austria

words are instead randomly presented. In total, there are thirty of
these tasks, which means that in the random condition each target
word is presented �ve times throughout the game. In the adaptive
condition, the number of times each word occurs depends on how
well the participant performs on that speci�c word, but all words
are guaranteed to occur at least once. �e previous experiment
also consisted of a total of thirty tasks, but as there were ten target
words there was less repetition. Reducing the number of words
should avoid cognitive overload for the young participants while
simultaneously o�ering more room for the adaptive system to learn
the knowledge model of the child and repeat the words that require
more a�ention.

A new addition to the experiment is a condition in which the
robot will perform iconic gestures whenever one of the animal
names is mentioned in English. �ese gestures were speci�cally
designed for this experiment, where the robot tries to mimic the
appearance or behavior of the animal. �e timing of L2 word
pronunciation is designed to occur close to the stroke of the gesture.
�is means that there is a pause in mid-sentence leading up to and
a�er the L2 word, creating additional emphasis on the target. In
the condition without gestures, a similar pause is introduced. �e
robot is set to “breathing mode” in all conditions, which means that
it slowly moves its weight from one leg to the other while slightly
moving its arms. �is prevents the robot from being completely
static while, in the gesture condition, reducing the surprise e�ect
of an iconic gesture being triggered.

A�er thirty prompts to recognize the English animal names, the
game �nishes. �e child is then presented with the post-test, again
at the computer screen without the robot. �e post-test is identical
to the pre-test, except that we no longer test the animal names in
the L1. �e post-test is also identical across all conditions, so there
are no gestures when the L2 words are presented. �ere are two
di�erent images for each animal, one of which will be used for the
pre-test and post-test and the other for the game. �e images of
animals used in the pre-test and post-test feature the same character
as those that appear during the game, but in a di�erent pose. �e
pose in the set of images used during the game is designed to match
the gesture that is shown by the robot, to avoid having a mismatch
between both sources of visual information for some animal names,
and a match for others [23]. For instance, for the word ‘bird’ the
robot will display the act of �ying by moving its arms up and
down, therefore the bird in the image is also �ying. �e second
set of images could feature the bird facing a di�erent direction,
si�ing still. By using these two sets of images, we aim to test if
children manage to map the English words not only to the speci�c
corresponding image or mental representation of shape, but to the
general concept of the animal. One week a�er the experiment we
perform the post-test once again to measure the retention of the
six target words.

To assess the iconicity of the gestures, we conducted a perception
test with adult participants through an online survey. Participants
(N = 14) were shown video recordings, one a�er another, of the six
gestures performed by the robot. For each video, participants were
asked to answer the question which animal the robot depicted by
selecting the corresponding name of the animal in English from a
list containing all six target words. �e order in which the videos
were shown, as well as the order of the items on the list containing

Table 1: Confusion Matrix Perception Test

Perceived
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Chicken 10 2 1 0 0 0
Monkey 0 14 0 0 0 0
Horse 0 0 14 0 0 0
Spider 0 0 1 13 0 0
Bird 0 0 0 0 14 0

A
ct
ua

l

Hippo 1 1 0 2 0 10

Note. Shaded cells indicate true positives.

the six animal names, was randomized for each participant. Results
from the perception test are presented in Table 1. As can be seen
from this confusion matrix, with an average accuracy of over 89
percent, participants were, on average, very accurate with respect
to their predictions of the depicted gestures. In fact, for three of
the six animals (monkey, horse, and bird), not a single mistake
was made. With an average accuracy of just over 71 percent, the
most ambiguous gestures were those representing the chicken and
the hippo. However, it should be noted that participants typically
came to realize they had made a mistake, a�er which they acted
accordingly: for example, if a participant was shown the video
recording of the chicken prior to that of the monkey and they had
incorrectly selectedmonkey as their answer for the recording of the
chicken, they would (now correctly) select monkey again as their
answer when shown the recording of the monkey (we did not allow
them to directly correct their past mistake). �is implied correction,
as well as the high accuracy on average, suggests that we may
assume the gestures to be su�ciently iconic, especially as they will
ultimately be presented in combination with the verbalization of
the name of the associated animal.

In our analysis of the experimental results, we intend to mea-
sure performance (correct and incorrect answers) during the word
training to monitor participants’ progress over time in the di�erent
conditions. Time on task is measured both in the training “game”
and in the post-test. In addition, we will make video recordings of
the interaction with the robot for additional analyses (for instance
to see if and at what rate children will mimic the robot’s gestures).
During the post-test we will record how many animals the children
managed to correctly identify immediately a�er training. �e re-
tention test will measure decay of the newly a�ained words a�er
one week.

6 CONCLUSION
�e experiment proposed in this paper outlines two valuable topics
of discussion for improving the interactions between children and
robot, speci�cally in a tutoring se�ing. We aim to investigate how
the order and frequency of presenting new words in the L2 for
the purpose of second language learning can be personalized for
each child to optimize learning gain, based on a probabilistic model
that traces their knowledge of each word. Second, the experiment
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evaluates if the positive e�ect of performing iconic gestures for
second language learning by human tutors carries over to the robot.

A�er running the experiment, future work includes incorpo-
rating our �ndings into the L2TOR project[1]. Adaptive learning
will be integrated with the existing lesson plans, improving not
only the way the content of each individual lesson is structured but
also informing the choice of which words from previous lessons to
repeat for be�er retention. If iconic gestures indeed prove to play a
big part in learning and remembering new words, more of these
non-verbal behaviors will be developed to accompany a greater
number of (target) words and concepts. Furthermore, we will in-
vestigate the use of di�erent types of gestures and explore ways
of reducing the e�ort required to implement and orchestrate these
gestures for robots. Our progress can be tracked via the project
website1.
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ABSTRACT
An increasing number of human-robot interaction (HRI)
studies are now taking place in applied settings with chil-
dren. These interactions often hinge on verbal interaction
to effectively achieve their goals. Great advances have been
made in adult speech recognition and it is often assumed
that these advances will carry over to the HRI domain and
to interactions with children. In this paper, we evaluate a
number of automatic speech recognition (ASR) engines un-
der a variety of conditions, inspired by real-world social HRI
conditions. Using the data collected we demonstrate that
there is still much work to be done in ASR for child speech,
with interactions relying solely on this modality still out of
reach. However, we also make recommendations for child-
robot interaction design in order to maximise the capability
that does currently exist.

Keywords
Child-Robot Interaction; Automatic Speech Recognition;
Verbal Interaction; Interaction Design Recommendations

1. INTRODUCTION
Child-robot interaction is moving out of lab and into ‘the

wild’, contributing to domains such as health-care [2], educa-
tion [15,25], and entertainment [20]. An increasing amount
is being understood about how to design interactions from a
nonverbal behaviour perspective [13,14], but many of these
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domains hinge on effective verbal communication. This in-
cludes not only appropriate speech production by robots, but
transcribing and understanding speech from young users as
well. A prerequisite to this interpretation of speech is having
a sufficiently accurate transcription of what is being said.

For this reason, high-quality Automatic Speech Recogni-
tion (ASR) is a vital component for producing autonomous
human-robot interaction. ASR engines have undergone sig-
nificant improvements in recent years, particularly following
the introduction of new techniques such as deep learning [26].
However, these engines are commonly evaluated against stan-
dardised datasets of adult speech [23]. One might naively
assume that these improvements will also translate to child
speech, and will cope relatively well with noisy (i.e., real-
world) environments, such as those experienced in applied
HRI. However, this is often observed to not be the case,
cf. [19].

In this paper we seek to evaluate the state-of-the-art in
speech recognition for child speech, and to test ASR engines
in settings inspired by real-world child-robot interactions. We
record a variety of pre-determined phrases and spontaneous
speech from a number of children speaking English using
multiple microphones. We separate recordings by whether
they are comparatively clean, or contain noise from the real-
world environment. Through consideration of the results, we
highlight the limitations of ASR for child speech, and also
make a number of interaction design recommendations to
maximise the efficacy of the technology currently available.

2. BACKGROUND
Speech recognition has undergone significant advances,

building on or moving on from the use of Hidden Markov
Models (HMM) towards using deep neural networks (DNN).
DNNs have been shown to outperform older HMM based
approaches by some margin against standard benchmarks [12].
For example, in a Google speech recognition task a deep
neural network reduced the Word Error Rate (WER) to
12.3%, a 23% relative improvement on the previous state-of-
the-art [12].



However, these benchmarks are based on adult speech cor-
pora, such as the TIMIT corpus [17]. It has been noted by
other researchers that there is a lack of corpora for children’s
speech, leading to a lack of training data and a lack of bench-
marking for children’s speech recognition models [5, 9, 11]. It
is commonly assumed that the recent improvements observed
in adult speech recognition mean that child speech recogni-
tion improved at the same pace, and recognising children’s
utterances can be achieved with a similar degree of success.
However, anecdotal evidence suggests that this is not the
case; Lehman et al. [19] state that recognition of children’s
speech “remains an unsolved problem”, calling for research
to be undertaken to understand more about the limitations
of ASR for children to ease interaction design.

Children’s speech is fundamentally different from adult
speech: the most marked difference being the higher pitched
voice, due to children having a shorter, immature vocal
tract. In addition, spontaneous child speech is marked by
a higher number of disfluencies and, especially in younger
children, language utterances are often ungrammatical (e.g.,
“The boy putted the frog in the box”). As such, typical
ASR engines, which are trained on adult speech, struggle
to correctly recognise children’s speech [8, 24]. An added
complexity is caused by the ongoing development of the vocal
apparatus and language performance in children: an ASR
engine trained for one age group is unlikely to perform well
for another age group.

There have been various attempts to remedy this, from
adapting adult-trained ASR engines to the spectral charac-
teristics of children’s speech [18,22], to training ASR engines
on child speech corpora [6, 8, 10], or combinations of both.
For example, Liao et al. [21] have used spoken search instruc-
tions from YouTube Kids to train DNNs with some success,
resulting in a WER between 10 and 20%. In [24] vocal-tract
length normalisation (VTLN) and DNN are used in combi-
nation, and when trained on read speech of children aged
between 7 and 13 years, result in a WER of approximately
10%. It should be noted that these results are achieved in
limited domains, such as spoken search instructions, read
speech, or number recognition [22]. Also, the circumstances
in which the speech is recorded are typically more controlled
than interactions encountered in HRI, where ambient noise,
distance and orientation to the microphone, and language
use are more variable.

Whilst children’s speech recognition in general is a chal-
lenge, HRI brings further complexities due to factors such
as robot motor noise, robot fan noise, placement and orien-
tation of microphones, and so on. Many researchers adopt
interaction approaches that do not rely on verbal interaction
due to the unreliability of child ASR, particularly in ‘wild’
environments. Wizard of Oz (WoZ) approaches have proven
popular to substitute for sub-optimal speech recognition and
natural language interaction, but when autonomy is impor-
tant, WoZ is impractical and the use of mediating interfaces
to substitute for linguistic interaction has proven successful.
Touchscreens, for example, can serve as interaction devices,
they provide a focus for the interaction while constraining
the unfolding interaction [1]. However, if we wish the field to
continue to progress into real-world environments, then it is
unrealistic to exclude verbal interaction due to the prevalence
of this communication channel in natural interaction.

3. RESEARCH QUESTIONS

Figure 1: Equipment layout for recording children in
a school. The Aldebaran NAO is turned on (but not
moving) and records to a USB memory card. The
studio microphone and portable microphone record
simultaneously.

The previous section highlights that the current perfor-
mance of ASR for child speech remains unclear. We wish to
address this by exploring different variables in the context of
child speech, such as the type of microphone, the physical lo-
cation of the speaker relative to a robot, and the ASR engine.
These variables motivate a set of research questions presented
below, all in the context of child speech. Their evaluation will
be conducted with the aim of producing evidenced guidelines
for designing verbal human-robot interactions with children.

Q1 Do external microphones produce better results than
robot-mounted microphones?

Q2 How can physical interaction setups be optimised for
ASR?

Q3 Is there a benefit to using cloud-based or off-board ASR
engines compared to a stock robot ASR engine?

Q4 What is the impact of ‘real-world’ noise on speech
recognition in an HRI inspired scenario?

4. METHODOLOGY
In order to address the research questions posed in the

previous section, a data collection and testing procedure was
designed. At the time of writing, no corpus of child speech
suitable for the intended analysis was publicly available. As
such, there is a need for the collection of this data; the
procedure for this will be outlined here.

4.1 Participants
A total of 11 children took part in our study, with an aver-

age age M =4.9, SD=0.3; 5F/6M. The age group is motivated
by the many large-scale initiatives in the US, Europe and
Japan exploring linguistic interactions in HRI [2,3,19,20,25],
and the fact that this age group is preliterate, so cannot in-
teract using text interfaces. All children had age-appropriate
competency in speaking English at school. All participants



gave consent to take part in the study, with the children’s
parents providing additional consent for participation, and
recording and using the audio data. The children were re-
warded after the study with a presentation of social robots.

4.2 Data Collection
In order to collect a variety of speech utterances, three

different categories were devised: single word utterances,
multi-word utterances, and spontaneous speech. The single
word and multi-word utterances were collected by repeating
after an experimenter. This was done to prevent any issues
with child reading ability. Spontaneous speech was collected
through retelling a picture book, ‘Frog, Where Are You?’ by
Mercer Mayer, which is a common stimulus for this activity in
language development studies [4]. The single word utterances
were numbers from 1 to 10, and the multi-word utterances
were based on spatial relationships between two nouns, for
example, ‘the horse is in the stable’. Five sentences of this
style were used; the full set can be downloaded from [16].

The English speech from children was collected at a pri-
mary school in the U.K. This served two purposes: firstly,
to conduct the collection in an environment in which the
children are comfortable, and secondly, to collect data with
background noise from a real-world environment commonly
used in HRI studies, e.g., [15]. An Aldebaran NAO (hard-
ware version 5.0 running the NaoQi 2.1.4 software) was used
as the robotic platform. This was selected as it is a com-
monly used platform for research with children, as well as
for its microphone array and commercial-standard speech
recognition engine (provided by Nuance). The robot would
record directly from the microphones to a USB memory stick.
Simultaneously, a studio grade microphone (Rode NT1-A)
and a portable microphone (Zoom H1) were also recording.
The studio microphone was placed above the robot and the
portable microphone just in front of the robot (Fig. 1).

4.3 Data Processing

Encoding and Segmentation.
All audio files were recorded in lossless WAV format (min-

imum sampling rate of 44kHz). The audio files from each of
the three microphones were synchronised in a single Audacity
project. The audio files were then split to extract segments
containing the speech under consideration. These segments
were exported as lossless WAV files, resulting in 16 files per
microphone (48 in total) per child. The spontaneous speech
was transcribed and split into sentences. This produced a
total of 222 spontaneous speech utterances of various lengths
(M = 7.8 words per utterance, SD = 2.6). The full dataset
(audio files and transcripts) is available online at [16].

Noisy vs. Clean Audio Recordings.
As the recordings of children in English were collected dur-

ing the course of a school day, there is a range of background
noise. To study the impact of noise on ASR performance, it
is desirable to separate the recordings into those that have
minimal background noise (‘clean’ recordings) and those that
have marked background noise (‘noisy’ recordings). Some
noise is unavoidable, or would be present in any HRI sce-
nario, such as robot fan noise, so these were considered ‘clean’.
Other noise, such as birds outside, other children shouting
from the adjacent room, doors closing, or coughing would
be considered ‘noisy’. This means that the clean recordings
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Figure 2: Locations at which speech it played to the
NAO to explore how the physical layout of interac-
tions may influence speech recognition rates.

are not noise-free like those from a studio environment, but
are a realistic representation of a minimal practical noise
level in a ‘wild’ HRI scenario, thereby allowing us to evaluate
recognition accuracy with greater veracity.

To appropriately categorise the recordings as clean or noisy,
each one was independently listened to by 3 human coders
with the guidance from above as to what is considered clean
vs. noisy. Overall agreement levels between coders was
good, with Fleiss κ = .74 (95% CI [.65,.84]) for the fixed
utterances and κ = .68 (95% CI [.60,.75]) for the spontaneous
utterances. A recording was categorised as noisy or clean if
all 3 coders agreed it was respectively noisy or clean. Where
there was any disagreement between coders, the recordings
were omitted from analysis of noise impact (59 fixed and 54
spontaneous utterances were excluded). This resulted in 80
noisy recordings, and 37 clean recordings being analysed from
the fixed utterances set and 83 clean/85 noisy recordings from
the spontaneous utterances set. For some children, the NAO
recording failed due to technical difficulties. Therefore, when
comparing across microphones, the fixed utterance selection
is reduced to 29 clean recordings and 60 noisy recordings.

Manipulation of the Sound Location.
To evaluate the impact of distance and angle on speech

recognition, it was necessary to vary the distance between
the robot and child, while at the same time keeping the
speech utterances constant. As children struggle to exactly
reproduce speech acts and over 500 utterances are needed to
be recognised, we used pre-recorded speech played through
an audio reference speaker (the PreSonus Eris E5) placed at
different locations around the robot. In order to match the
original volume levels, a calibration process was used where
a recording would be played and re-recorded at the original
distance between the child and the robot. The audio signal
amplitudes between the original and recorded file were then
compared. The speaker volume was iteratively revised until
the amplitudes matched. This volume was then maintained
as the speaker was moved to different distances and angles
from the robot, while always facing the robot (to address, at
least in part, Q2 from Sec. 3); see Fig. 2 for a diagram of
these positions.



4.4 Measures
For recognition cases where a multiple choice grammar

is used (i.e., the list of possible utterances is entirely pre-
defined, and the recognition engine’s task is to pick the correct
one), the recognition percentage is used as the metric. Each
word or sentence correctly recognised adds 1; the final sum
is divided by the number of tested words or sentences. All
Confidence Intervals calculated for the recognition percentage
include continuity correction using the Wilson procedure. We
use the same metric when using template-based grammars
(Sec. 5.2.1).

For the cases in which an open grammar is used, we use
the Levenshtein distance as a metric at the letter level. This
decision was made as it reduces punishment for small errors
in recognition, which would typically not be of concern for
HRI scenarios. For example, when using the Levenshtein
distance at the word level (as with Word Error Rate), if the
word ‘robots’ is returned for an input utterance of ‘robot’,
this would be scored as completely unrecognised. At the
letter level, this would score a Levenshtein distance of 1,
as only a single letter needs to be inserted, deleted or sub-
stituted (in this example, the letter ‘s’) to get the correct
result. To compare between utterances, normalisation by
the number of letters in the utterance is then required to
compensate for longer inputs incurring greater possibility of
higher Levenshtein distances.

5. RESULTS
This section will break down the results and analysis such

that the research questions are addressed. The results are
split into two main subsections concerning: 1) technical
implementation details, and 2) general ASR performance.
The intention is to then provide a practical guide for getting
the best performance from ASR in HRI scenarios, as well as
an indication of the performance level that can be expected
more generally for child speech under different circumstances.

5.1 Technical Best Practices
Throughout this subsection, the ASR engine will remain

constant so that other variables can be explored. In this
case, the ASR engine used is the one that comes as default
on the Aldebaran NAO, provided by Nuance (VoCon 4.7).
A grammar is provided to this engine, consisting of numbers
(as described in Sec. 4.2) and single word utterances. Longer
utterances, along with open grammar and spontaneous speech
will be explored in the subsequent subsection.

5.1.1 Type of microphone
Upon observation of the results it became clear that the

robot-mounted microphone was vastly outperforming the
portable and studio microphones. When visually comparing
the waveforms, there was a noticeable difference in recorded
amplitude between the NAO signal and the other two mi-
crophones. This was despite the standalone microphone
input gains being adjusted to maximise the signal (whilst
preventing peak clipping). To increase the signal ampli-
tude whilst maintaining the signal-to-noise ratio, the files
were normalised. This normalisation step made a significant
difference to the results of the speech recognition. For the
portable microphone, the recognition percentage after normal-
isation (70%, 95% CI [59%,79%]) was significantly improved
compared to before normalisation (2%, 95% CI [0%,9%]);
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Figure 3: A comparison of recognition percentage
of English words and short sentences spoken by chil-
dren, split by microphone before and after normali-
sation. *** indicates significance at the p<.001 level.
The recognition is much improved for the portable
and studio microphones following normalisation.
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Figure 4: Recognition percentage of numbers spo-
ken by children, split by microphone type (62 utter-
ances). *** indicates significance at the p<.001 level,
** indicates significance at the p<.01 level. The stu-
dio microphone provides the best ASR performance,
but the difference between on- and lower quality off-
board microphones is relatively small.

Wilcoxon signed-rank test1 Z = −7.483, p < .001, r = 0.67. A
similar improvement was observed for the studio microphone
when comparing before (5%, 95% CI [2%,12%]) and after
(81%, 95% CI [70%,88%]) normalisation; Z = −7.937, p <
.001, r = 0.71 (Fig. 3). This suggests that the NAO mi-
crophones are tuned to maximise the speech level, and if
external microphones are to be used, then normalisation of
the recordings should be considered a vital step in process-
ing prior to sending to an ASR engine. Therefore, for the
remainder of the analysis here, only normalised files are used
for the studio and portable microphones.

In exploring Q1, it is observed that the differences between

1Due to the recognition being binary on single word inputs,
the resulting distributions are non-normal, so non-parametric
tests are used for significance testing.
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Figure 5: Recognition percentage of single word ut-
terances spoken by children, split by background
noise level (83 total utterances). Noise level does
not have a significant effect on the recognition rate.

microphones is smaller than may have been expected. The
NAO microphones are mounted in the head of the robot near
a cooling fan which produces a large amount of background
noise. It could therefore be hypothesised that the ASR
performance would greatly increase by using an off-board
microphone, and that using a higher-quality microphone
would improve this further. Using Friedman’s test, a signif-
icant difference at the p < .05 level is found between the
NAO (61%, 95% CI [48%,73%]), portable (65%, 95% CI
[51%,76%]), and studio (84%, 95% CI [72%,92%]) micro-
phones; χ2(2) = 9.829, p = .007. Post-hoc Wilcoxon signed-
rank pairwise comparisons with Bonferroni correction reveal
a statistically significant difference between the portable and
studio microphones (Z = −3.207, p < .001, r = 0.29; Fig.
4), and between the NAO and studio microphones (Z =
−2.746, p = .006, r = 0.24). Differences between the portable
and NAO microphones (Z = −0.365, p = .715, r = 0.03) were
not significant. This suggests that there is no intrinsic value
to using an off-board microphone, but that a high quality
off-board microphone can improve the ASR results. The
difference between the robot microphone and the external
studio grade microphone is fairly substantial, with a recogni-
tion percentage improvement of around 20%point (r = 0.28).
It would be scenario specific as to whether the additional
technical complexity of using a high-quality external micro-
phone would be worth this gain, and indeed, in scenarios
where the robot is mobile, use of a studio grade microphone
may not be a practicable option.

5.1.2 Clean vs. Noisy Recording Environment
Splitting the files by whether they were judged to be clean

or noisy (as described in Sec. 4.3), it was observed that
the noise did not appear to have a significant impact on the
results of the ASR. Using the studio microphone (i.e., the best
performing microphone) for the number utterances, a Mann-
Whitney U test reveals no significant difference between
clean (81%, 95% CI [60%,93%]) and noisy (81%, 95% CI
[68%,90%]) speech; U = 740.5, p = .994, r = 0.00 (Fig. 5).
The apparent robustness of the ASR engine to noise is of
particular benefit to HRI researchers given the increasingly
‘real-world’ application of robots, where background noise is
often near impossible (nor desirable) to prevent.

However, this does not mean that noise does not play a
role in recognition rates. In this instance, the ASR engine is
restricted in its grammar; the effect of noise in open grammar
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Figure 6: Interpolated heatmap of recognition per-
centage as a function of distance and orientation to
the robot. Interpolation has been performed based
on the measurements made at the small white cir-
cles. On the left is the heatmap for the noisy audio,
whereas the right is for clean audio. The clean au-
dio is better recognised at further distances from the
robot, however, in both cases, recognition accuracy
is 0% to the side and behind the robot.

situations is explored in the next subsection. Additionally,
when the distance of the sound source to the microphone is
varied, background noise becomes a greater factor.

5.1.3 Sound Source Location
Measurements were made as in Fig. 2 using the built in

NAO microphone, with the replayed audio from the studio
microphone (as described in Sec. 4.3). Due to the number
of data points this generates (540 per child), the findings in
full will not be produced here, but to get a high-level picture
of how the distance and orientation influences recognition
rates, a heatmap can be seen in Fig. 6.

Two observations can be made from this data that have
particular relevance for HRI researchers. The first is the
platform-specific observation that with the NAO robot (cur-
rently one of the most widely used research platforms for
social HRI) the utterance recognition rate drops dramati-
cally once the sound source reaches a 45 degree angle to the

Distance (cm) Clean % [95% CI] Noisy % [95% CI]

25 73 [52,88] 77 [64,87]
50 65 [44,82] 44 [31,58]
75 27 [12,48] 23 [13,36]
100 4 [0,22] 18 [9,30]

Table 1: ASR recognition rates for children counting
from one to ten. Recordings were played frontally at
different distances from the robot. Note how recog-
nition falls sharply with distance when the speech
contains noise.



robot head, and becomes 0 once it reaches 90 degrees. The
implication of this is that when using the NAO, it is vital to
rotate the head to look at the sound source in order to have
the possibility of recognising the speech. This is of course
dependent on the current default software implementation;
four channels of audio exist, but for ASR only the front two
are used, and so a workaround could be created for this. The
second, broader observation, is that the background noise
and distance seem to influence recognition rates when com-
bined. Fig. 5 shows how little impact noise has when the files
are fed directly into the robot ASR, but when combined with
distance, there is a marked difference beyond 50cm. Table 1
shows the measurements for the first metre directly in front
of the robot; at 25cm the difference between clean and noisy
files are minimal, however at 50cm, the difference is more
pronounced, with recognition rates dropping fast.

5.2 ASR Performance with Children
The previous subsection addressed variables in achieving

a maximal possible speech recognition percentage through
modifying the technical implementation, such as different
microphones, distances to a robot, orientation to a robot,
and background noise levels. This subsection will provide
a complementary focus on exploring the current expected
performance of ASR with children under different speech
and ASR engine conditions. This will include a comparison
of differing length utterances, spontaneous utterances, and
different ASR engines with varying grammar specifications.
For all analyses in this section, the studio microphone signal
is used to provide the best quality sound input to the speech
engines (and provide a theoretical maximal performance).

5.2.1 Impact of Providing a Grammar
Tests on child speech in the previous subsection were

performed with single word utterances, with a grammar
consisting of only those utterances. This kind of multiple
choice is relatively straightforward, and this carries over to
slightly longer utterances too. We compare the recognition
rate of the fixed multi-word utterances (34 spatial relation
sentences as described in Sec. 4.2) under 3 conditions using
the built-in NAO ASR: 1) with a fixed grammar containing
the complete utterances, e.g., “one” or “the dog is on the
shed” (i.e., multiple choice), 2) with a template grammar
for the sentences (as seen in Fig. 8), and 3) with an open
grammar. This progressively reduces the prior knowledge
the ASR engine has about what utterances to expect. The
full mix of noisy and clean utterances were used as there
was no observed significant correlation in any of the three
conditions between ASR confidence level and noise condition,
nor between noise condition and resulting recognition rates.
The grammar condition has a significant impact on the recog-
nition percentage; Friedman’s test χ2(2) = 39.92, p < .001.
Post-hoc Wilcoxon signed-rank pairwise comparisons with
Bonferroni correction reveal a statistically significant differ-
ence between the multiple choice (74%, 95% CI [55%,86%])
and template grammars (53%, 95% CI [35%,70%]); Z =
−2.646, p = .008, r = 0.32. The template grammar in turn
offers a significant improvement over the open grammar (0%,
95% [0%,13%]); Z = −4.243, p < .001, r = 0.51 (Fig. 7).

5.2.2 Comparison of ASR Engines
Finally, we look at how different ASR engines perform,

under identical recording conditions. We compare the Google
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Figure 7: Recognition percentage when providing a
fixed grammar, a template grammar, and an open
grammar on short utterances. The fixed ‘multiple
choice’ grammar produces the best recognition, fol-
lowed by a template. The open grammar, on aver-
age, recognises almost no sentences correctly.

the dog

fish

horse

is in

next to

in front of

behind

on top of

the pond

shed

car

stable

horse

Figure 8: Template for the grammar provided to the
ASR for the fixed utterances. 75 different sentences
can be generated from this grammar.

Speech API (as found in the Chrome web browser for in-
stance), the Microsoft Speech API (as found in the Bing
search engine), CMU PocketSphinx, and the NAO-embedded
Nuance VoCon 4.7 engine; studies were run in August 2016.
The audio samples are those recorded with the studio micro-
phone; they include native and non-native speakers as well
as noisy and clean samples; they include both the fixed sen-
tences and the spontaneous speech; no grammar is provided
to the engine (i.e., open grammar).

As performing recognition with an open grammar is a
much harder challenge for recognition engines, the recognition
percentage alone is no longer a sufficient measurement to
compare between performance of ASR engines due to the
very low number of exact utterance recognitions across all
engines. Instead we use the Levenshtein distance (LD) at
the letter level. As the utterance length for the spontaneous
speech is also variable, the Levenshtein distance is normalised
by utterance length (as per Sec. 4.4). This provides a value
between 0 and 1, where 0 means the returned transcription
matches the actual utterance, and 1 means not a single letter
was correct. Values in between indicate the proportion of
letters that would have to be changed to get the correct
response, therefore lower scores are better. Table 2 provides
one recognition example with the corresponding Levenshtein
distances.

While the LD provides a good indication of how close the
result is from the input utterance, the examples in Table 2



Google API then the wraps looks at the dog [LD=0.17]
Microsoft API rat look at dogs [LD=0.48]
PocketSphinx look i personally [LD=0.83]

Table 2: Recognition results and Levenshtein dis-
tance for three ASR engines on the input utter-
ance “then the rat looked at the dog”. The NAO-
embedded Nuance engine did not return any result.

evidence that this metric does not necessarily reflect seman-
tic closeness. In this particular case, the Bing result “rat look
at dogs” is semantically closer to the original utterance than
the other answers. For this reason, we assess recognition
performance in open grammar using a combination of three
metrics: 1) the Levenshtein distance; 2) raw accuracy (i.e.,
the number of exact matches between the original utterance
and the ASR result); 3) a manually-assessed ‘relaxed’ ac-
curacy. The utterance would be considered accurate in the
‘relaxed’ category if small grammatical errors are present,
but not semantic errors. Grammatical errors can include
pluralisation, removal of repetitions, or small article changes
(‘the’ instead of ‘a’). For example, if an input utterance of
“and then he found the dog” returned the result “and then
he found a dog”, this would be considered accurate, however
“and then he found the frog” would produce a similar LD, but
the semantics have changed, so this would not be included
in the relaxed accuracy category.

Table 3 shows that when the input utterance set is changed
to use spontaneous speech, the average normalised LD does
not change much for any of the ASR engines. Nor do the
LD rates change much when only clean spontaneous speech
is used, providing further evidence for the minimal impact
of noise as established in Sec. 5.1.2. However, there is a
marked difference between Google and the other recognition
engines. The average LD from Google is around half that of
the other engines, and the number of recognised sentences in
both the strict and relaxed categories is substantially higher.
The recognition performance remains however generally low:
using relaxed rules, the currently best performing ASR engine
(Google Speech API) for our data recognises only about 18%
of a corpus of 222 child utterances (utterances have a mean
length of M = 7.8 words, SD = 2.6).

To help decide whether or not the results returned from
Google would actually be usable in autonomous HRI sce-
narios, it is necessary to determine when the utterance is
correctly recognised. This is typically indicated through
the confidence value returned by the recognition engine. To
further explore this, we assess the number recognition per-
centage at different thresholds within the confidence level
(Fig. 9). A total of 101 results from the 222 passed to the
recogniser returned a confidence level (a confidence value
is not returned when the uncertainty of the ASR engine is
too high). To achieve just below 50% semantically correct
recognition accuracy, the confidence threshold could be set
to 0.8, which would only include 36 utterances. While a
clear improvement over the 18% previously achieved when
not taking into consideration the confidence value, a 50%
recognition rate is arguably not sufficient for a smooth child-
robot verbal interaction, and would still require the system
to reject nearly 2/3 of the child utterances.

6. DISCUSSION
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Figure 9: Histogram of recognition percentage (us-
ing the relaxed, manually coded criteria) for spon-
taneous speech grouped by confidence levels (indi-
cated by the number above each bar) returned by
Google ASR. The average Levenshtein Distance is
also shown on the secondary axis. Recognition in-
creases with higher confidence ranges, but few ut-
terances have a high confidence.

Our results show that, at the time of writing, automatic
speech recognition still does not work reliably with children,
and should not be relied upon for autonomous child-robot
interaction.

Speech segmentation is one aspect that we did not in-
vestigate. The segmentation of speech units and rejecting
non-speech parts is an important factor in speech recognition.
For example, noise can be mistakenly recognised by ASR
engines as speech, or a pause in the middle of a sentence
might interrupt the segmentation. Existing solutions (like a
beep sound indicating when to talk) are not ideal for children
of this age. Our manual segmentation likely leads to better
results than would be expected with automatic segmentation.

We did not analyse if gender had an effect on ASR due to
the age of the children used in the study. It has been shown
that there are no significant differences in the vocal tract
between genders at the age under consideration (5-6 years
old) [7], so we do not expect differing performance based on
gender.

Mitigation strategies for poor ASR performance depend
on the ASR engine. We have specifically investigated the use
of constrained grammar with the NAO’s Nuance engine; and
the use of the recognition confidence with the Google ASR.
While severely constraining the interaction scope, none of
these techniques were found to provide satisfactory results.
In our most favourable test case (children speaking numbers
from one to ten in front of the robot, at about 25cm; the
robot having an explicit ‘multiple choice’ grammar), the ASR
would return an incorrect result in one of four cases, and
could not provide any meaningful confidence value. This
result is disappointing, particularly when considering that
interactions based on ‘multiple choice’ are difficult to rely on
with children, as they tend not to remember and/or comply
to the given set of recognisable utterances.

Template-based grammars (or ‘slot-filling’ grammars) where
the general structure of the sentence is known beforehand,
and only a limited set of options are available to fill the
‘gaps’ are a potentially interesting middle-ground between



Google Bing Sphinx Nuance
M LD [95%CI] % rec. M LD [95%CI] % rec. M LD [95%CI] % rec. M LD [95%CI] % rec.

fixed
(n=34)

0.34 [0.24,0.44]
11.8
[38]

0.64 [0.56,0.71]
0

[0]
0.68 [0.64,0.73]

0
[0]

0.76 [0.73,0.80]
0

[0]

spontaneous
(n=222)

0.39 [0.36,0.43]
6.8

[17.6]
0.64 [0.61,0.67]

0.5
[2.4]

0.80 [0.77,0.84]
0

[0]
0.80 [0.78,0.82]

0
[0]

spontaneous
clean only

(n=83)
0.40 [0.35,0.45]

6.0
[16.9]

0.63 [0.58,0.68]
1.2

[1.2]
0.78 [0.72,0.85]

0
[0]

0.78 [0.75,0.81]
0

[0]

Table 3: Comparison between four ASR engines using fixed, all spontaneous, and clean spontaneous speech
utterances as input. Mean average normalised Levenshtein Distance (M LD) indicates how good the tran-
scription is. % rec indicates the percentage of results that are an exact match for the original utterance, with
the values in square brackets [ ] indicating matches with ‘relaxed’ accuracy.

‘multiple choice’ grammars and open speech. However, we
show that in our test case (grammar depicted in Fig. 8), the
correct utterance was recognised in only 50% of the cases,
again without any useful confidence value.

In the realm of open grammars, the Google Speech API
returned the most accurate results by a large margin. When
run on grammatically correct, regular sentences (the ones
generated from the grammar depicted in Fig. 8), it reaches
38% accuracy in recognition when minor grammatical differ-
ences are allowed. This result, while likely not yet usable in
today’s applications, is promising. However, when looking
at children’s spontaneous speech, the recognition rate drops
sharply (to around 18% of successful recognition). This dif-
ference can be explained by the numerous disfluencies and
grammatical errors found in natural child speech. To provide
an example, a relatively typical utterance from our data was
“and... and the frog didn’t went to sleep”. The utterance has
a repetition and disfluency at the start, and is followed by
grammatically incorrect content. This is, in our opinion, the
real challenge that automatic child speech recognition faces:
the need to account for the child-specific language issues,
beyond the mere differences between the acoustic models of
adults vs. children. This is a challenge not only for speech-
to-text, but as well for later stages of the verbal interaction,
like speech understanding and dialogue management.

Our results allow us to make a number of recommendations
for designing child-robot interaction scenarios that include
verbal interaction. Most of these are also applicable to adult
settings and would be expected to contribute to a smoother
interaction.

• Constrain the interaction by leading the child to a
limited set of responses. This typically works well
for older children, but carries the risk of making the
interaction stale.

• Use additional input/output devices. A touchscreen
has been found to be a particularly effective substitute
for linguistic input [1, 14], but also other devices –such
as haptic devices– should be considered.

• Place the young user in the optimal location for ASR.
The location and orientation relative to the microphone
(and robot) has a profound impact on ASR performance
(Sec. 5.1.3). A cushion, stool or chair can help children
sit in the optimal location.

• Constrain the grammar of the ASR. While not all

ASR engines allow for this (cf. Bing), some will allow
constraints or“hints”on what is recognised. This proves
to be valuable in constrained interaction settings, for
example, when listening only for numbers between 1
and 10 (Sec. 5.2.1).

• Background noise appears to be less of an issue than
initially anticipated. It appears that the current ASR
engines have effective noise cancelling mechanisms in
place. Nevertheless, “the less noise, the better” remains
true, particularly when interacting at a distance from
the robot (Sec’s 5.1.2 & 5.1.3).

• A lack of ASR performance does not mean that the
robot should not produce speech, as speech has been
found to be particularly effective to engage children.

We opted to evaluate the ASR capabilities of the Aldebaran
NAO platform, as it is the most commonly used robot in
commercial and academic HRI. While the NAO system under
performs for child speech, some performance could be gained
through using a high-quality external microphone and cloud-
based ASR, with Google as clear favourite.

7. CONCLUSION
Language is perhaps the most important modality in

human-to-human interaction and as such, functional nat-
ural language interaction forms a formidable prize in human-
machine interaction. Speech recognition is the entry point
to this and while there has been steady progress in speaker-
independent adult speech recognition, the same progress is
currently lacking from children’s speech recognition. For var-
ious reasons –pitch characteristics of children’s voices, speech
disfluencies, and unsteady developmental changes– child
speech recognition is expected to require a multi-pronged
approach and recognition performance in unconstrained do-
mains is currently too low to be practical.

This has a profound impact on the interaction between
children and technology, especially where pre-literacy chil-
dren are concerned, typically ages 6 and younger. As they
have no means of entering input other than by speaking to
the device, the interaction with pre-literacy children stands
or falls with good speech recognition.

Our results show that natural language interactions with
children are not yet practicable. Today, building rich and
natural interactions between robots and children still requires
a complex alchemy: a careful design of the interaction that



leads the responses of the young user in such a way that
restrictive ASR grammars are acceptable, the understanding
and production of rich non-verbal communication cues like
gaze, and a judicious use of supporting technology such as
touchscreens.
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ABSTRACT 
This study considered the feedback of a robot during second 
language tutoring. Traditionally, robots are programmed to provide 
feedback as teacher; we propose a robot that acts as a peer to 
motivate preschoolers during the tutoring. We conducted an 
experiment with 65 preschoolers (M = 3.6 years) in which the robot 
varied feedback in three conditions: peer-like (explicit negative), 
adult-like (explicit positive and implicit negative) and no feedback. 
The results suggest that feedback did not influence children’s 
engagement (measured via eye-gaze), although children who 
received peer-like feedback seemed to perform more independently 
during the learning task (requiring less interventions from the 
experimenter). 

Keywords 
Social robots; second language tutoring; child-robot interaction 

1. INTRODUCTION 
Recently, more attention has been given to robots in education, for 
example to teach children a second language [1], [2]. In such 
settings the robot is used as an adult teacher, and the ensuing child-
robot interactions are based on interactions between children and 
their teachers. However, in long-term interactions, children may 
treat the robot as a peer, not as a teacher [3]. Moreover, peer 
interactions have been shown to have a positive effect on language 
development [3]. We therefore develop a tutor robot as a more 
knowledgeable peer, who can adjust the difficulty of the task, give 
personalized feedback and provide new information, but can also 
make mistakes, and allows for learning-by-teaching [2].  

One of the questions that arises is how should the robot provide 
adequate feedback during language tutoring, such that is it both 
pleasant and effective for learning? Adult caregivers normally 
praise children to encourage them and recast utterances to provide 
corrective feedback implicitly, but peers may also use explicit 
negative feedback [5]. Research has shown that explicit negative 
feedback can have more impact on learning, although positive 
feedback gives some reassurance to the learner [6]. 

In this study, our aim is not to investigate the effect of feedback on 
learning, but instead to investigate how children react to these 
different types of feedback. We implemented three types of 
feedback in a NAO-based robot tutor: adult-like feedback, peer-like 
feedback and no feedback. The adult-like behavior of the robot used 
reformulations to correct the children (“Three means three”, the 

text said in English is indicated in Italics, the rest was said in Dutch) 
and positive feedback (“Well done!”) when they responded 
correctly. The positive feedback was accompanied by colored eye-
LEDs to indicate happiness. The second peer-like condition, only 
provided explicit negative feedback (“That’s wrong!”). In the no 
feedback condition, the robot did not give any corrections or 
feedback. We examined how children responded to these different 
feedback conditions in terms of how engaged they were during the 
interactions as measured through eye-gaze.   

2. EXPERIMENTAL SETTING 
We conducted an experiment with 65 three-year old children (30 
boys, 35 girls; M = 3.6 years, SD = 0.29) at different preschools in 
the Netherlands. Six children stopped with the experiment before it 
was finished and were excluded from the data. The remaining 
participants were randomly assigned to the three conditions: adult-
like feedback (N=20), peer-like feedback (N=19) and no feedback 
(N=19). In all conditions the experimenter was seated nearby and 
provided reassurance for the children if necessary. While the 
experimenter instructed the children to perform a task, or 
occasionally provided help if required, she was careful not to 
provide feedback. Figure 1 shows a participant interacting with the 
robot and the blocks.  

 
In the week before to the experiment, all children took part in a 
group introduction to familiarize them with the NAO robot. During 
the actual experiment, children were taught the first four count 
words in English. The interaction consisted of an introductory 
phase followed by the tutoring session. In the tutoring session, each 
target word was repeated only once, so the task was repeated four 
times. However, the children were already exposed to the target 
words in the introduction phase. The interaction was in Dutch and 
only the target words were in English. During the experiment, the 
robot requested the child to collect a certain number of blocks using 
an English target word. After the child collected the blocks, the 
robot provided feedback to the child according to the condition. For 
example, in the adult feedback condition, a correct answer would 
invoke a happy expression, together with a positive verbal 
feedback, while in the other conditions the robot would continue to 
the next step. In the case of a mistake, the child would receive 
negative feedback and then could try again. The duration of the 
experiment was between 10 and 15 minutes.   

Permission to make digital or hard copies of part or all of this work for personal 
or classroom use is granted without fee provided that copies are not made or 
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Figure 1. Experimental Setup. 
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3. RESULTS 
3.1 Eye-gaze 
The experiment was recorded in order to analyze the participants’ 
interaction with the robot, and in particular their eye-gaze in 
reaction to the different feedback. We annotated the gaze towards 
the robot, human experimenter, to the blocks and elsewhere and 
conducted a repeated measures ANOVA to explore the differences 
within the groups. In general, the children looked significantly 
longer at the blocks and the robot than at the experimenter (see 
Figure 2).  

 
Immediately after the moment that the robot gave instructions, the 
children looked more often at the robot and the blocks in the adult 
feedback and the peer feedback conditions, but looked more often 
at the experimenter in the no feedback condition (see Table 1). 
Moreover, children received less help from the experimenter in the 
peer condition than in the adult feedback condition and most in the 
no feedback condition (22 times, 36 times and 43 times 
respectively).  

However, we did not see any significant differences in the duration 
of the gaze towards the experimenter, the robot and the blocks 
across the three conditions.  

 

4. DISCUSSION 
In this experiment we explored how preschoolers interact with a 
robot tutor and how they respond to the robot’s different types of 
feedback. Children in the adult feedback condition received most 
feedback from the robot. Moreover, children in the peer feedback 
condition received less help from the experimenter, and looked less 

at the experimenter after receiving the instructions from the robot. 
According to Spilton and Lee [7] children respond more often to 
explicit, specific questions than to implicit nonverbal and verbal 
feedback from peers. This might explain our results, as the children 
received explicit negative feedback in the peer condition, and 
required less help from the experimenter.  

While the gaze duration results did not show significant differences 
between the three conditions, the children looked less often at the 
experimenter in the two feedback conditions. This suggests that 
children respond well to the robot’s feedback. In all conditions, the 
children looked most at the blocks and the robot. It is possible that 
the non-significant differences in gaze duration between the 
conditions are due to individual differences between the children. 
In general, we saw substantial differences between children in how 
they responded to the robot, and further exploring these differences 
is an interesting line for future research.  

Importantly, we believe that the implicit and explicit feedback can 
be useful in a tutoring session, and it would be beneficial for the 
robot to be able to adapt to the child and the setting with regard to 
feedback. The implicit negative feedback together with the positive 
feedback can, for example, be used in cases where the child is 
demotivated by previous mistakes. The explicit negative feedback 
may, on the other hand, be used to increase the learning gain of the 
child.  
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Figure 2. Time spent on gaze direction shown for all 
conditions combined. 

Note. *p<0.05, **p<0.01. 

Table 1. Total number of gaze occurrences towards the 
experimenter, robot or blocks immediately after the robot 
gave the instructions   

Gaze 
Adult 
feedback 

Peer 
feedback 

No 
feedback 

Robot 32 50 35 

Experimenter 10 11 50 

Blocks 50 38 45 
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ABSTRACT
In this paper, we present an approach to adaptive language
tutoring in child-robot interaction. The approach is based
on a dynamic probabilistic model that represents the inter-
relations between the learner’s skills, her observed behaviour
in tutoring interaction, and the tutoring action taken by the
system. Being implemented in a robot language tutor, the
model enables the robot tutor to trace the learner’s knowl-
edge and to decide which skill to teach next and how to
address it in a game-like tutoring interaction. Results of an
evaluation study are discussed demonstrating how partici-
pants in the adaptive tutoring condition successfully learned
foreign language words.

CCS Concepts
•Computing methodologies → Probabilistic reason-
ing; Cognitive robotics; •Applied computing → In-
teractive learning environments; •Human-centered
computing → Empirical studies in HCI;

Keywords
Language tutoring; Education; Assistive robotics; Bayesian
Knowledge Tracing; Decision making

1. INTRODUCTION
The use of robots for educational purposes has increas-

ingly moved into focus in recent years. This is due to two
major developments. First, robots became cheaper and more
robust so that applications in everyday environments are
now conceivable. In particular, technology has matured up
to a point where intuitive interaction using natural language
or gesture has become feasible. Second, the need for second
language learning becomes increasingly important, and em-
pirical evidence has demonstrated that learning with and
from a physically present, interactive robot can be more ef-
fective than learning from classical on-screen media [14, 15,
20, 22]. In fact, recent research showed that performance
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can increase up to 50% [17]. It can, hence, be assumed that
tutoring using social robots is qualitatively different from
alternative digital tutoring technologies. Nowadays, first
practical applications can be found, e.g. in nursery where
toy robots teach the alphabet to kids in a very simple way.
More generally, findings from a variety of settings seem to
suggest that robots can help small children to develop in an
educational setting [10, 18, 24, 27].

In the L2TOR project1, we investigate in how far a social
robot can support children at pre-school age with respect
to second language learning. Learning a language is a very
complex task. It involves not only acquiring vocabulary,
but also learning prosodic features, syntactical structures,
semantic meanings as well as situation-dependent language
use. Yet, it has been argued that social robots can create the
interactive environment and motivational experience needed
to learn languages [19].

One of the most important aspects in tutoring is the robot’s
ability to keep track of the knowledge state, i.e. the learned
and not-yet-learned skills, of the child interacting with it.
This information is indispensable to enable a personalized
tutoring interaction and to optimize the learning experience
for the child [27]. The tutor has to structure the tutoring
interaction, choose the skills to be trained, adjust the diffi-
culty of the learning tasks appropriately and has to adapt
its verbal and non-verbal behaviour.

The importance of personalized adjustments in the robot’s
behaviour has been substantiated in recent research show-
ing that participants who received personalized lessons from
a robot (based on heuristic skill assessment) outperformed
others who received a non-personalized training [22]. Sub-
optimal robot behaviour (e.g. too much, too distracting,
mismatching or in other ways inappropriate) can even ham-
per learning [17]. In this paper we present an integrated
approach for tracing the knowledge of the learner during a
L2 learning interaction together with a strategic adaptation
of tutoring actions.

In the following, we discuss related work in Section 2.
In Section 3 an extension of Bayesian Knowledge Tracing
is presented as well as a model to select the next tutoring
actions based on the predicted effects they may have on the
learner’s knowledge state. This model has been implemented
in a robot that provides language tutoring in a game-like
fashion. Section 4 introduces the empirical basis for this
scenario and observational studies on language tutoring in
kindergarten. Section 5 presents an evaluation study carried
out with this robot and Section 6 discusses the results.

1http://www.l2tor.eu
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2. RELATED WORK
Numerous studies have investigated the effects of social

robots in tutoring scenarios. Empirical evidence demon-
strates that learning with and from a physically present,
interactive robot can be more effective than learning from
classical on-screen media [14, 15, 20], and that robots can
help children to develop in educational settings [10, 18, 24,
27]. However, at the same time, it is found that suboptimal
behaviour of the robot can hamper learning [17]. Thus, a
crucial ingredient for successful robot tutoring is the ability
to provide personalized lessons [22] and to adapt in appro-
priate ways to the needs of the learner. The key question is
when and how to adapt robot tutoring, according to which
adaptation strategies, and based on what features of the
state of learner or the tutoring interaction.

2.1 Approaches to Adaptive Tutoring
In the realm of Intelligent Tutoring System (ITS), ded-

icated pedagogical modules are employed for planning an
optimal path through the curriculum by using an internal
model of the learner’s present knowledge state (cf. [8]). Cak-
mak and Lopes [3], for example, proposed a teaching algo-
rithm that selects the most informative demonstrations for
the learner. This learning agent makes use of Inverse Rein-
forcement Learning (IRL) to reduce the learner’s hypothesis
space of possible reward functions as fast as possible. In an
evaluation, the authors showed that a learner trained with
non-optimal selected expert demonstrations require signifi-
cantly more demonstrations to achieve a similar performance
as the optimally taught learner. This system, however, is de-
signed for a sequential decision task in which no uncertainty
about the learner’s knowledge/skill exists. This assump-
tion does not hold for the domain of L2 learning where the
learner’s current state of knowledge can, at best, be inferred
from observed behaviour. Another important limitation of
this approach is a lack of flexibility as no adaptation towards
students’ individual needs is considered.

Addressing especially the issue of adaptation towards stu-
dents’ individual needs, Partial Observable Markov Decision
Processes (POMDPs) have been employed as basis for the
pedagogical module of an ITS. Rafferty et al. [25], for in-
stance, proposed different algorithms for planning an action-
policy based on a POMDP and compared these against two
different random and a maximum information gain (MIG)
choice. They showed that even a simple action-policy based
on a POMDP can achieve a significant faster skill learning
than choosing actions randomly. But compared to the sim-
ple MIG algorithm, no significant difference was observed.
Only with increasing skill space the MIG algorithm seems
not to be sufficient anymore. A likely explanation for this
finding is that the knowledge tracing model is insufficient.
In addition, finding a good policy based on a POMDP is
often computational intractable.

Clement et al. [4] compared two algorithms choosing the
next skill and action in a tutoring interaction against a les-
son given by a human expert. Both algorithms based on
prior knowledge, e.g. the impact of actions on the learning
gain or the difficulty of different types of tasks, which had
been annotated by experts beforehand. The algorithms dif-
fered with regard to the adaptation method and the amount
of additional knowledge stored besides the prior. The au-
thors showed that even if the ITS does not make use of an
internal model to store beliefs about the child’s knowledge

state regarding a specific skill, the use of their algorithm can
lead to a higher learning gain compared to an expert lesson.
Furthermore their second proposed algorithm, which addi-
tionally stores information about the knowledge state of the
child, performed even better. Clement et al. concluded that
extending their system with a more complex model for trac-
ing the knowledge state of a student might lead to a higher
learning.

An often criticized issue in this line of research is the lack
of an effective knowledge-tracing method in the pedagogical
module of an ITS that could be profitable for the learning
interaction, e.g. by increasing the students’ learning gain.
Hence, we review research on knowledge tracing methods in
the following.

2.2 Knowledge Tracing
Knowledge tracing aims to model learners’ mastery of

the knowledge being tutored. An often used approach is
Bayesian Knowledge Tracing (BKT). BKT is a specific type
of Dynamic Bayesian Networks (DBN), or more precisely,
of Hidden Markov Models consisting of observed and latent
variables. The latent variables represent the ‘skills’ and are
classically assumed to be binary. That is, a skill is repre-
sented to be mastered or not. Generally, separate BKT net-
works are used for each skill to be learned [5]. Belief update
is based on the observation of an answer to a given task test-
ing a specific skill. The observed answer is binary too. Fur-
ther, BKT models have two types of parameters: The emis-
sion probability and the transition probability. The emission
probabilities are given by the ‘guess probability’ p(guess),
the probability of answering correctly without knowing the
skill, and the ‘slip probability’ p(slip) of answering wrongly
although knowing the skill. In contrast, the transition prob-
abilities are given by p(t), the skill transition from unknown
to known, and p(f) the probability of forgetting a previously
known skill. Often p(f) is assumed to be zero.

Spaulding et al. [29] recently adopted BKT to trace the
language-reading skill of children in robot-based language
tutoring. They proposed the ‘Affective BKT model’, which
is characterized by two further observable variables called
‘smile’ and ‘engagement’ to take into account the affective
state of the child. This model structure allows emotions to
influence the belief-state of each skill as they are included in
every belief-update. The authors showed that the affective
state of the children can be successfully integrated into BKT
and that this approach outperforms traditional models for
tracing the knowledge state in learning situations [29].

Another modification of BKT was published by Käser et
al. [16]. Instead of using a dedicated BKT for every skill,
they defined one comprehensive DBN to trace the knowledge
on all skills to be learned. This enables to trace the knowl-
edge on each skill individually and, in addition, to represent
and reason with skill inter-dependencies. This allows for
searching some kind of order in which skills may be learned
best. The authors could demonstrate that this more de-
tailed model outperforms other traditional models of knowl-
edge tracing, including the normal BKT, with regard to the
accuracy of the skill belief [16].

Finally, Gordon et al. [11] recently presented a so-called
‘active learner model’ to trace the word-reading skills of
small children. This model does not work on the basis of
BKT but employs a simple distance metric to approximate
the conditional probability p(w2|w1) of whether the child
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can read a word w2 if it already knows the word w1. Their
evaluation showed that their system is able to adapt to users
of different age and to trace their reading knowledge up to
a certain extent [11].

In this paper we present an expandable model based on
BKT for knowledge tracing that, in contrast to the systems
reviewed above [16, 29], allows for the simulation of actions
and decision-making in teaching interactions.

3. ADAPTIVE LANGUAGE TUTORING
As a basis for our approach to adaptive language tutoring,

we adopt the Bayesian Knowledge Tracing model [5] which
has been successfully employed in other work and was shown
to be easily extensible. However, we modify and extend the
BKT model in order to enable predictive decision-making
based on the represented beliefs about the learner’s knowl-
edge state. In this section, we first introduce our version of
BKT and then present the approach for decision-making.

3.1 Bayesian Knowledge Tracing
The traditional approach to BKT uses only one latent

variable S to represent the skill belief and one observable
variable O for the user’s answer. This suffices to represent if
a skill is mastered or not, and how probable it would be that
the user will answer correctly. Also, this information can be
used to choose the next skill to learn, e.g. the skill which has
the lowest belief probability of having been mastered. How-
ever, this model does not include information about how a
skill can be addressed for teaching. In consequence, there is
no possibility to take possible actions and their influence on
the update of skill beliefs into account. We thus add a deci-
sion node A for actions to the Bayesian network (see Figure
1). This node not only influences the possible observation
but also the belief update in the next time step. Further,
we use a latent variable S that can attain six discrete val-
ues for each skill, corresponding to six bins for the belief
state (0%, 20%, 40%, 60%, 80%, 100%). This allows for a
more detailed model of the impact of tutoring actions on
the possible observations and skills. Moreover, it becomes
possible to better quantify the robot’s uncertainty about the
learner’s skill.

With these changes, especially the conditional probabil-
ity table p(Ot|St) and the additional influence of the action
At on the observable (now p(Ot|St, At)), the classical BKT
update function, which was based on simple assumptions
about guessing p(guess) and slipping p(slip) during the an-
swer process, cannot be applied anymore. Instead, we apply
a normal Bayesian update rule for the conditioning of skill
beliefs including a transition probability p(St+1

i |sk, Ot, At)
where sk identifies a bin of the skill St

i . As a simplification
we substitute this probability with p(St+1|sk):

p(St+1
i ) := p(St+1

i |Ot, At)

=
∑

sk∈St
i

[p(St+1
i |sk, Ot, At) · p(sk|Ot, At)]

≈
∑

sk∈St
i

[
p(Ot|sk, At) · p(At|sk) · p(sk)

p(Ot, At)
· p(St+1

i |sk)]

3.2 Predictive Decision-Making
The extended BKT model is used to decide which tutor-

ing action the robot should take next. At first, the skill to

Figure 1: Dynamic Bayesian Network for BKT: The
action node At predicts the observation Ot and influ-
ences the belief update of St for the next time step
t+ 1.

address with the next tutoring action is chosen. For this,
the Kullback-Leibler divergence (KLD) between the current
skill belief and the desired skill belief is used, the latter be-
ing a maximally certain belief in a maximally high skill of
the learner:

next skill = argmin
∀St

i∈S
[α(St

i ) ·KLD(p(St
i ), p(Sopt))]

S represents the set of all skills that can be addressed, which
consists of all words to be taught to the user. p(Sopt) is the
desired belief for each skill, which means 99.999% of prob-
ability mass in the last bin (100%). The factor α(St

i ) has
been added for each skill to regulate the skill occurrence fre-
quency. It is decreased each time the skill is addressed, and
it is increased if another skill is being practised. In this way,
the skill-selection algorithm takes care of the maximization
of each skill belief as well as the balancing of all skills.

After the skill has been chosen, the next step is to decide
with which tutoring action this should be done. Here, we
consider abstract tasks as tutoring actions. These tasks will
have to be mapped onto concrete exercises or pedagogical
acts at a later stage in the robot control architecture (see
Section 4). For simplicity, we distinguish between tutoring
actions according to the difficulty (easy, medium or hard)
of the task that addresses the corresponding skill. Finding
the best action al for a given skill St

i is thus a minimization
problem of the following form:

next action = argmin
∀al∈At

[α(al) ·KLD(p(St+1
i ), p(Sopt))]

where

p(St+1
i ) := p(St+1

i |al)
=

∑

sk∈St
i

∑

oj∈Ot

p(St+1
i |oj , sk, al) · p(oj , sk|al)

≈
∑

sk∈St
i

p(sk|al)
∑

oj∈Ot

p(St+1
i |sk) · p(oj |sk, al)

with

p(oj , sk|al) = p(oj |sk, al) · p(sk|al)

Here, p(St+1
i ) could be seen as predicting the effect of ap-

plying the current action al to the skill Si, where we again
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substitute the transition probability p(St+1
i |oj , sk, al) with

p(St+1
i |sk) regarding simplicity. In addition, here again the

skill belief is compared with p(Sopt) which represents the
desired tutor belief state for each skill. The factor α(al)
provides a more detailed selection of the “best” action. This
way, the model will select an easy task if the skill is believed
to be low, a hard task if it is high, and medium in-between.
The goal of this strategy is to create a feeling of flow which
can lead to better learning results [2, 7, 12]. Thus, it strives
not to overburden the learner with too difficult tasks nor to
bore him with too easy tasks, both of which may lead to
frustration and thus hamper the learning [9, 13].

4. ROBOT LANGUAGE TUTORING
The adaptive model as described in the previous section

has been brought to application in a child-robot second lan-
guage (L2) tutoring game on the basis of empirical data from
adult-child language tutoring interactions.

4.1 Empirical Basis
To design a tutoring interaction that matches children’s

needs, we decided to design the interaction on an empirical
basis of language tutoring data. We collected video record-
ings of language tutoring games as they take place in kinder-
gartens. Given that 1:1 interactions of educator and child
can hardly be realized in kindergartens, the games typically
involve one educator and a small group of children. Data of
four language tutoring games have been collected: reading
a picture book together with children in an interactive man-
ner; card game “I spy with my little eye”; card game “I’m
giving you a present”; and a rhyming game. The children
were between four and six years of age. The data collected
comprises round about 681 min of video data. These video
data have been transcribed and annotated with regard to
the following categories:

• Dialogue acts: Utterances are classified due to the
underlying intention based on the DAMSL annotation
scheme [6].

• Children’s mistakes: Types of language errors the
children made, e.g. wrong plural form, missing articles,
wrong syntax, etc.

• Educator’s speech repair: Pedagogical acts used to
correct the errors, e.g. reformulation, corrected repe-
tition, etc.

• Nonverbal behaviour: Nods, smiles, gestures etc.
used by the educators.

On the basis of these annotations, we identified some over-
all patterns to inform the detailed design of the robot’s be-
haviour. These fall basically into two categories, (i) overall
interaction structure and (ii) feedback behaviour by the ed-
ucators.

4.1.1 Overall Interaction Structure
A common pattern in all language tutoring games under

investigation was the following basic course of actions:

1. Opening: Marks the beginning of the interaction and
should mitigate the children’s timidity as well as it
should motivate the child.

2. Game Setup: This step is used to prepare the game
by explaining the task and clarify the necessary terms.

3. Test run: A test run of the game is conducted to test
whether the instructions have been understood and to
practice the game flow.

4. Game: Here, the main interaction game takes place.
Every move is accompanied by the educator’s feedback
and motivations to continue.

5. Closing: Marks the end of the learning interaction.
Additionally, it is used to ensure motivation for future
interactions by acknowledge the participation, joint
singing a goodbye song and an outlook on what’s going
to happen next time.

4.1.2 Educator’s Feedback Behaviour
In addition, we analysed the educators’ behaviour when

providing children with feedback. An important and com-
mon pattern is that language errors are almost never cor-
rected explicitly. Instead, feedback is always provided in a
positive way, falling into one of the following categories with
the percentage of their occurrence given in squared brack-
ets: (i) praising the child for a correct utterance whereby
praise is often combined with a repetition of the correct word
[13%] (ii) implicit correction in case of an error made by
the child: repetition of the word as if correct (e.g. correct
pronunciation, with article, plural form, etc.) [54%], (iii)
correct recasting of a sentence, e.g. after syntax errors
[32%], (iv) moving on to next task, e.g. when the child’s
message is unclear due to incomprehensible pronunciation
[1%]. All kinds of educators’ feedback behaviour is typically
accompanied by looking at the child, smiling and nodding.

4.2 Game Setup
We have chosen the game “I spy with my little eye...” as a

paradigm for our child-robot language tutoring game. The
robot – in the role of a tutor, assisting the child in learning
novel L2 vocabularies – is acting as ‘the spy’. The child-
robot setting is further enriched with a tablet PC on which
objects are displayed (see Figure 2). In addition, the tablet’s
touch-screen displays three buttons to enable further user
input in terms of ‘yes’ and ‘no’ answers as well as the option
to let the robot repeat its previous statement.

A basic move of the game is structured as follows: It starts
with a set of objects being displayed on the tablet screen and
the robot saying “I spy with my little eye, something that
is ...”, followed by a foreign language word that refers to a
property of one of the items on the screen. The child’s task
is now to respond by selecting the object referred to via
touch input on the tablet. The robot’s feedback behaviour
in response to a correct or false answer is realized on the
basis of our empirical data (see Section 4.1.2). That is, the
robot responds to correct answers by praising the learner
as well as repeating the L2 word and the corresponding L1
translation. In case of a false guess by the child, the robot
explains the correct meaning of the to-be-learned word one
more time. In addition, the wrongly chosen object as well as
the actually correct object are both displayed on the tablet
screen and the child is asked to select the correct object.
The overall game structure is framed by the other elements
making up typical language tutoring games in adult-child
interaction (see Section 4.1.1).
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Figure 2: Experimental setup (left) with a participant sitting in front of a tablet displaying the graphical
user interface (right). The robot Nao stands next to the tablet slightly rotated towards the user.

4.3 Technical Realization
We employed the Nao robot2 for our language tutoring

game. It is standing in a bit more than 90 degrees rotated,
to the right of the participant. In addition a Microsoft Sur-
face Pro 43 tablet PC is used to catch the user input and
to display the graphical user interface realized via a HTML
website. For the implementation of the interaction and di-
alogue structure, the state-chart based dialogue-manager
IrisTK has been used [28]. NAOqi4 has been applied as
middleware between the robot, the graphical user interface,
the dialogue manager, and our developed adaptive tutoring
model. NAOqi is shipped with each Nao robot and allows
to communicate via a simple event system between various
programming-languages (Python, Java, C++, JScript).

5. EVALUATION STUDY
To assess the effects of our adaptive model on L2 word

learning, we set up an evaluation study based on the lan-
guage tutoring game described in the previous section. The
major objective behind this study was to evaluate the effects
of the adaptive model on learners’ performance. We used the
Nao robot to deliver all task information and direct feedback
to the learner. This enables us to test the model within the
desired final setting, including the effects of a robot’s pres-
ence in the tutoring interaction. Given that children show a
high degree of inter-individual variation and might further
need child-specific adaptations of, for instance, synthesized
speech to enable them to understand what the robot says,
we decided to conduct this first study with adult learners.

We employed a between-subjects design with a manipu-
lation of training type: Participants learned L2 vocabulary
items either with the fully adaptive model, or in a random
control condition. In the adaptive condition, the skill to be
taught and the action to address the skill were chosen by
the model as described in Section 3. In our language tu-
toring game, skill relates to the foreign language words and
action refers to the specific task used in the game (target
word, objects displayed). The difficulty of the actions/tasks
in this study were implemented by using less or more dis-
tractor objects that were shown together with the correct

2https://www.ald.softbankrobotics.com/en/cool-
robots/nao
3https://www.microsoft.com/surface/en-
gb/devices/surface-pro-4
4http://doc.aldebaran.com/2-1/naoqi/

object on the screen. For instance, an easy task consisted
of two distractor objects, whereas a hard task had four dis-
tractors. Distractors were chosen with respect to the skill
beliefs of the user, with the set of objects mainly consisting
of items for which the L2 words were still/mostly unknown
by the learner.

As shown by Craig et al. [7], better learning performance
is to be expected when learners have to expend the right
amount of cognitive effort (i.e. not too hard or too easy
tasks). Accordingly, while learning with our model in the
adaptive condition, no hard tasks are shown until the system
believes the user to have basic knowledge on all skills. Then,
the system will increase task difficulty (as determined by
the adaptive tutoring model) by adding distractor objects.
Note, however, that at a certain point the user will know too
many skills/words so that finding a distractor set (i.e. task
difficulty) that cannot be sorted out by exclusion becomes
impossible. In the control condition, all skills are taught in
a random order and always with ‘medium’ task difficulty.

Participants’ performance was assessed with two measures:
(1) we tracked learners’ response behaviour over the course
of the training to investigate the progress of learning, (2) we
conducted a post-test on the taught vocabulary in the form
of both L1-to-L2 translations and L2-to-L1 translations to
assess participants’ state of knowledge subsequent to the in-
tervention.

5.1 Materials
The training materials for the study comprised German–

‘Vimmi’ word pairs. Vimmi is an artificial language created
for experimental purposes [23] that aims to avoid associa-
tions with other known words or languages. The Vimmi
items are created according to Italian phonotactic rules.
Ten items have been chosen: four colour terms, four shape-
encoding terms and two terms describing size (see Table 1).

5.2 Procedure
Upon entering the lab, participants were randomly as-

signed to one of the two experimental conditions. They
were informed that they take part in an experiment on for-
eign language learning and were asked to sign an informed
consent form. They also filled out a questionnaire that cov-
ered personal information like age and nationality as well as
a personal estimation of language learning skills in general
and memorization ability for L2 vocabulary.
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N German Vimmi English translation

1 blau bati blue

2 grün uteli green

3 gelb dirube yellow

4 rot fesuti red

5 rund beropuga round

6 dreieckig pewo triangular

7 quadratisch tanedila square

8 rechteckig paltra rectangular

9 klein kiale small

10 groß ilado big

Table 1: The 10 words from Vimmi to be learned in
the evaluation study with its corresponding transla-
tion in German as well as English for comprehension
purposes.

Next, a list of the to-be-learned Vimmi items were pre-
sented to the participants for 30 seconds. This was to en-
able participants to practice the items right from the first
game interaction on. Then, the learning interaction with
the Nao robot began. After introducing itself, the robot ex-
plained the “I spy with my little eye”-game and started a
test-run with the participants. Once this test run was fin-
ished and the participants agreed that (s)he understood the
game, the main interaction consisting of a total of 30 trials
(game moves) began. Each trial addressed one vocabulary
item as described in Section 4.2. That is, the robot asked for
one of the objects displayed on the tablet screen, whereby
the question was in L1 (German) for the most part, except
for the referring, to-be-learned word in L2 (Vimmi). After
30 trials, the game was finished, the Nao robot thanked the
participants and said goodbye.

Subsequent to the interaction with the robot, participants’
learning performance was assessed with a post-test. In an
interview with the experimenter, they had to translate the
ten to-be-learned vocabulary items from German to Vimmi
and likewise from Vimmi to German (both in randomized
order). The whole interaction and the vocabulary-post-test
at the end of the study were recorded with an external cam-
era. Also the system decisions taken during the interaction
and the probability distributions for each updated skill belief
were logged.

5.3 Participants
A total of 40 participants (20 per condition) with an av-

erage age of 24.13 (SD = 3.82) took part in this study (16
males and 24 females). All participants had very good com-
mand of the German language and normal or corrected sight.
All of them were paid or received credits for their participa-
tion.

5.4 Results

5.4.1 Learning Progress During Training
In order to assess the learners’ progress during training,

we compared the number of correct responses addressing
the initial quarter of the tutoring game (first seven items)
against the final quarter (last seven items). When an item
occurred repeatedly within the initial quarter, the first oc-
currence has been taken into account. When an item oc-

Adaptive (A) Control (C) A, C

M SD M SD M SD

F7 3.75 1.37 4.00 1.17 3.88 1.27

L7 6.90 0.31 5.15 1.69 6.03 1.49

F7, L7 5.33 0.69 4.58 1.12

Table 2: Means (M) and standard deviations (SD)
of correct answers for the initial quarter of the train-
ing interaction (first seven items – F7) and the final
quarter (last seven items – L7) in each condition, as
well as the inter-model (A, C) and intra-model (F7,
L7) means and standard deviations.
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Figure 3: Mean numbers of correct answers at the
beginning (first 7) and end (last 7) of the interaction
in the different conditions.

curred repeatedly within the final quarter, the last occur-
rence has been considered.

A mixed-design ANOVA with training phase (initial, fi-
nal) as a within-subjects factor and training type (adaptive-
model-based, control) as between-subjects factor has been
conducted. Results are summarized in Table 2 and Figure
3. Not surprisingly, there was a main effect of training phase
at a significant level (F (1, 38) = 66.85, p < .001, η2 = .64):
Learners’ performance was significantly better in the final
phase as compared to the initial phase. In the first quarter of
training, participants achieved a mean of 3.88 (SD = 1.27)
correct responses, whereas in the final quarter, a mean of
6.03 (SD = 1.49) items was selected correctly. More in-
terestingly, there was also a main effect of training type
(F (1, 38) = 6.52, p = .02, η2 = .15) such that participants
who learned in the adaptive condition had a higher score of
correct answers (M = 5.33, SD = .69) as compared to learn-
ers in the control condition with an average of M = 4.58
(SD = 1.12) correct answers. Finally, the interaction be-
tween training phase and training type was also significant
(F (1, 38) = 14.46, p = .001, η2 = .28) indicating that the
benefit of adaptive-model-based training develops over time
(see Figure 3). While participants’ response behaviour in
the first quarter of training was similar across conditions, a
benefit of training with the adaptive model became evident
in the final quarter. At this stage of training, participants in
the adaptive model condition achieved a mean of M = 6.9
(SD = .31) correct responses, whereas participants in the
control condition achieved a mean of M = 5.15 (SD = 1.69)
correct responses.
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Adaptive (A) Control (C)

M SD M SD

German-to-Vimmi 3.95 2.56 3.35 1.98

Vimmi-to-German 7.05 2.56 6.85 2.48

Table 3: Results of both post-tests (German-to-
Vimmi and Vimmi-to-German): Means (M) and
standard deviation (SD) of correct answers grouped
by the experimental conditions.
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Figure 4: Participant-wise amount of correct an-
swers grouped by the different conditions for the
German-to-Vimmi post-test.

5.4.2 Post-Test
Participants’ learning performance subsequent to the in-

tervention has been measured with two translation tests
(L2-to-L1 and L1-to-L2). Results are summarized in Ta-
ble 3. Paired-samples t-tests were conducted to compare
the number of correctly recalled words after training with
the adaptive model as compared to training in the control
condition. For the German-to-Vimmi translation, there was
no significant main effect (T (38) = .25, p = .80). Partici-
pants who trained with the adaptive-model recalled a mean
of 3.95 (SD = 2.56) out of ten words correctly, while partici-
pants in the control condition recalled a mean of 3.35 (SD =
1.98) words. Likewise, there was no significant main effect
(T (38) = .83, p = .41) for the Vimmi-to-German transla-
tion task. Participants’ performance after learning with the
adaptive model amounted to a mean of 7.05 (SD = 2.56)
correct items, participants’ performance in the control con-
dition to a mean of 6.85 (SD = 2.48) correct items.

Although no main effect of training type emerged in the
post-test, some details might nevertheless be worth men-
tioning. In the German-to-Vimmi post-test, a maximum
of ten correct responses was achieved by participants in
the adaptive-model condition, whereas the maximum on the
control condition were six correct answers. Moreover, there
were two participants in the control condition who did not
manage to perform any German-to-Vimmi translation cor-
rectly. In the adaptive-model condition, all participants
achieved at least one correct response (see Figure 4).

6. CONCLUSION
In this paper we have presented a novel approach to per-

sonalize language tutoring in human-robot interaction. This
adaptive tutoring is enabled through a model of how tutors

mentalize about learners – by keeping track of their knowl-
edge state and by selecting the next tutoring actions based
on their likely effects on the learner. This is realized via an
extended model that combines Bayesian Knowledge Tracing
(of the learned) with tutoring actions (of the tutor) in one
causal probabilistic model. This allows, for selecting skills
and actions based on notions of optimality – here the desired
learner’s knowledge state as well as optimal task difficulty –
to achieve this for a given skill. This model has been imple-
mented into a robot language tutoring game and tested in a
first evaluation study.

The analysis of participants’ response behaviour over the
course of training has clearly shown that participants learned
the L2 words during the human-robot interaction. Impor-
tantly, they learned more successfully with our adaptive
model as compared to a randomized training. That is, the
repeated trials addressing still unknown items as chosen by
the adaptive model (until the belief state about these words
equalled that of known items) outperformed the tutoring of
the same material (same number of trials and items) but in
randomized order. In the post-test, however, there was no
significant difference across experimental conditions, despite
a trend towards better performance in the adaptive model
conditions over the controls.

Different explanations may account for this inconsistent
finding. One potential explanation could be that the way
how responses were prompted was not identical in train-
ing sessions and post-test. In the training sessions, par-
ticipants saw pictures reflecting the meaning of the to-be-
learned words whereas in the post-test they just received
a linguistic cue in form of a word they had to translate.
It might be that repeated trials as they were particularly
supported for difficult-to-remember items by the adaptive
model, led to stronger associations between linguistic and
imagistic materials. This might have caused a stronger de-
cline of correct responses for participants who trained with
the adaptive model as opposed to those in the control con-
dition. An alternative explanation could be that test results
measured immediately after the training session are subject
to strong inter-individual differences among learners. This is
the reason why studies on vocabulary learning usually range
over repeated sessions spread over several days (cf. 1). A
typical pattern is that significant results emerge after two
or three sessions/days and/or in the long-term (measured
several weeks after training took place). So it might well be
that further training sessions or delayed tests might result
in a post-test performance that matches the picture of the
during-session performance.

One might argue that the performance of our adaptive
model is comparable to the vocabulary learning technique of
spaced repetition as implemented, for instance, in the Leitner
system [21]. In this system flashcards are sorted into groups
according to how well the learner knows each one. Learners
try to recall items written on a flashcard. If they succeed,
the card is sent to the next group. If they fail, the card is
sent back to the first group. Each succeeding group has a
longer period of time before the learner is required to revisit
the cards. This way all items, that are hard to remember for
the learner will be repeated more often. In contrast to such
spaced repetition systems, our model is more flexible as it
can vary the difficulty of the tasks by providing more or less
distractor items. In addition, we plan a more comprehensive
action space of the model to account for motivating actions
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where necessary or adaptations in the robot’s verbal or non-
verbal behaviour.

Overall, results from the evaluation study are, at least, in
parts very promising: learners’ performance during training
was significantly improved by personalized robot tutoring
based on the adaptive model. Nevertheless, the fact that
this positive effect did not hold in the post-test, inter alia,
marks a starting point for further refinements of the model:
Training stimuli should be designed such that they match
the way language learners need to apply them best possible.
That is, when the aim is to enable people to translate words
from one language to another, training stimuli should pro-
vide cues for this process of mapping linguistic materials on
each other. Moreover, a further study with more learning
sessions (e.g. over several days as common in many vocab-
ulary studies) should be conducted. Regarding the model
itself, we plan to incorporate skill-interdependencies as well
as to take the affective user state into account, too. Both
kind of extensions have been shown to improve learning [16,
29]. Additionally, the model can (and is meant to) provide
a basis for exploiting the full potential of an embodied tu-
toring agent. Regarding this, we plan to advance the model
such that the robot’s verbal and non-verbal communicative
behaviour is adapted to the learner’s state of knowledge and
progress. Specifically, we aim to enable dynamic adaption
of (i) embodied behaviour such as iconic gesture use to be
known to support vocabulary acquisition as a function of in-
dividual differences across children (cf. [26]); (ii) the robot’s
synthetic voice to enhance comprehensibility and prosodic
focusing of content when needed; and (iii) the robot’s socio-
emotional behaviour depending on the learners’ current level
of motivation or engagement. Further, as the long-term goal
of our work is to enable robot-supported language learning
for pre-school children, another important goal is to make
children-specific adaptations to the language game and test
it in child-robot interaction studies.
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ABSTRACT
While robots have been popular as a tool for STEM teaching,
the use of robots in other learning scenarios is novel. The
field of HRI has started to report on how to make effective
robots usable in educational contexts. However, many chal-
lenges remain. For instance, which interaction strategies aid
learning, and which hamper learning? How can we deal with
the current technical limitations of robots? Answering these
and other questions requires a multidisciplinary effort, inclu-
ding contributions from pedagogy, developmental psychology,
(computational) linguistics, artificial intelligence and HRI,
among others. This abstract provides a brief overview of the
current state-of-the-art in social robots designed for learning
and describes the aims of the Robots for Learning (R4L)
workshop in bringing together a multidisciplinary audience
for furthering the development of market-ready educational
robots.

Keywords
Human-Robot Interaction; Robots in Education; Tutor Ro-
bots; Child-Robot Interaction

1. INTRODUCTION & BACKGROUND
An increasing amount of Human-Robot Interaction (HRI)

research is focused on the development of applications of
service robots in everyday life. In education, while robots
have been popular as a focus for STEM teaching (cf. Lego
Mindstorms or Thymio [7]), the use of robots in other learning
scenarios is novel.

Mubin et al. [5] distinguish three roles for robots in edu-
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cation: 1) tutors - providing help to students, 2) peers -
stimulating learning, and 3) tools - physically enhancing
a concept to learn. In the 1970’s and 80’s robots tended
to be introduced in schools as a tool for teachers to teach
robotics or other STEM subjects. However, this specificity of
robot usage penalized their adoption in educational contexts
[2]. Nowadays, with robots being cheaper and more easily
deployable, application in education becomes possible for
other types of learning.

The field of HRI has started reporting on how to make
effective robots and how to measure their efficacy [3, 8]. Ro-
bots have the potential to enhance learning via kinesthetic
interaction, can improve the learner’s self-esteem, and can
provide empathic feedback [1, 4, 9]. Finally, robots have been
shown to engage the learner, to motivate her in the learning
task or to stimulate collaboration in a group [6]. However,
many challenges remain and this workshop aims to bring
together a multidisciplinary group of researchers to discuss
these challenges and share expertise. Such challenges and
questions that are yet to be comprehensively addressed by the
research community include: the effective involvement of edu-
cation practitioners in the design of activities, the outcome of
long-term learning with robots, appropriate educational stra-
tegies for use in HRI, and the influence of HRI on affective
aspects of learning, such as motivation and self-efficacy.

The second iteration of this workshop builds on the previ-
ous version hosted at the IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN),
2016. The previous workshop utilised keynote speakers, par-
ticipant speakers, and small group discussions to raise issues
and challenges facing the community researching robots for
use in delivering educational content. The second version of
this workshop seeks to engage with more researchers in the
field, and draw a more multidisciplinary audience to further
the development of market-ready educational robots.

2. OUTLINE OF THE WORKSHOP
The aim of this workshop is to engage scholars who wish

to gain expertise in education and in robotics. Participants
will benefit from hearing from the forefront of field and
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from discussions on how to move from fundamental research
towards the development of market-ready educational robots.

The workshop aims will be achieved through presentati-
ons and discussions. Prospective participants are invited
to submit 4-6 page papers describing work in progress, or
containing preliminary results to discuss with the community.
In order to stimulate interactions, the workshop will include
short position paper presentations and poster sessions. The
afternoon will be dedicated to discussion, including both a
panel session and semi-structured group discussions.

3. ORGANIZERS
Wafa Johal, PhD. is a postdoctoral researcher within the

CoWriter and Cellulo projects dealing with robots for educa-
tion in the CHILI and LSRO Labs at EPFL. She obtained
her PhD in 2015 from the University of Grenoble (France)
focusing on body signals in Child-Robot Interaction.

Paul Vogt is Associate Professor in Language learning and
HRI. He is a trained cognitive scientist and holds a PhD in
Artificial Intelligence. His research focuses on 1st and 2nd
language acquisition using methods from ethnographic rese-
arch, psycholinguistics, computational modelling of language
acquisition and HRI. Paul is one of the principal investigators
in the L2TOR project.

James Kennedy is currently completing his PhD in Human-
Robot Interaction at Plymouth University (U.K.). His rese-
arch interests centre around social companion robots, particu-
larly in educational interactions with children. He has been
involved with the ALIZ-E, DREAM and L2TOR European
projects.

Mirjam de Haas finished her Master’s degree in Artificial
Intelligence and is a PhD student in the L2TOR project.
Her research focuses on the interaction between robots and
children and how to design a child-friendly robot.

Ana Maria Paiva’s main scientific interests lie in the area
of Autonomous Agents, Embodied Conversational Agents
and Robots, and Multiagent Simulation Systems. She has
been researching in the area of artificial intelligence for the
past twenty years. She is the principal investigator of the
eCUTE project aiming to explore technologically-enhanced
learning approaches for inter-cultural understanding.

Ginevra Castellano is an associate senior lecturer in intel-
ligent interactive systems at Uppsala University, where she
leads the Social Robotics Lab. She was the coordinator of
the EMOTE project, which developed educational robots to
support teachers in a classroom environment.

Sandra Okita is an Associate Professor of Technology and
Education at Teachers College, Columbia University. Her
current research interest is focused on the learning partners-
hip between individuals and technology, and how technology
intersects with learning and instructional processes.
Fumihide Tanaka, PhD, has been actively working in the

area of educational robots and child-robot interaction, and
is now recognized as one of the pioneers in this research area.
He moved to academia in 2008, the University of Tokyo
(2014), and is currently at the University of Tsukuba, Japan.

Tony Belpaeme’s research focuses on cognitive robotics
and social Human-Robot Interaction, in which natural and
artificial cognition is considered to be closely intertwined
with social interaction. He coordinates the L2TOR project
on learning a 2nd language using robot tutors, and collabo-
rates on several international research projects on HRI and
cognitive robotics.

Pierre Dillenbourg is a former elementary school teacher.
He graduated in educational science (University of Mons, Bel-
gium). His research on learning technologies started in 1984.
He obtained a PhD in computer science from the University
of Lancaster (UK), in artificial intelligence applications for
educational software. He is currently full professor in lear-
ning technologies, head of the CHILI Lab involved in both
CoWriter and Cellulo projects.
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In this digital age social robots will increasingly be used for educational purposes,
such as second language tutoring. In this perspective article, we propose a number
of design features to develop a child-friendly social robot that can effectively support
children in second language learning, and we discuss some technical challenges for
developing these. The features we propose include choices to develop the robot such
that it can act as a peer to motivate the child during second language learning and
build trust at the same time, while still being more knowledgeable than the child and
scaffolding that knowledge in adult-like manner. We also believe that the first impressions
children have about robots are crucial for them to build trust and common ground,
which would support child-robot interactions in the long term. We therefore propose
a strategy to introduce the robot in a safe way to toddlers. Other features relate to
the ability to adapt to individual children’s language proficiency, respond contingently,
both temporally and semantically, establish joint attention, use meaningful gestures,
provide effective feedback and monitor children’s learning progress. Technical challenges
we observe include automatic speech recognition (ASR) for children, reliable object
recognition to facilitate semantic contingency and establishing joint attention, and
developing human-like gestures with a robot that does not have the same morphology
humans have. We briefly discuss an experiment in which we investigate how children
respond to different forms of feedback the robot can give.

Keywords: social robots, second language tutoring, education, child-robot interaction, robot assisted language
learning

SOCIAL ROBOTS FOR SECOND LANGUAGE TUTORING

Given the globalization of our society, it is becoming increasingly important for people to speak
multiple languages. For instance, the ability to speak foreign languages fosters people’s mobility
and increases their chances for employment. Moreover, immigrants to a country need to learn the
official host language. Since young children are most flexible at learning languages, starting second
language (L2) learning in preschool would provide them a good opportunity to acquire the second
language more fluently at a later age (Hoff, 2013).

One trend in the digital age of the 21st century is that technologies are being developed for
educational purposes, including technologies to support L2 tutoring. There exist many forms of
digital technologies for PCs, laptops or tablet computers that support second language learning,
although there is little evidence about their efficacy (Golonka et al., 2014; Hsin et al., 2014).
While children can benefit from playing with such technologies, these systems lack the situated and
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embodied interactions that young children naturally engage
in and learn from (Glenberg, 2010; Leyzberg et al., 2012).
Social robots represent an emerging technology that provides
situatedness and embodiment, and thus have potential
benefits for educational purposes. In essence, social robots
are autonomous physical agents, often with human-like feature,
that can interact socially with humans in a semi-natural way for
prolonged periods of time (Dautenhahn, 2007). The use of social
robots, in comparison to more traditional digital technologies,
allows for the development of tutoring systems more akin
to human tutors, especially with respect to the situated and
embodied social interactions between child and robot. Thus, this
offers the opportunity to design robots such that they interact in
a way that optimizes the child’s language learning.

Recently, an increasing interest has emerged to develop social
robots to support children with learning a second language
(Kanda et al., 2004; Belpaeme et al., 2015; Kennedy et al.,
2016). While a social robot cannot provide tutoring to the level
humans can, recent studies suggest that using social robots can
result in an increased learning gain compared to digital learning
environments for tablets or computers (Han et al., 2008; Leyzberg
et al., 2012). It is, however, unclear why this is the case. Perhaps
the physical presence of the robot draws the attention of children
for longer periods of time, but the embodiment and situatedness
of the learning environment perhaps also helps the children to
ground the language more strongly than interactions with virtual
objects do.

While there is a fair body of research on robot tutors,
a comprehensive description of the design features for a
second language robot tutor based on what is known about
children’s language acquisition is lacking. What are the design
features of child-robot interactions that would support second
language learning? And, to what extent can these interactions
be implemented in today’s social robot technologies? In this
perspective article, we try to answer these questions based on
theoretical accounts from the literature on children’s language
acquisition in combination with our own experiences in
designing a tutor robot.

DESIGNING CHILD-ROBOT
INTERACTIONS

In our project, we aim to design a digital learning environment
in which preschool children interact one-on-one with a social
robot that supports either their learning of English as a foreign
language, or the school language for those children who have a
different native language (Belpaeme et al., 2015). In particular,
the project aims to develop a series of tutoring sessions revolving
around three increasingly complex domains (numbers, spatial
relations and mental vocabulary). In each session, the child will
engage with the robot (a Softbank Robotics NAO robot) in a
game-like scenario focusing on learning a small number of target
words. The contextual setting is generally displayed on a tablet
computer that occasionally also provides some verbal support,
however, the robot acts as the interactive tutor. Below we discuss
the design features and considerations that we believe are crucial
to design a successful tutoring system.

Peer-Like Tutoring
One of the first questions that comes up when designing a
robot tutor is whether the robot should take the role of a
teacher or a peer. Research on children’s language acquisition
has demonstrated that children learn more effectively from
an adult who can use well-defined pedagogical methods for
teaching children using clear directions, explanations and
positive feedback methods (Matthews et al., 2007). However,
designing and framing the robot as an adult tutor has the
disadvantage that children will form expectations about the
robot’s behavior and proficiency that cannot be met with
current technology (Kennedy et al., 2015). Due to technological
limitations of the robot and underlying software, communication
breakdowns are more likely to occur than with a human. For a
peer robot introduced as a fellow language learner, breakdowns
in communication are more acceptable. Moreover, interacting
with robots acting as peers is conceived as more fun (Kanda et al.,
2004), allows for learning-by-teaching (Tanaka and Matsuzoe,
2012) and has a proven to be efficient in teaching children
how to write (Hood et al., 2015). Furthermore, there is some
evidence that children’s learning can benefit from interacting
with peers (Mashburn et al., 2009). Given these considerations,
we believe it is desirable to frame or introduce the robot as a
peer and friend, yet design its interactions insofar possible based
on pedagogically well-established strategies to scaffold language
learning.

First Impressions
To implement effective tutoring, the robot needs to interact with
children in multiple sessions, so they have to be motivated to
engage in long-term interactions with the robot. Establishing
common ground between child and robot can contribute to this
(Kanda et al., 2004), but first impressions to establish trust and
rapport are also crucial (Hancock et al., 2011).

Despite the wealth of studies regarding the introduction of
entertainment robots as toys to children (e.g., Lund, 2003),
surprisingly little research has been conducted on designing
protocols on how to introduce a robot tutor to a group of
preschool children. Fridin (2014) presents one exception, and
found that introducing a robot tutor to children in group sessions
improved subsequent interactions compared to introducing the
robot to children in individual sessions. Another study by
Westlund et al. (2016) found that the way a robot is framed,
either as a machine or a social entity, affected the way children
later engaged with the robot. They concluded that introducing
the robot as a machine could create a more distant relation
between child and robot, thus reducing acceptance. We therefore
decided to frame the robot in our project as a social playmate
for the children and introduced the robot in a group session.
However, the NAO robot is slightly taller andmore rigid than the
fluffy huggable Tega robot, which Westlund et al. (2016) used,
and we observed that some 3-year-old children were somewhat
intimidated by the NAO robot on their first encounter. Such a
first impression of the robot could reduce the trust that the child
had for the robot, which could negatively affect their willingness
to interact with the robot in the short-term, but also in the
long-term. To develop a successful first encounter and to build
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trust between the child and robot, we designed the following
strategy for introducing the robot to 3-year-old children at their
preschool.

Pilot studies revealed that some children got anxious when
the robot was introduced and then suddenly started to move.
To familiarize children prior to their first encounter with the
robot, it is therefore advisable to prepare them well. For our
study, we sent coloring pages of the robot to the preschools
during recruitment and asked the pedagogical assistants to talk
a little bit about the robots to the children. About 1 week
before the experimental trials, the experimenters introduced
the robot in class during their daily ‘‘circle time’’, as this
provided a safe and familiar environment with the whole
group in which the pedagogical assistants usually introduce new
topics or new activities. One experimenter first introduced the
robot by telling a story about Robin, the name of our robot,
using a makeshift picture book. In this story we explained the
similarities and dissimilarities between the robot and children
to construct the type of common ground considered to have
a positive effect on the learning outcome (Kanda et al., 2004).
For example, we told that Robin enjoys dancing and wants to
meet new friends, and even though he does not have a mouth
and because of that cannot smile, he can smile using his eye
LEDs.

After this story, another experimenter entered the room with
the robot while it was actively looking at faces to provide an
animate feeling. The robot introduced itself with a small story
about itself and by performing a dance in which the children
were encouraged to participate. The end of the circle time
consisted of getting a blanket for the robot so it could ‘‘sleep’’.
This introduction was repeated later on the days we conducted
the experiment in one-on-one sessions. While by then most
children were comfortable interacting with the robot, some were
still timid and anxious. To encourage these children to feel
comfortable, one of the experiment leaders would sit next to the
child during the warm-up phase of the experiment and motivate
the child to respond to the robot when necessary until the
child was sufficiently comfortable to interact with the robot by
herself/himself. We found that the younger 3-year olds required
more support from the experimenters than the older 3-year
olds (Baxter et al., 2017). Although we are still analyzing the
experiments, preliminary findings suggest that our introduction
helped children to build trust and common ground with the
robot effectively.

Temporal Contingency
Research has shown that it is crucial for children’s language
development that their communication bids are responded
to in a temporally contingent manner (Bornstein et al., 2008;
McGillion et al., 2013). This, however, faces a technological
challenge. While adults tend to take over turns very rapidly,
robots require relatively long processing time to produce
a response. Nevertheless, in our first experiment (de Haas
et al., 2016), we observed that children were at first surprised
by the delayed responses, but quickly adapted to the robot
and waited patiently for a response. Perhaps this is because
children also require longer than adults to take turns

(Garvey and Berninger, 1981) and having framed the robot
as a peer children made the delays more plausible or expected.
Nevertheless, while a lag in temporal contingency may not harm
the interaction with children, it may harm learning. One way
to remedy this may be to have the robot start responding by
providing a backchannel signal, such as ‘‘uhm’’ to indicate the
robot is (still) taking his turn, but requires more time to process
(Clark, 1996).

Semantic Contingency
Robots should not only respond to children in a timely fashion,
but also in a semantically contingent fashion (i.e., consistent
with the child’s focus of attention), as this too has a positive
effect on children’s language acquisition (Bornstein et al., 2008;
McGillion et al., 2013). For instance, research has shown that
by responding in a semantically contingent manner, either
verbally or by following children’s gaze, (joint) attention is
sustained for a longer duration (Yu and Smith, 2016), allowing
children to learn more about a situation. To achieve semantically
contingent responses, the robot should be able to understand
the child’s communication bids, construct joint attention with
the child, or at least identify what the child is attending to.
Monitoring children’s behavior and establishing joint attention
are therefore considered crucial for designing a successful robot
tutor.

Monitoring Children’s Behavior
To understand children’s communication bids, as well as to
test their pronunciation of the L2, it is important that the
robot be equipped with well-functioning automatic speech
recognition (ASR). However, the performance of state-of-the-art
ASR for children is still suboptimal, especially for preschool-aged
children (Fringi et al., 2015; Kennedy et al., 2017). Reasons for
this include that children’s pronunciation is often flawed and
that their speech has a different pitch than adults. Moreover,
relatively little research has been carried out in this domain and
not much data exist to train ASR on. While it can be expected
that the performance of ASR for children will improve in the
not too distant future (Liao et al., 2015), until then alternative
strategies need to be developed that do not (exclusively) rely
on ASR.

In our project, we explore various strategies to achieve this,
both based on monitoring non-verbal behaviors of the children
and focusing on comprehending rather than producing L2. The
first strategy relies on providing children tasks they have to
perform in the learning environment, such as placing ‘‘a toy cow
behind a tree’’ when teaching spatial language. This, however,
requires the visual object recognition on the robot to work well,
which is only the case when the scene contains a limited set
of distinctively recognizable objects, such as distinctly colored
objects (Nguyen et al., 2015). A potential solution explored in
our project is to use objects with build-in RFID sensors that
can be tracked automatically. The second solution we explore
is to use a touch screen tablet that displays scenes the child
can manipulate, which not only has the advantage of avoiding
the problem of object recognition, but also allows us to control
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the robot’s responses and vary the scenes in real time. A
downside, however, is that it takes away the 3-dimensional
physical aspect of embodied cognition that would help the
children to better entrench what they learn (Glenberg, 2010).
Currently, experiments are underway to investigate the effect
of using real vs. virtual objects. These solutions not only aid in
understanding the child’s communication bids, it also helps in
identifying their attention and can thus contribute to establishing
joint attention.

Joint Attention and Gestures
Joint attention, where interlocutors attend on the same referent,
is a form of social interaction that has been shown to support
children’s language learning (Tomasello and Farrar, 1986). One
way to establish joint attention with a child is to guide their
attention to a referent using gestures, such as pointing or iconic
gestures. The ability to produce gestures in the real world is
potentially one of the main advantages of using physical robots
as opposed to virtual agents, who may have a harder time
to establish joint attention. However, many robots’ physical
morphologies do not correspond one-to-one to the human body.
Hence, many human gestures cannot be translated directly to
robot gestures. For instance, the NAO robot that we use in
our research has a hand with three fingers that cannot be
controlled independently, so index finger pointing cannot be

achieved (see Figure 1). Will children still recognize NAO’s arm
extension as a pointing gesture? And if so, will they be able to
identify the object the robot refers to? We are currently running
an experiment to investigate how NAO’s pointing gestures are
perceived, and preliminary findings show that participants have
difficulty identifying the referred object on a small tablet screen.
Similar issues arise when developing other gestures. One of
the other non-verbal behaviors we are using is the coloring
of NAO’s eye LEDSs to indicate the robot’s happiness as a
form of positive feedback, since the robot cannot smile with its
mouth.

Feedback
Feedback, too, is an interactional feature known to help language
learning (Matthews et al., 2007; Ateş -Şen and Küntay, 2015).
The question is how should the robot provide feedback, such
that it is both pleasant and effective for learning? While adults
provide positive feedback explicitly, they usually provide negative
feedback implicitly by reformulating children’s errors in the
correct form. In child-child interactions, however, Long (2006)
found that there was a clear advantage in learning from explicit
negative feedback (e.g., by saying ‘‘no, that’s wrong, you need
to say ‘he ran’’’) when compared to reformulating feedback
(the learner says ‘‘he runned’’ and the teacher reacts with ‘‘he
ran’’).

FIGURE 1 | NAO pointing to a block with three fingers. (Note that written, informed consent was obtained from the parents of the child for the publication of this
image).
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To investigate how children experience feedback from a peer
robot, we carried out an experiment among 85 3-year-old Dutch-
speaking children at preschools in Netherlands (de Haas et al.,
2016, 2017). In this experiment, the children interacted with a
NAO robot during which they received a short lesson on how
to count from 1 to 4 in English. After a short training phase,
in which the children were presented with the four counting
words twice in relation to body parts and wooden blocks, they
were given instructions by the robot to pick up a given number
of blocks. While the instructions were given in their native
language, the numbers were uttered in English. In response to the
child’s ability to achieve the task, the robot provided feedback.
The experiment followed a between-subjects design with three
conditions: adult-like feedback (explicit positive and implicit
negative), peer-like feedback (no positive and explicit negative)
and no feedback. We did not find significant differences in
learning gain between the conditions, probably because the target
words were insufficiently often repeated. However, we explored
the way in which the children engaged with the robot after they
received feedback and we found that children looked less often
at the experimenter in the feedback conditions than in the no
feedback condition. Further analyses are carried out to evaluate
how the children responded to the various forms of feedback
to find out what type of feedback would be most effective for
achieving both acceptable and effective tutoring interactions.

Zone of Proximity and Adaptivity
Finally, from a pedagogical point of view it is desirable that the
interactions between child and robot be sufficiently challenging
and varied so that the child has a target to learn from, but at the
same time interactions should not be too difficult, because that
may frustrate the child causing it to lose interest in the robot
(Charisi et al., 2016). In other words, the robot should remain
in Vygotsky’s Zone of Proximity that supports an effective
learning environment (Vygotsky, 1978). In order to achieve
this, the robot should be able to keep track of the children’s
advancements in language learning and perhaps their emotional
states during the tutoring sessions, and adapt to these. While
the former can be monitored as discussed previously, it may be
possible to detect emotional states known to influence learning
(e.g., concentration, confusion, frustration and boredom) using
methods from affective computing (D’Mello and Graesser, 2012).
Using this type of information, it is possible to adapt the
tutoring sessions by either reducing or increasing the number of
repetitions, and/or change the subject (Schodde et al., 2017).

CONCLUSION

This perspective article presented some design features that we
consider crucial for developing a social robot as an effective
second language tutor. We believe the robot is most effective
when it is framed as a peer, i.e., as a fellow language learner
and playmate, but that is designed to use adult-like interaction
strategies to optimize learning efficacy. In order to establish
common ground and trust to facilitate long-term interactions,
we consider it essential that the robot be introduced with
appropriate care on the first encounter. As an example, we

outlined our strategy for introducing a robot to preschool
children. Interactions between child and robot should be
contingent and multimodal, and provide appropriate forms
of feedback. We argued that the robot should remain within
Vygotsky (1978) Zone of Proximal Development and thus should
adapt to the individual level of the child.

We also discussed some technical challenges that need to
be solved in order to implement contingent interactions; the
most important of which we believe is ASR, which presently
does not work well for children’s speech. While various
technical challenges still remain, we expect that social robots will
provide effective digital technologies to support second language
development in the years to come.

The present list of design features covers many aspects that
need to be considered when developing a tutor robot, but it is
not yet comprehensive. One aspect that has not been covered,
for instance, concerns the design of robots for children from
different cultures, which could require different design choices
(Shahid et al., 2014). For example, in some cultures education
is more teaching-centered (Hofstede, 1986) and thus designing
the tutor as a peer robot may be less effective or acceptable
(Tazhigaliyeva et al., 2016). Concluding, this perspective article
offers only a first step towards a comprehensive list of design
features for tutor robots and additional research is needed to
complete and optimize the list.
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ABSTRACT 
In this study, we investigate the effect of age on preschoolers’ 
engagement - as measured by gaze direction - during a first-time 
interaction with a social robot. The results revealed significant 
differences in gaze patterns. Specifically, younger children were 
more easily distracted, and looked at the robot for a shorter 
duration and briefer periods of gaze. Moreover, they showed a 
higher level of reliance on the experimenters. The results have 
implications for the design of young preschoolers child-robot 
interactions and specifically for the ways in which the first 
introductory interactions should occur.  

Keywords 
Child-robot interaction; engagement; social robots; gaze 

1. INTRODUCTION 
 In recent years, there has been an increasing effort to develop and 
integrate robots as peer-tutors in (pre)schools, for example for the 
purpose of teaching foreign languages [1]. While most studies 
have focused on school-aged children, current research is also 
targeting preschool children, who have high learning flexibility 
[2]. However, preschool-aged children (2 to 4 years old) undergo 
major cognitive, emotional and social developments, such as 
expanding their social competence [3, 4], which must be 
accounted for in such studies. Whereas older children may have 
little difficulty engaging in an interaction with a robot, younger 
children may be more reliant on their caregivers or show less 
engagement in the interaction, as they are less socially competent. 
Children between the ages of 3 and 4 show substantial differences 
in emotional competence, which predicts later social competence 
[4]. Therefore, we expect that child-robot interactions at those 
ages will also present some age-related variation. Clarifying these 
potential age differences is essential as, in order to be efficient, 
interactive scenarios with robots must be tailored to the diverging 
needs of children.  In the current study, we sought to determine 
whether there are age-related differences in first-time interactions 
with a peer-tutor robot of children who have just turned 3 and 
children who are almost 4 years old. Specifically, we 
hypothesized that younger children may experience more 
difficulty engaging with a robot and may rely more heavily on 
adults if it is their first one-on-one interaction with a robot.  

 

Since previous research has shown that gaze behavior is a good 
indicator of engagement, especially in human-agent interaction 
[5], we measured preschoolers’ engagement by means of their 
gaze direction.  

2. METHODS 
Thirty-two children recruited at preschools in the Netherlands 
participated in this study (18 female, M = 41.47 months, SD = 
4.74) of which 17 were in the young age group (M = 37.35, SD = 
2.06) and 15 were in the old age group (M = 46.13, SD = 0.99). 
Prior to a one-on-one interaction with the NAO robot, the children 
took part in a group introduction to familiarize them with the 
robot. Two experimenters were present during the one-on-one 
interaction. They kept in the background, only intervening when 
children required it. The full interaction was filmed, and consisted 
of an introductory phase followed by a short tutoring session for 
English as a second language revolving around counting blocks. 
For this study, we only considered the introductory phase, since 
we were interested in the initial response to the robot. During this 
phase (Mduration = 5.9 minutes, SD = 1.09) the robot introduced 
itself and initiated a conversation that encouraged an exchange of 
personal information. Additionally, a few simple counting tasks 
revolving around the blocks and the robot’s body parts were 
included. Children were filmed from two viewpoints to account 
for erratic movements. Gaze behavior (frequency and duration) 
was analyzed by manually coding the children’s gaze towards the 
robot, the experimenter(s), the blocks, themselves and elsewhere 
(Cohen’s Kappa = .82). Glances, i.e. gaze shorter than 1 second, 
were not considered to be an actual gaze pattern and were 
therefore added to the nearest annotation.   

3. RESULTS  
To explore the differences in gaze behaviors within each group, 
we conducted Greenhouse-Geisser corrected repeated-measures 
ANOVAs (see Figure 1 and 2 for visual representations).  

For the younger children, this revealed significant differences in 
gaze frequency and proportion of time in a certain gaze direction, 
respectively F(2.49, 39.82) = 39.89, p < .001 and F(2.06, 30.47) = 
84.79, p < .001. Specifically, younger children looked at the 
experimenters more frequently and for a longer proportion of time 
than elsewhere (respectively, p = .007; p = .012), themselves 
(respectively, p = .001; p = .001) and more frequently at the 
blocks (p = .007). Overall though, younger children also looked at 
the robot more frequently and for a longer proportion of time than 
at the experimenters (p < .01), the blocks, elsewhere, or 
themselves, all p < .001. For the older children, we found 
significant differences with regard to gaze frequency and 
proportion of time in a certain gaze direction, respectively F(2.35, 
32.84) = 21.77, p< .001 and F(1.37, 19.20) = 109.43, p < .001. 
Specifically, they looked at the experimenters more frequently 
than elsewhere (p = .038) and at the blocks for a longer proportion 
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of time than elsewhere (p = .026). Just like the younger children, 
they looked at the robot more frequently and for a longer 
proportion of time than the experimenters (p < .01), the blocks, 
elsewhere, or themselves, all p < .001.   

 
Figure 1. Mean number of occurrences for each gaze direction 

Note. *p<.05, **p<.01. Robot gaze differed significantly from all 
other gaze directions, p < .01 

 
Figure 2. Proportion of time spent on each gaze direction  

Note. *p<.05, **p<.01. Robot gaze differed significantly from all 
other gaze directions, p < .01 

To analyze the effect of age, t-tests were conducted, both for gaze 
frequency and proportion of time. Older children looked at the 
robot for a larger proportion of time (M = .74, SD = .17) than 
younger children (M = .62, SD = .15), t(30) = -2.11, p = .043. The 
average time (in seconds) per gaze on the robot was higher for 
older children (M = 14.97, SD = 8.60) than for younger children 
(M = 9.74, SD = 5.73), t(30) = -2.05, p = .049. Additionally, 
younger children looked elsewhere for a larger proportion of time 
(M = .07, SD = .06) and more frequently (M = 7.12, SD = 5.81) 
than older children (respectively M = .02, SD = .02, M = 2.73, SD 
= 2.66), respectively t(30) = 2.74, p = .010 and t(30) = 2.68, p = 
.012.  

4. DISCUSSION AND CONCLUSION 
The current study sought to determine the effect of age on 
preschoolers’ engagement during first time one-on-one child-

robot interactions. The results indicate that, between the ages of 3 
and 4, age differences as small as 10 months lead to diverging 
engagement behaviors towards a robot. In our experiment, both 
younger and older children looked at the robot more often and for 
a longer proportion of time than anywhere else, illustrating the 
overall interest in the robot. However, younger children spent less 
time - overall as well as per gaze - looking at the robot than older 
children. They also looked elsewhere more often and for a longer 
proportion of time. This suggests that while younger children do 
show interest in the robot and are engaged with it, they might be 
less able to sustain direct attention towards it than older children.  

We postulate that these results are caused by the fact that younger 
children are more easily distracted by their surrounding and have 
more trouble focusing on a task for an extended period of time, 
unlike the older children, who were mainly focused on the robot. 
In addition, given that younger children looked at the 
experimenters more often and for a larger proportion of time than 
anywhere else (other than the robot), we hypothesize that they 
need additional support, reassurance and feedback in their first 
interaction with a robot. For instance, it was relatively common 
for the younger children to look at the experimenters after they 
had answered one of the robot’s questions. Further analyses of the 
experimenters’ interventions and children’s requests for help 
should contribute to verifying this hypothesis. The results of the 
current study have implications for the design of (first-time) 
interactions between preschoolers and social robots, with special 
attention required to providing suitable support for the youngest 
children.  
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Abstract— The use of social robots for teaching children a 

second language is a promising field. This paper describes an 

ongoing experiment in which we explore how children engage 

with a robot after receiving feedback in a tutoring session. We 

created three scenarios in which the robot performed peer-like, 

adult-like feedback or was withholding feedback. A group of 85 

preschool children are investigated. We will compare how the 

children experience interaction with the robot and their 

responses to the different types of the robot's feedback. The 

purpose is to explore the possibilities of peer interaction 

between robot and child for long-term tutoring.  

I. INTRODUCTION 

Robots are starting to enter the classroom and more and 
more children are interacting with robots. Studies have 
shown that robots can have effective interactions with 
children with regards to educational settings [1]. Children are 
less stressed when interacting with robots and are more 
readily engaged with tasks that are otherwise considered 
boring. Robots are able to teach children different school 
subjects, one of these is second language [2], [3]. This can be 
tutoring a popular second language such as English or 
tutoring the official school language to children from 
immigrant families. Teaching immigrant children the school 
language is crucial in early stages of development, as later 
educational success builds on that [4]. 

In educational settings, children are expected to maintain 
long-term relationships with a tutoring robot. To achieve 
successful long-term relationships, natural and varied 
interactions between the robot and children are crucial. One 
of the challenges is to keep the child interested. For 
establishing long-term relations, a robot should engage users 
over extended periods of time and this can be achieved 
through an understanding of interactions between peers [5]. 
In most educational settings, the robot acts as a teacher (see 
for example [6]). However, younger children prefer robots to 
behave as peers and, within language, they prefer a tutoring 
style [7]. A child would perceive a peer tutor as a friend with 
more advanced language skills, would interact with the peer 
tutor as a friend and would receive feedback from the peer 
tutor as a friend. Observations of peer interactions between 
children [9] showed that children provide less feedback than 
adults and they produce different feedback when their peers 
make mistakes. However, in interactions between native and 
non-native children's interactions, non-native children receive 
significantly more feedback than the native children. 

 
*Research supported by European Union’s Horizon 2020 and innovation 

 programme under grant No 688014. 
1Tilburg center for Cognition and Communication, Tilburg University,  

PO Box 90153, 5000  LE Tilburg, The Netherlands 

{mirjam.dehaas, p.a.vogt, e.j.krahmer}@tilburguniversity.edu 

Therefore, to create a robot behaving as a peer and a tutor we 
expect that children respond to the robot as a peer and the 
robot would also respond to the children as a peer. Moreover, 
a robot that gives appropriate feedback is expected to support 
the child's language development best. Question is: How 
should a robot provide feedback to make the interaction both 
pleasant and educational? 

Klugel and DeNisi mention that no feedback is 
sometimes better [10]. In a meta-analysis of 131 studies they 
found one third of these studies show that there are negative 
effects of feedback compared to no feedback at all. However, 
they did not investigate the type of feedback, only the 
amount. Negative feedback might have more impact on 
learning efficacy, although positive feedback can give some 
reassurance to the learner [11]. Older people showed a higher 
user compliance and performance when a robot gave 
feedback during their workout [12], [13]. Moreover, robots 
giving positive feedback is widely used within therapy when 
children have Autism Spectrum Disorder (ASD) [14]. In 
addition, children with ASD tend to be more motivated when 
the robot gives a reward after a correct behavior. When a 
robot reacts to our actions it makes us more confident in the 
robot's behavior.   

We want to investigate whether these results can be 
extended to typically developing preschool children learning 
a second language. In child-child interactions, Long [15] 
found that there was a clear advantage in learning for explicit 
feedback (e.g. by saying "no, that's wrong, you need past 
tense") when compared to recasting feedback (the learner 
says "he runned" and the teacher reacts with "he ran"). The 
explicitness of the feedback is also an important determinant 
of children's responses to feedback. In a free-play situation 
where four-year old children could play, observations 
revealed that children responded much more often to specific 
questions than for implicit nonverbal feedback, or implicit 
verbal feedback [16], [17].  

Mazzoni [18], explored feedback of a humanoid robot in 
language learning of young children. Children were asked to 
play with either the robot or another child, and work together 
to understand the meaning of an English word. The robot did 
not give explicit feedback, but it introduced a doubt (for 
example, "ahh, your suggestion is interesting … but are we 
sure that it is correct?"). If children did not respond, the robot 
would ask them for suggestions. The children showed in both 
conditions (one in interaction with the robot and one with 
another child) improvement in their Engels vocabulary. The 
authors, however, did not provide information on how 
children reacted on the robot and whether the children 
considered the robot as a peer or else.   
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The objective of this study is to answer the question 
whether the type of feedback (more explicit such as peers or 
implicit such as adults) that the robot gives to children will 
influence their engagement with the robot, and compare this 
with a robot that gives no feedback at all.  

Mashburn et al. [20] found that peer interactions have a 
positive effect on language development. However, children 
with relative poor language abilities benefited less from peer 
interactions, because they had less opportunity to engage 
with other children. One-to-one interactions in which a robot 
provides opportunities to engage more, might be less 
intimidating than an actual peer and can have a positive effect 
on the children's language abilities. Other than adults, 
children are more focused on constructing their own personal 
meaning, and, therefore, use less negotiation techniques that 
focus on their peers' understanding. Furthermore, Mackey et 
al. [9] investigated patterns of negotiation in child 
interactions and found that the children use three different 
forms of negotiation: clarification (what do you mean?), 
confirmation (do you mean this?) and comprehension (do 
you understand?).  

This research is part of the L2TOR project, which 
focuses, among others, on teaching native Dutch children 
English as a second language, and on teaching Dutch to 
native speakers of Turkish living in the Netherlands [19]. The 
general idea is that the robot will support all children in both 
their native language and the second language.  

The remainder of this paper describes an experiment that 
investigates the influence of providing peer-like or adult-like 
feedback by the robot, aged 3 to 4 years on the child's 
engagement with the robot. The experiment was carried out 
in various preschools in the Netherlands. We created a 
scenario in which the children interact with a humanoid robot 
either giving one of the feedback types or withholding 
feedback and study the effect of the robot on the children's 
engagement in the activity and their relationship with the 
robot.  

II. EXPERIMENTAL DESIGN 

 This experimental design will describe an experiment in 

which a robot will teach Dutch speaking children English. 

We will explore the children's reactions on the robot's 

feedback.  

A. Participants 

Approximately 85 preschool children of 3 to 4 years old 

will take part in this experiment. These children attend a 

preschool in Tilburg and are normally instructed in Dutch. 

For all children the parents sign an informed consent form. 

 

B. Task 

 The task is a collaborative game with blocks. The robot 

uses the blocks to teach the children to count from 1 to 4 in 

English. During the interaction the robot instructs all 

children in Dutch and only names the different numbers in 

English. Each child sits on the ground in front of the robot 

that is approximately 40 cm from the participant (see Fig. 1). 

The experimenter explains the children that the robot is 

going to teach the children some words in English. The 

duration of the interaction is around 10 to 15 minutes, 

depending on how much feedback the children need. Prior to 

the experiment the children practice counting in Dutch 

together with the experimenter and the blocks and their 

knowledge of the English counting words will be tested 

before and after the experiment. The children were not given 

any feedback during the pre and posttest.   

 

 

C. Robot 

The robot used during this experiment is the Nao robot, 
which is a small humanoid robot produced by Aldebaran. 
This robot has already been used in many studies with 
children. The advantage of using Nao is that this robot can 
use gestures to explain the children the words. Children are 
more engaged when the speech is accompanied by gestures, 
their joint attention increases the interactions are longer and 
they look more at the robot during its turn [21], [14]. The 
robot points and gazes at the blocks that are used in this 
experiment. Moreover, it gazes at the children during 
interactions. The children were already introduced to the 
robot prior to the experiment and were explained how the 
robot shows emotions and they were familiar with the 
behaviors of the robot. Furthermore, the robot speaks with a 
synthesized Dutch and English voice. Most of the sentences 
will be in Dutch; only the target words for the children are in 
English. While we plan to use automatic speech recognition 
in the near future, we use the Wizard of Oz method [22], 
because of the imperfections in the automatic speech 
recognition of child speech. This way, it appears for the 
children as if the robot is responding on their questions and 
actions. 

D. Experimental Conditions 

In this study we want to test the impact of different types 
of feedback. All conditions are tested with a between subject 
design. The children are randomly assigned in one of the 
feedback conditions. The behavior and movements of the 
robot remain identical between all conditions, except for the 
robot's feedback.  

We use two types of feedback; the first one uses explicit 
feedback that children often use during peer interactions and 
the second one uses implicit recasting feedback that adults 
most often use while interacting with children and compare 
these to a condition without feedback. Prior research has 

 
Fig. 1. Experimental setup 



 

 

 

shown that children react more often to explicit specific 
questions [16] and we, therefore, included explicit egocentric 
feedback in the peer-feedback condition. The other type of 
feedback is based on how adults respond to children and how 
they interact with them. Adults use recasting feedback and 
tend to praise the children for their work. This adult-feedback 
condition contains of implicit (recasting) feedback and giving 
praise to the child whenever they did something correct.  

In the examples below, the text said in English is 
indicated in Italics, the rest of the text is said in Dutch. 

1) No Feedback condition 
This condition is the baseline condition for this 

experiment, wherein the robot only serves as a language 
instructor and playmate for this game. The robot does not 
explicitly motivate the child by giving feedback. All 
motivations come from the other instructions and the child's 
own intrinsic motivation. When the experimenter notices that 
the child does something completely wrong with the result 
that interaction does not continue, she corrects the mistake of 
the child after the interaction with the robot.  

Example of no feedback after correct and incorrect child 

response: 

Robot: "Can you show me three blocks?"  

Learner: shows robot three blocks. 

Robot: "Put all the blocks back. Can you show me two 

blocks?"   

 

2) Peer-Feedback condition 
In this condition the scenario sequence is the same as in 

the no feedback condition, with an addition that the robot 
gives explicit feedback whenever the child does something 
wrong. The verbal feedback changes every time, only the 
non-verbal feedback stays the same during the task itself.  

Example of feedback after correct child response: 

Robot: "Can you show me three blocks?"  

Learner: shows robot three blocks. 

Robot: "Put all the blocks back. Can you show me two 

blocks?"   

 

Example of feedback after incorrect child response: 

Robot: "Can you show me three blocks?" 

Learner: shows robot two blocks. 

Robot: "That's wrong! You should take three blocks."   

 

3) Adult-Feedback condition 

 In this condition the scenario sequence is the same as in 

the other two conditions, except that the robot gives 

feedback when the child responds either correctly or 

incorrectly. When the child responds correctly, the robot 

gives positive feedback both verbally and non-verbally by 

showing the child that it is happy by blinking its eyes in 

different colors. When the child makes a mistake, implicit 

negative feedback is provided, which is less strong as in the 

peer-feedback condition.  

  

Example of feedback after correct child response: 

Robot: "Can you show me three blocks?"  

Learner: shows robot three blocks. 

Robot: "Well done! Three means three in English."  

 

Example of feedback after incorrect child response: 

Robot: "Can you show me three blocks?" 

Learner: shows robot two blocks. 

Robot: "Three means three, you should take three blocks."   

Learner: shows robot three blocks 

Robot: "Well done! Three means three in English." 
 

E. Hypotheses 

 The main purpose of our experiment is to investigate how 

the children are engaged with the robot in all conditions, 

while the effectiveness of the language tutoring is of 

secondary importance in this experiment. We therefore have 

the following three hypotheses: 

 

H1. We expect that the robot that gives feedback will engage 

the children more than the robot that gives no feedback. 

Mackey explored feedback with children and also found 

these results, although they did not test this with a robot, we 

still expect this will be true for the robot and a child [9].  

H2. We expect that the children will be more motivated to 

continue when the robot gives positive feedback. 

H3. We expect that the children will learn more target words 

in the peer-feedback condition due to the explicit negative 

feedback.  

F. Evaluations 

 The experiments, which are concluded at the moment of 

writing this paper, have been recorded on video. These 

recordings will be analyzed for the child's engagement with 

the robot using a coding scheme adapted from [23]. In 

particular, we will measure children's reaction to having 

feedback or not in a perception study. To this aim, short 

video fragments, displaying children's responses to the 

feedback of the robot or the absence thereof, will be shown 

in random order to naive observers. These observers are 

asked to indicate for each snippet whether the child displays 

positive or negative emotions, which will indicate how 

children are engaged with the robot after a certain type of 

feedback.  

 Second, we will measure the proportion of time children 

are engaged with the robot. For this, we will adopt the 

coding scheme of Mastin and Vogt [24] to assess the amount 

of time children are engaged with the robot and whether the 

engagement concerns episodes of joint attention or not. 

 Finally, we will measure whether there is any learning 

effect from interacting with the robot. To this aim, we will 

carry out a short pre-test and a short post-test to test the 

children's ability to count from 1 to 4 in Dutch and in 

English. 

III. CONCLUSION 

 This paper described an experiment in which a robot is 

used to teach children a second language. The experiment 

described explores how children react to feedback of the 

robot. The experiment has taken place in June and is 



 

 

 

concluded at the moment of writing, so we expect to present 

some preliminarily results during the workshop in August.  
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Abstract—That “practice makes perfect” is a powerful heuris-
tic for improving performance through repetition. This is widely
used in educational contexts, and as such it provides a poten-
tially useful feature for application to child-robot educational
interactions. While this effect may intuitively appear to be
present, we here describe data to provide evidence in support
of this supposition. Conducting a descriptive analysis of data
from a wider study, we specifically examine the effect on child
performance of repeating a previously performed collaborative
task with a peer robot (i.e. not an expert agent), if initial
performance is low. The results generally indicate a positive
effect on performance through repetition, and a number of
other correlation effects that highlight the role of individual
differences. This outcome provides evidence for the variable
utility of repetition between individuals, but also indicates that
this is driven by the individual, which can nevertheless result
in performance improvements even in the context of peer-peer
interactions with relatively sparse feedback.

I. INTRODUCTION

The research-oriented application of social robots to educa-
tional contexts (in particular for children) has been rapidly
increasing in recent years. The applications have spanned
schools [1], healthcare [2], and extracurricular activity scenarios
[3], and covered a wide range of subjects and skills, from
nutrition [4] to handwriting [5].

Such work frequently attempts to bootstrap from contem-
porary learning theories. While methods such as learning by
rote (effectively memorisation without explicit emphasis on
understanding) were formerly stardard educational practice
(based partly on behaviourist ideas [6]), more recently con-
structivist and related approaches have come to the fore [7]
even though in practice the behaviourist approach frequently
remains in place (the use of reinforcers and testing to name
but two). Robotics applications have thus in principle typically
followed this latter approach, emphasising concepts such as
collaboration [8], social partership [9], guided discovery [10],
and others.

Typically, given the as yet novel nature of such child-robot
interaction work, these studies generally take a relatively
high level perspective, emphasising metrics such as user
preference/opinion and/or overall learning effects. However, as
such applications mature, it will become necessary to perform
more fine-grained analyses in order to establish the conditions
under which children may maximise their learning with a robot,

Fig. 1. Child (left) and robot (right) playing a collaborative maths sorting
game (categorising the result of the multiplications as either odd or even in
this example) on a large touchscreen located between them. Images on screen
and dashed sample image path shown for illustration only; not to scale.

and the features (behavioural, morphological, etc) of the robot
that best facilitate this learning process. The study described
in this paper is presented in this context.

In this paper, we describe data that demonstrates the effect
on child performance of repeating a collaborative task with a
robot, if the performance of an initial attempt is low. Overall,
the results do suggest that there is some benefit conferred
by such repetition. However, one strong theme that further
emerges from this analysis is the high variability of the effect,
which indicates the importance of individual differences. First
the study is described, highlighting the embedded nature of
the experiment in a classroom and the collaborative nature of
the task (section II), followed by results that explore overall
phenomena and effects at an individual level (section III),
before further discussing these effects at the end of the paper
(section IV).

II. STUDY

The aim of the study presented in this paper is to assess
the effect of repeating a task with a robot in which initial
performance was low. To achieve this, we analyse a sub-set of
data obtained from a larger study, which sought to assess the
impact of embedded (i.e. present in the classroom itself with no
experimenters present) personalised robot peers in a classroom
on learning [11]. Using a two-condition setup (personalised
intervention condition and non-personalised control condition),



results indicate that personalisation supports additional learning,
particularly in novel subjects [11], and that teachers will take
advantage of a robot in their classroom for wider moivational
purposes than just the task to be performed with the robot [12].
Since performance-based repetition was only present in the
intervention condition, this is the data that we analyse below.

Experimental hypotheses are not ventured for the present
paper due to its placement within the wider study. As such,
we provide a descriptive analysis of the data obtained with
respect to the effect of repetition, as a means of providing
initial indications of effects that can be subsequently taken up
in further studies in their own right.

A. Ethics

Approval for conducting this study was granted by the
Plymouth University Faculty of Science and Technology
Human Ethics Committee, as part of a thematic programme of
research involving the robot and touchscreen setup, and children
in local schools. An opt-out informed consent was obtained in
writing from the parents/guardians of all participating children.
It was made clear to all children that they could withdraw if
and when they wished to.

B. Environment and Subjects

The study took place at a U.K. primary school towards the
end of an academic year, in two matched age and ability classes,
corresponding to the two conditions. A total of 59 children took
part aged 7–8, 30 of whom were in the intervention condition
of interest, and thus the primary focus of attention below (12
boys, 18 girls).

A robot and a 26” touchscreen (with supporting hardware)
was placed in each of the classrooms permanently for a two
week period. While in use during the school day there were
no experimenters present; supervision was provided by class
teacher, or teachers assistant. Interactions between a single
child and the robot occured around the touchscreen (figure 1),
which provides a mediator for the interaction – the context in
which the child-robot interaction takes place.

C. Learning Task

The one-on-one interactions between the child and robot
take place in the context of a broadly collaborative [8] sorting
task, where the robot acts as a peer in attitude (e.g. informal,
personalised, uses child’s name) and knowledge (e.g. makes
mistakes to the same extent as the child). This sorting task is
centred on a large touchscreen [13], on which there are a set
of images that need to be sorted into one of two categories
(see figure 1 for an example). Each such set of images is
labelled an “image library”. In the present work, a total of 18
image libraries are used, with two subjects used (see table I):
a familiar task for the children (maths times-tables), and an
unfamiliar task (history – about the stone age). Each image
library has an equal number of images for the two categories,
with a total of 12 images for each maths image library and
14 images for the stone-age image libraries. The maths image
libraries were organised such that there was a progressive

TABLE I
IMAGE LIBRARIES USED IN THE STUDY, SPLIT INTO FAMILIAR (MATHS

TIMES TABLES) AND UNFAMILIAR (THE STONE AGE) TOPICS. NOTE THAT
THE IMAGE LIBRARIES WERE INTERLEAVED DURING INTERACTIONS WITH
THE ROBOT, AND THAT IN THE CASE OF THE FAMILIAR TOPIC, THE IMAGE

LIBRARIES WERE ARRANGED IN INCREASING DIFFICULTY.

Maths (Familiar) Stone-Age (Unfamiliar)
Library Contents Task* Library Contents Task*

1 2x table In/Out 2 SA lifestyle Yes/No
3 10x table In/Out 4 SA animals Yes/No
5 5x table Odd/Even 6 SA tools Yes/No
7 2,10,5 div Odd/Even 8 SA art Yes/No
9 3x table Odd/Even 13 SA mixed Yes/No
10 4x table In/Out 18 SA mixed Yes/No
11 6x table In/Out
12 3,4,6 div Odd/Even * Task is a categorisation:

the labels are the two cate-
gories shown on the screen

14 7x table In/Out
15 8x table In/Out
16 9x table Odd/Even
17 11x & 12x Odd/Even

increase in difficulty. This arrangement was verified with the
class teachers prior to the study.

In this collaborative game setting, both the child and the
robot have the same interaction affordances; i.e. they are both
able to select an image, drag it, and deposit it in one of
the category locations (see figure 1 for an example). There
are no turn-based constraints, and overlapping actions on the
touchscreen is possible – although in actual interaction, a turn-
based structure does nevertheless appear to emerge from the
interaction [14], indicating that in this context, the robot can
be seen as a (potentially) social agent by the child.

Further supporting the notion that the robot was a peer,
feedback to image categorisation moves on the touchscreen
was provided visually on the screen itself (green tick or red
cross): from the perspective of the child, the robot thus had
the same feedback on performance that they had. The robot
did however comment on the child’s moves (e.g. “well done”,
or “maybe you’ll do better on the next one”). No additional
feedback information regarding individual images was provided:
this is therefore a relatively sparse feedback regime. At the end
of the image library (i.e. when all images had been sorted),
and if the performance was below threshold, then the robot
would make a brief comment (e.g. “oh dear, looks like the
computer will make us do that one again”) to indicate that a
repeat would occur.

The main feature of the learning task with respect to the
present paper is the possibility for repeating an image library
if performance of the child is low. Since both the child and the
robot are able to make categorisation moves on the touchscreen,
we consider only the child’s performance: i.e. only those moves
made by the child on the touchscreen. Given that chance
performance is 50% (two categories, equal number of members
of each category), we consider acceptable performance to be
at least 65% correct classifications (with a maximum number
of three attempts). If the child’s performance falls below this,
then the library is reset once completed (i.e. a rearrangement
of the same images on the touchscreen), up to a maximum of
three times, after which the next image library would be shown.
If an image library was completed successfully, then the next



Fig. 2. Distribution of completions and proportion of repeats across image
libraries for all children in the intervention condition.

image library (table I) would be automatically dispayed on the
screen.

D. Procedure and Metrics

The hardware was set up in a corner of the respective
classrooms at the start of the two-week experimental period,
and remained in situ until the end. The system was started up
each morning prior to the arrival of the children, and was shut
down at the end of the school day after the children had left.
No experimenters were present during the interactions of the
children with the robot.

Over the course of the day, the teacher would nominate one
child to interact with the robot at a time. This child would
go over to the robot setup and interact while the rest of the
class carried on with their normal activities. Each interaction
would last five minutes (of interaction with the image libraries,
not including introduction and closing procedures); over the
course of the two week period, each child interacted with the
robot on multiple occasions.

During each interaction, a range of information was collected.
This included, for each child, the number of libraries completed,
the child’s score, and the number (and effect, in terms of score)
of repeated image libraries. It is this data that is the primary
subject of investigation below. In the wider study, a number
of other metrics were recorded, including questionnaires, pre-
and post-study knowledge tests, and video recordings – further
details of these appear in [11].

III. RESULTS

We reiterate at this point that the aim of this paper is to
provide a descriptive analysis of data obtained that can be
used as a basis for subsequent explorations, rather than as a
hypothesis-led effort. Hence, while we make observations on
a number of trends and relationships, we must leave further
characterisation to future work. We further note that (unless
otherwise stated), we focus on the results obtained in the
intervention condition, i.e. the group of 30 children for whom
there was the possibility of repeating image libraries.

Fig. 3. Success rate for all image libraries in the intervention condition, and
control condition. Success in a library is a child score of greater than 65%
correct image classification.

A. Occurrence and Impact of Repeats

Not all of the libraries were completed by all 30 of the
children over the course of the study (figure 2): after image
library 11 (6x table), there is a sharp drop-off in completion
rate. Considering the repeat rate for each library, it can be seen
that there are a wide range of values. Where it may be expected
that, for the maths libraries at least, increasing difficulty (seen
in higher image library numbers) would result in a greater
need for repeats, this is not evident from the data. A positive
correlation is found here (r = 0.914, n = 30, p < 0.001),
although this is likely to be due primarily to the drop-off
in completion rate: those children likely to have progressed
through more of the libraries may have been higher performing,
hence requiring fewer repeats in the first place.

Repeating an image library does generally appear to confer
an advantage in terms of score, when contrasted with a scenario
in which no repetition is possible (figure 3). This provides an
initial indication in support of the intuition that repetition of a
task with a robot provides some advantage – however, due to
the setup of the experiment, with a number of factors different
between the conditions in addition to the possibility for repeats,
this is not, on its own, conclusive.

In order to provide further insight, the impact of repeats
per image library can be examined (figure 4). This shows
that for most libraries where there are repeats, there is a score
improvement from the first to the last attempt (meanincrease =
0.218, n = 30, 95% CI=[0.177,0.258]). The mean score change
for the first image library seems to be an outlier here: it is
likely to be due to uncertainty on the part of the four children
as to what should be done; a shortfall quickly overcome on the
second iteration. Indeed, each of these four individuals only
had one repeat attempt.

B. Individual and Topic Differences

The overall difference in mean repeat rates between the maths
libraries (meanmaths = 0.424, n = 30, 95% CI=[0.3,0.548])
and the stone age libraries (meanSA = 0.346, n = 30, 95%
CI=[0.217,0.475]) is small (with a large overlap in the 95% CIs).
Examining the number of repeats per child across all image



Fig. 4. Effect on score of repeat attempts, by image image library. Numbers
in data points show number of repeats for that library across all children. Error
bars show 95% CI.

libraries shows a high variability between children (figure 5).
This seems to suggest that instead of looking at the group
as a whole (i.e. is repetition generally a good strategy), it is
necessary to consider the effects on individuals (i.e. under what
circumstances and features of individuals does repetition confer
a benefit to these individuals).

Fig. 5. Mean number of repeated attempts of image libraries per child, for
the maths and stone age image libraries. Horizontal lines show mean for each
image library subject.

This refocus on individual differences is further supported
by considering the mean change in score achieved by each
child (figure 6). While the difference in overall means is more
pronounced between the image library subjects (meanmaths =
0.132, n = 30, 95% CI=[0.085,0.18]; meanSA = 0.076, n =
30, 95% CI=[0.046,0.106]), a high degree of inter-subject
variability is apparent1. Considering the relative performance
increase for the two image library subjects, 18 children gained
more from repeating maths image libraries, whereas only 10
individuals gained more from repeating the stone-age image
libraries (two children did not repeat any image libraries).

1The mean values include values for those children who did not perform
repeats. This is because repeat rate (or lack thereof) is a feature of the
intersubject variability under examination; to exclude these instances would
therefore be to skew the distribution under consideration.

Fig. 6. Mean change in score after repeats per child, for the maths and stone
age image libraries. Horizontal lines show mean for each image library subject.

TABLE II
CORRELATION MATRIX FOR MATHS TIMES TABLES (FAMILIAR) RESULTS.

CELLS HIGHLIGHTED IN GREEN HAVE P<0.05, IN YELLOW IS P<0.1. N=30
FOR ALL CORRELATIONS. Perf : OVERALL CHILD CLASSIFICATION

PERFORMANCE. Rep rate: MEAN REPETITION RATE. Tot reps: TOTAL
NUMBER OF REPEAT ATTEMPTS. ∆Score: CHANGE IN SCORE, PRE- TO

POST-REPEAT. N libs: TOT NUMBER OF IMAGE LIBRARIES COMPLETED.

Gender Perf Rep rate Tot reps ∆Score N libs
Gender 1
Performance -0.075 1
Rep rate 0.124 -0.760 1
Tot reps 0.100 -0.770 0.960 1
∆Score 0.278 -0.236 0.450 0.402 1
N libs 0.192 0.321 -0.245 -0.239 -0.125 1

TABLE III
CORRELATION MATRIX FOR STONE-AGE (UNFAMILIAR) RESULTS. CELLS
HIGHLIGHTED IN GREEN HAVE P<0.05, IN YELLOW IS P<0.1. N=30 FOR

ALL CORRELATIONS. LABELS AS FOR TABLE II

Gender Perf Rep rate Tot reps ∆Score N libs
Gender 1
Overall Perf -0.075 1
Rep rate 0.255 -0.112 1
Tot reps 0.072 -0.182 0.931 1
∆Score 0.138 0.289 0.583 0.584 1
N libs 0.183 0.313 0.226 0.133 0.377 1

C. Indications from Correlations

In order to explore what individual influences there are on
the effect of repeating image libraries on performance within
the context of this study, we explore correlations between the
various metrics recorded during the study. This form of analysis
naturally does not provide proof of causality, but it can provide
indications of trends, and relationships that could be explored
further. First we break this down by image library subject
(tables II and III), before considering the relationship between
the two (table IV).

As would be expected, there is a strong (and significant)
association between repeat rates and total number of repeats.
Similarly, and in support of figure 4, there is a strong and
statistically significant association between repeat rate (and
total number of repeats) and score change, for both image
library subjects: i.e. the greater the number of repeats, the
greater the change in score.

However, one clear difference between the correlations for



TABLE IV
CORRELATION MATRIX COMPARING MATHS AND STONE-AGE RESULTS.

CELLS HIGHLIGHTED IN GREEN HAVE P<0.05, IN YELLOW IS P<0.1. N=30
FOR ALL CORRELATIONS. Math/SA-Libs: TOTAL NUMBER OF IMAGE

LIBRARIES ATTEMPTED OF RESPECTIVE SUBJECTS. Maths/SA-Re: NUMBER
OF REATTEMPTS FOR EACH RESPECTIVE SUBJECT.

Perf SA-Libs SA-Re ∆SA SA-Success
Perf 1 0.313 -0.182 0.289 0.214
Math-Libs 0.321 0.923 0.134 0.333 -0.075
Maths-Re -0.770 -0.297 -0.261 -0.663 -0.120
∆Math -0.236 -0.083 -0.295 -0.445 -0.160
Maths-Success 0.644 0.320 0.067 0.323 -0.031

the two image library subjects is in the relationship between
the repetition rate (and total repeats) and the overall image
library performance (mean per child over the whole study
period): for the maths times tables image libraries this is a
strong negative correlation (significant), whereas this is only
weak (non-significant) for the stone-age image libraries.

Considering the relationships between maths and stone-age
image library-related behaviour provides some further insight
into individual differences (table IV). Firstly, as would be
expected, the number of maths and stone-age image libraries
completed is strongly positively correlated. Secondly, there is
a strong positive correlation between the overall performance
and maths image library success rate, but not for the stone-age
image library success; this is despite there being an overall
higher success rate for the stone-age (meanSA = 0.934,
n = 30, 95% CI=[0.887,0.982]) than maths image libraries
(meanmaths = 0.862, n = 30, 95% CI=[0.816,0.908]).
Thirdly, there is a moderate negative (significant) correlation
between change in stone-age performance after repeats and
both number of math repeats and change in math score.
Furthermore there is a strong negative correlation between
overall performance and number of math image library repeats
(the more repeats needed, the lower the overall score, and vice
versa). The presence of only a few significant results here make
patterns and trends difficult to extract, but in general the results
seem to suggest that performance and change in performance
is inversely associated for the two image library subjects.

One final aspect to note regarding the separate image library
subject correlations is that the gender of the child does not
appear to be strongly (or significantly) associated with any of
the other variables. For this reason, the effect of gender is not
considered further for the present paper (although there may
be related phenomena worth further investigation).

IV. DISCUSSION

A central facet of the experimental setup and task context
used is that it is a fundamentally collaborative task between a
child and a robot (figure 1). Note that despite collaboration not
being enforced (i.e. rather than having an explicit turn-taking
structure, it is possible for the child to complete the task on
their own if he/she ignores the robot), collaborative behaviours
are indeed typically observed [14]. It is in this interactive
context that the results obtained should be considered. With
the robot taking on the role of a peer (see section II-C), the
extent of feedback provided to the child is relatively sparse

(owing to the desire for the robot to have the same level of
apparent knowledge as the child). Nevertheless, this feedback
serves to highlight to the child where image libraries are to
be repeated: any subsequent change in performance (such as
the mean increase observed in the present study) may thus be
mediated by this interactive context. The collaborative nature of
the task may also provide additional motivation for performance
improvement (beyond the desire to move on to another image
library) [15], although this effect requires further empirical
investigation.

The results have shown that at the group level, there is
some apparent benefit for repeating a categorisation task if
initial performance is low (figure 4), and that this benefit
is greater for the familiar subject than the unfamiliar one
(figure 6). Familiarity may in this case not be the only
distinguishing characteristic between the two types of image
library, with other aspects such as the level of abstraction or
topic-related enjoyment that may be important: this requires
further investigation, although we note that levels of self-
reported enjoyment remain high [11]. However, it is also clear
that (as may perhaps be expected) there is a high degree of
variability between subjects. Examining these more closely
indicates that repeats for maths is positively correlated with
score change, but inversely correlated with overall performance
– a relationship not present for the stone-age subject.

One feature of the results is that both the overall repeat
rate and the overall score change as a result of repeats is
higher for the familiar subject (maths) than for the unfamiliar
subject (stone-age). We suggest that this may be related
to the sparsity of the feedback: recall that correct/incorrect
feedback is only provided on the touchscreen itself in response
to a categorisation. In a familiar task, the children would
already know the features of the problem (what is involved
in multiplication for example), and so even sparse feedback
is confirmatory. Conversely, this may not be true for a novel
problem, in which case only sparse feedback may not be as
helpful. This seems to be supported by the correlation results,
where there was a strong negative correlation between repeat
rates and overall performance for the familiar subject, but not
for the unfamiliar subject. This leads to a hypothesis for future
study that for unfamiliar tasks (to the children), richer feedback
is required than for familiar tasks.

Note however that the relationship between the group data
and the correlations remains ambiguous in some respects. For
example, the negative correlation between change in math
performance and change in stone-age performance (table IV)
requires further investigation. It is likely that the wider context
for the individual needs to be taken into account, as in
the discussion of sparse feedback and role of interactivity
above. One possibility not explored in the present study is the
role of attention: repetition could be a means of re-orienting
attention back to the task after a lapse of concentration or
misunderstanding (cf. the outlier mean score change in the
first image library, figure 4). More generally, the question is
– what characteristics of the individual (or the circumstances)
predispose them (or not) to gain more from repetition?



This widening of scope seems necessary when performing a
more fine-grained analysis. Returning to the notion of repeating
collaborative tasks based on initial performance, we have seen
that while in general there could be some benefit, it is necessary
to consider this from the perspective of the children’s individual
differences and of the task engaged in (familiar and unfamiliar
in this case). While the present study has only provided a
descriptive analysis of the data obtained, it provides a number
of pointers to phenomena that should be further researched.
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Abstract—Social robots are increasingly being applied in educa-
tional environments such as schools. It is important to understand
the views of the general public as social acceptance will likely
play a role in the adoption of such technology. Other literature
suggests that teacher attitudes are a strong predictor of technol-
ogy use in classrooms, so willingness to engage with social robots
will influence application in practice. In this paper we present the
results of a rigorously-framed survey used to gather the views of
both the general public and education professionals towards the
use of robots in schools. Overall, we find that the attitude towards
social robots in schools is cautious, but potentially accepting. We
discuss the reported set of perceived obstacles for the broader
adoption of robots in the classroom in this context. Interestingly,
concerns about appropriate social skills for the robots dominate
over practical and ethical concerns, suggesting that this should
remain a focus for child-robot interaction research.

I. INTRODUCTION

Research involving social robots in educational settings is
becoming increasingly prevalent, particularly with children [1],
[2]. Indeed, researchers in established fields applied to the
educational domain, but using different technologies, have
started to call for a switch to developing and evaluating social
robots [3]. Work conducted within the field of Human-Robot
Interaction (HRI) is taking place over longer-term time-scales
as well, inspired by early success stories such as [4], and
striving for increasingly sustained real-world application.

It has been shown that robots can be used to successfully
teach children, and also offer unique learning experiences. For
example, children can teach a less-able peer (in the form of a
robot), which may not otherwise have been possible [5], [6].
However, they can also have an impact on the classroom, both
in terms of the child behaviour and teacher behaviour [7] (which
is also related to the broader concept of technology-mediated
classroom orchestration [8]).

As this field of research pushes forwards, and if we seek
further real-world or mass-market implementation in schools,
it is important to understand attitudes towards the technology.
For successful adoption of such technologies, it is necessary for
both teachers and the general public to be willing participants
in increased uptake. Recent findings from the Eurobarometer
report [9] have suggested that whilst there is generally a positive
view towards robots in Europe, there is a sizeable contingent
(34%) that would see robots banned from use in education.
However, the survey administered in this report does not provide
a context for many of the questions.

In this paper we seek to explore whether, when provided
a minimal context, the attitudes of the general public are in
fact more positive. We explore the impact of this context on
the responses by manipulating an ‘imagined’ picture of how
a classroom with a robot might look (by including a human
teacher or not). Using the same survey design we also seek to
establish views of teachers (for whom there will be a greater
direct impact) regarding the use of social robots in education.
Furthermore, the views of teachers about obstacles to the use
of robots are considered for insight into possible child-robot
interaction research directions.

II. RELATED WORK

Research has suggested that there are barriers to adoption
and use of technology by teachers. These can be first-order
(extrinsic) barriers, or second-order (personal) barriers. While
the extrinsic barriers cannot be discounted, it has been found
that positive beliefs of teachers about the effectiveness for
learning (i.e., personal factors) are a significant predictor of
actual technology use [10]. For this reason, it is important to
understand (and possibly influence) how teachers feel towards
social robots if we intend to see them widely adopted. Teacher
views may also highlight research questions that need to be
addressed to demonstrate the efficacy and suitability of using
robots in schools.

Previous pan-European work [11] found that views of
teachers are generally positive, but that there are concerns
over fairness to access, the robustness of the technology, and
potential disruption to classrooms. Some of these same concerns
were observed prior to an experiment in the USA, but after
the experiment had been completed, views had changed [12].
Teachers expected the robot to be disruptive to the classroom,
but found that it was not, although this is partially mitigated
as headphones were used so that the possibility of audible
disruption would be minimised. A large-scale survey conducted
in South Korea [13] found that teachers were generally positive
about the use of robots in education, but they were more
negative than other stakeholders. Ethical tensions have also
been identified pertaining to issues of privacy, robot role, socio-
emotional effects on children and responsibility [14].

When exposed to a highly scripted interaction with a robot,
teachers showed fairly positive reactions [15], however it was
concluded that the interaction here was not related to the
educational quality that the robot could offer, and this is



Fig. 1. ‘Imagined’ classroom with the human teacher present. This is used
on the survey in the ‘teacher’ (TE) condition.

where the focus should be. Incorporating the views of teachers
in educational technology design has been highlighted as a
particularly important aspect of creating a partnership that
allows teachers to identify the benefits and shortcomings of
technology when related to the curriculum [16]. This motivated
us to consider how we might gather the opinions of both the
general public and education professionals, with the aim of
using the findings to direct future research.

Due to the technological nature of robots, it is anticipated
that they will be seen as a tool for STEM education, rather than
for the teaching of humanities. This is reflected in the research
being conducted with robots in education: they are commonly
applied in STEM education, with promising outcomes [17],
although research is also prominent in language contexts [1],
[4]–[6]. However, there are comparatively few robots being
used to teach art or religious education, for instance (a reference
to work in either of these domains could not be identified at the
time of writing). These pre-conceptions will be explored as they
could produce further barriers to adoption of the technology
in certain areas (or indeed may highlight areas that should not
even be attempted to be addressed with robots).

III. HYPOTHESES

From the related work outlined in the previous section and
our prior experience, the following hypotheses were devised
for this study:
H1 Context matters: providing a minimal context will lead to

more positive attitudes towards robots in education than
the Eurobarometer [9] suggests.

H2 Robots for STEM: robots will be seen as an educational
tool for delivering science, technology, engineering and
maths (STEM) content, but not for broader use in the arts
or humanities.

Additionally, we seek to address the following exploratory
question to build on prior research [11], [12], [14]: Q1 ‘what
are some potential obstacles perceived by educators to the
adoption of robots in the classroom and what can be done by
researchers regarding these?’.

Fig. 2. ‘Imagined’ classroom without the human teacher present. This is used
on the survey in the ‘no teacher’ (NT) condition.

IV. METHODOLOGY

A. Survey Design

In order to gather the opinions required to address the
hypotheses, we devised a survey to elicit the attitudes of people
towards the use of social robots in education. Part of this
survey was based on the questions asked in the Eurobarometer
survey [9], whilst other questions were devised by the authors to
specifically focus on areas of interest relating to the hypotheses
and applications of robots in education. The full survey is
not included here due to space restrictions, but can be viewed
online: https://github.com/james-kennedy/r4lworkshop-survey.

Two versions of the survey were created: (1) with a picture
with a teacher present (TE), and (2) without a teacher present
(NT; Fig’s. 1 and 2). This was done as a methodological check
to explore whether the image provided to participants would
shape their attitudes towards robots in schools. In both cases,
the accompanying text was kept the same: a broad description
of social robots and of their abilities in relation to learning
(‘the children can talk to the robots and learn from them’,
‘the robot can learn children’s names and preferences’, ‘it can
personalise learning experiences’).

B. Participants

Two pools of participants were recruited to address the
hypotheses: (1) education professionals from schools in the
U.K., and (2) members of the general public. The members
of the general public completed an online questionnaire via
a crowdsourcing platform (http://www.crowdflower.com). The
online responses were limited to the top 2 levels (indicating
‘extremely high’ previous response quality) of ‘contributor’
as judged by the crowdsourcing platform. Respondents were
restricted to the U.K. (to match the education professionals
country). All participants consented to having their responses
used for research purposes. The general public were com-
pensated with an amount commensurate with the national
living wage at the time of execution; the educators received
no compensation.



General public (GP): 100 responses were collected; 50 with
each picture. The responses were manually checked and it was
found that some responses were from the same users with
multiple accounts (6 instances), whilst others were in fact from
those working in education (7 instances). These responses
were therefore removed, leaving a total of 87 responses (41
TE/46 NT). The average age of this sample was 35.3 years
(SD=11.4), 29F/58M. Further demographic details (such as
number of children and education level) were collected and
will be explored as factors in the analysis in Sec. V.

Education professionals (EP): 35 responses were collected
(19 TE/16 NT). The average age was 37.6 years (SD=11.5),
with 2 not providing their age. The sample has a strong female
bias (31F/4M), which reflects the gender balance in the U.K.
for primary school employees. We focus on primary schools
as this is the age commonly used in HRI research in education
settings. The sample came from two schools; one in a rural
location (18 responses), and one in a city (17 responses). Both
class teachers and teaching assistants were included.

V. RESULTS

Preliminary analysis was conducted to verify the reliability
of the data. Cronbach’s Alpha was calculated for an 8 item
sub-scale of the survey that related to the acceptance of robots
in education (questions 4 to 10 and 14). This was performed on
98 of the 122 total responses (due to non-responses or ‘unsure’
responses), resulting in α = .862. This value indicates that the
internal consistency of responses is high, so the data is likely
to be reliable.

To test the stimulus manipulation, a comparison within each
of the groups (EP and GP) was performed between those
who had seen the survey with the teacher in the picture and
those without the teacher. For this, Mann-Whitney U tests
were conducted for the questions relating to acceptance of
robots in education (the same ones as for Cronbach’s Alpha:
questions 4 to 10 and 14). No significant differences were
found for any of the questions for the GP sample (U values
varied from 666.5 to 904.0 and p values varied between .161
and .731). Nor were significant differences found for the EP
sample (49.0 < U < 140.5; .142 < p < .712). This provides
a strong indication that the change in picture stimulus did not
cause significant differences in responses. Due to this, for the
remaining analysis, no distinction will be made between the
two conditions with (TE) and without (NT) teacher visible in
the stimulus.

A. Interest in Technology and Positivity Towards Robots

When seeking to address Hypothesis 1, we identified a bias
towards having a favourable view of technology in the data
collected from the online survey. The first question of the
survey asks how interested the participant is in science and
technology (very, moderately, or not at all). For the EP, the split
falls roughly in line with that of the Eurobarometer [9], but our
general public view is clearly more interested (Table I). This is
reflected in a comparison between the general public (Mdn=3)
and educator (Mdn=2) responses using a Mann-Whitney test:

TABLE I
INTEREST IN SCIENCE AND TECHNOLOGY AS REPORTED BY SURVEY

RESPONDENTS (AND THE EUROBAROMETER [9]).

Group Very
interested (%)

Moderately
interested (%)

Not at all
interested (%)

General public 61 37 2
Educators 31 57 12
Eurobarometer 25 47 28
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Interested in Technology
Not at all Moderately Very

Fig. 3. A significant correlation is observed between educator age and
interest in technology, with younger educators reporting to have less interest
in technology.

U = 1029.5, p = .002, r = .29. This also carries through to
how positive a view they hold about social robots (question 2;
5 point Likert from very negative to very positive). A Mann-
Whitney test indicated that the general public held a more
positive view of social robots (Mdn=4) than educators (Mdn=3),
U = 820, p = .001, r = .32.

These responses were correlated with the questions regarding
views about the use of robots being used in education. It was
found that a positive correlation exists between how positive
a view someone has about social robots (question 2) and
the role that a robot should play in child education for both
educators (rs(25) = .561, p = .002) and the general public
(rs(84) = .390, p < .001). These fundamental differences
cause problems in comparing between educators and the general
public, and the general public and the Eurobarometer findings.
If it were reflective of differences between the general public
and educators, then this would be an acceptable factor, but
we hypothesise that it is instead because of a pro-technology
bias caused by the online method used to gather general
public responses. As such, a direct comparison would not
be appropriate for exploring Hypothesis 1, nor can the EP and
GP samples be considered homogeneously.

There is an observed positive correlation between age and
interest in technology for educators (rs(31) = .492, p = .004;
Fig. 3), but not for the crowdsourced responses (rs(85) =
−.093, p = .393). This is probably due to the self-selecting
nature of the crowdsourced participants, but is an interesting
finding for the educators – this will be returned to in the
discussion (Sec. VI).

Due to the differences between our crowdsourced sample
and the Eurobarometer sample, a direct comparison that was
intended to be explored as part of Hypothesis 1 (that providing
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Fig. 4. Opinions from educators about how robots should ideally be used in
child education split by school. This was a forced choice survey item, with
an implicit scale from 1 to 5: ‘be banned’, ‘be limited to very specific cases’,
‘remain moderately used, like other technical devices’, ‘gain an important role
as a tool for the teacher’, ‘become an educative agent; part of the teaching
team’ (and an ‘I don’t know’ option, not shown). * indicates outliers.

a context as we do in our survey will lead to more positive
responses) would not be sound. However, it should be noted
that the Eurobarometer reporting of 34% wanting robots to be
banned in education was not reflected in our results, where only
2 respondents (both from the educator sample) want robots to
be banned from use in education (Fig. 4).

B. Cultures Within Schools

To further explore the views of the education professionals,
we compared the responses from the different schools. We find
that despite there being no significant differences in interest
in technology (School A: Mdn=2, School B: Mdn=2; Mann-
Whitney U = 123, p = .263, r = .19), there are differences in
attitudes towards the use of social robots in education. Question
14 on the survey (see Fig. 4) is particularly indicative of an
overall view, asking how social robots should ideally be used
in child education. These answers were converted to an ordinal
scale, with be banned receiving the lowest score, and become
an educative agent; part of the teaching team the highest.
A Mann-Whitney U test found that a significant difference
exists between School B (Mdn=2) and School A (Mdn=3),
U = 62, p = .012, r = .45 (Fig. 4).

No significant demographic differences could be found
between the two schools to explain the difference in attitudes,
although their locations could be a factor. School A, which
appears to be more open to the use of social robots in
education is situated in a rural village (population approx.
7,000), whereas School B is within a reasonably large U.K.
city (population approx. 250,000). We would hypothesise two
possible explanations: (1) differing micro-cultures between
large cities and small villages lead to different concerns for
children’s well-being, or (2) differing ethos between schools
regarding their attitude in general towards teaching science and
technology. The former will be discussed further in Sec. V-D,

0 2 4 6        8    10 12 14 16 18

Computing 
Science

Maths
Foreign languages 

unsure
History

Music
English 

Geography
No subjects
All subjects 

Religious education 
Physical education 

Art

Number of Responses

Fig. 5. Opinions from education professionals about the subjects in which
they think social robots could be used to aid learning (forced choice survey
item; multiple responses can be selected, leading to 101 total responses).
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Fig. 6. Opinions from education professionals about how robots could be
used in a school classroom (forced choice survey item; multiple responses can
be selected, leading to 74 total responses).

but the latter would require further investigation to analyse the
‘culture’ within the schools.

C. Robots as a STEM Tool

Two questions on the survey were used to address how
people perceived the uses of robots in terms of the content
it could deliver, and in which role (Hypothesis 2). It was
hypothesised that robots would be seen as a tool for delivering
STEM education, and indeed this was supported through the
data. Twenty of the 35 educators thought that the robot could be
used to aid learning in computing (which covers programming,
I.T., digital security, etc.), followed by science (19) and maths
(16), with humanities such as art (4) and religious education
(5) receiving very few responses (Fig. 5).

The survey question 11 asked about the envisioned role of
social robots in the classroom, with several options ranging
from an ‘entertainment device’, a ‘tool’, a ‘peer for children‘,
and a ‘teacher itself‘ (see Fig. 6 for all options). In line with
the results presented in Fig. 4 and in the previous paragraph,
the education professionals mainly see robots as tools (Fig. 6)
– again providing support for Hypothesis 2. In more than 30%
of the cases, the EP also view the robot as a toy, which may
reflect misconceptions or a lack of clarity about robots in a
learning environment. We comment further on this point in the
discussion.



TABLE II
PERCEIVED OBSTACLES TO ADOPTION, AS MENTIONED IN FREE TEXT

ANSWERS TO QUESTION 15. PARTICIPANTS COULD MENTION SEVERAL
ITEMS. THE PERCENTAGE OF RESPONDENTS MENTIONING THE ITEM IS

PROVIDED FOR BOTH EDUCATION PROFESSIONALS (EP) AND THE GENERAL
PUBLIC (GP) WITHIN EACH GROUP.

Obstacle #EP % of cases #GP % of cases

Source of distraction 10 34.5% 10 16.1%
Lack of social skills 9 31.0% 9 14.5%
Practical issues 7 24.1% 17 27.4%

of which, cost 1 3.4% 12 19.4%
Risk of isolation 6 20.7% 1 1.6%
Workload/orchestration load 5 17.2% 6 9.7%
Public perception 2 6.9% 10 16.1%
Ethical concerns 2 6.9% 1 1.6%
Safety 1 3.4% 2 3.2%
Technical limitations 1 3.4% 7 11.3%
Educational efficacy 0 0.0% 9 14.5%
Societal impact 0 0.0% 8 12.9%

D. Perceived Obstacles to Adoption

To explore Question 1 (Sec. III), a question was used to
ask ‘what would you see as the main obstacles for having
robots in a classroom?’. This question had a free text answer
so that responses were not constrained; an answer was not
forced for this question. The responses from the educators
provided many insights into the use of social robots in schools,
often revealing deeper concerns that were hard to capture
through other questions. Of the 35 EP respondents, 29 provided
an answer for this question, and of the GP respondents, 62
provided an answer. We group these responses in a series of
categories (formed by considering all responses), which are
shown in Table II.

The most cited obstacle to adoption for EP is the robot being
a potential source of distraction for the children – something
that falls in line with prior research [11], [12]. However, this
rather broad category could actually reflect the fact that teachers
do not have a clear idea of what the robots could be used for
(the context provided for the survey was minimal, so a precise
role for the robot was not specified). In contrast, the most cited
obstacle perceived by the GP sample were practical issues, and
in particular, the cost of the robot. Cost was not mentioned
in the survey at any stage, so this indicates that there is a
pre-conception that these robotic devices would be expensive
(or at least more expensive than schools can afford).

The perceived lack of social skills (simplistic interactions,
lack of empathy, lack of flexibility) of robots gives a com-
plementary picture of the current perception of robots by the
education professionals: they are primarily seen as a scripted,
reactive machine. This issue was somewhat surprising as it
had not commonly been raised as an issue in prior work. More
expectedly, a range of practical issues (cost, maintenance, space
requirements) are mentioned, but usually along with other
factors. Contrary to the perception by the general public, they
do not appear to be the teachers’ main concern at this stage.

Another factor that had not been hypothesised was the
mention by several teachers of an increased risk of child

isolation (for example, one comment read: ‘I consider that
many of our children are already isolated and this could
isolate and potentially marginalise them further’). This would
support the pushing forward of social approaches to child-
robot interaction, like robot-mediated collaborative learning
(i.e., using technology to further encourage interactions between
child peers).

Some concerns were also raised in relation to the increased
workload or classroom orchestration load brought by the robots
for the teachers. These issues have been studied in the context
of computer-supported learning (for instance [18]), but are yet
to be fully considered in the field of ‘robot-supported’ learning.

Finally, surprisingly few ethical and safety-related concerns
were raised. Such concerns do not appear to be prevalent
amongst the EP respondents.

E. Demographic Factors

Other demographic factors in the education professionals
sample (age, gender, number of children, education level) do not
appear to have an impact on opinions about how social robots
should be used in child education. Linear ordinal regression
does not reveal a statistically significant factor when considering
participant age, gender, number of children, or education level
(Nagelkerke pseudo R2 = .146, so the demographic factors
only account for around 15% of the variance in how participants
believe social robots should be used in child education). A
model with a high goodness-of-fit could not be found when
performing the same regression on the data from the general
public (possibly due to the sample bias towards high interest
in technology overpowering the other factors).

VI. DISCUSSION

A bias towards a positive view of science and technology
was introduced through the means of collecting responses from
the general public - via an online crowdsourcing service. This
prevented us from directly addressing Hypothesis 1 through a
comparison to the Eurobarometer survey data. However, we do
see that there is a general openness to using social robots in
education, although education professionals may approach this
with a degree of caution (Fig. 4, Sec. V-D). There is also a
strong pre-conception from educators that social robots would
be suitable for teaching STEM subjects, adopting the role of a
tool, rather than as an educative agent (Hypothesis 2, Sec. V-C,
Fig. 5). These findings were observed regardless of whether
respondents had been presented with a picture including a
teacher, or not including a teacher in the introductory context
for the survey (Sec. V).

Some perceptions based on pre-conceptions may well change
with greater exposure to social robots that can do more than
be used as a tool for STEM subjects (for example, as recently
shown with handwriting learning [5]). However, a general
lack of interest in science and technology (particularly from
younger educators – Sec. V-A) could produce greater, and
cyclical barriers to use. It has been shown that there are
links between teacher interest and confidence in teaching
subjects [19], as well as reciprocal effects between teachers



and child in engagement in learning [20]. It follows that if
teachers are less interested in teaching technology, students will
be reciprocally less interested, they will learn less [21], and be
less likely to continue study of that subject [22]. This presents
a concerning cycle wherein those students who eventually
become teachers are also likely to lack interest in teaching
those same subjects. The lack of interest of younger teachers
for technology also comes as a surprise as one would typically
expect younger teachers to be more engaged with computer-
related technologies.

This is potentially where the broader aspects of using a social
robot could be beneficial in breaking down some barriers to
use. The robot is a technological device, but could be used to
teach a variety of subjects with an element of sociality. The
use of the robot could stimulate interest in technology, and
the social aspects of robot behaviour could be used to create
reciprocal interest in those subjects (as has been attempted
for some aspects of behaviour [23]). This calls for a greater
exposure of teachers to our robotic systems, so that they better
comprehend the capabilities, current limited performance, and
possible future applications of social robots in education.

Successfully addressing the concerns highlighted by educa-
tors in Sec. V-D (in relation to Question 1, Sec. III) would
provide an essential first step towards this goal. Some of
the concerns may arguably be alleviated once the teachers
(and the children) familiarise themselves with the robots (the
robot being a source of distraction is likely to resolve quickly
after novelty goes away) or once the penetration of robots in
classrooms increases to a point where dedicated companies
could regularly take over training and maintenance issues.
However, other issues, like the richness of the interaction, the
adaptability of the robots to rapidly (or, on the contrary, slowly)
change in response to child behaviours, or the suitability of
social robots to develop children’s peer-group sociality, present
more fundamental questions. We believe that these behavioural
considerations must remain central to the research agenda of
child-robot interaction.

VII. CONCLUSION

Overall, we find that the attitude towards social robots in
schools is cautious, but potentially accepting (in line with
previous findings [13]). The perceived obstacles to adoption of
robots in classrooms which the education professionals high-
light raised some surprising considerations, such as potential
isolation of students which would warrant further long-term
study. For the educators, concerns about appropriate social skills
for the robots dominate over practical and ethical concerns,
suggesting that this should remain a focus for child-robot
interaction research.
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Towards “Machine-Learnable” Child-Robot Interactions:
the PInSoRo Dataset

Séverin Lemaignan1, James Kennedy1, Paul Baxter2 and Tony Belpaeme1

Abstract— Child-robot interactions are increasingly being
explored in domains which require longer-term application,
such as healthcare and education. In order for a robot to behave
in an appropriate manner over longer timescales, its behaviours
should be coterminous with that of the interacting children.
Generating such sustained and engaging social behaviours is an
on-going research challenge, and we argue here that the recent
progress of deep machine learning opens new perspectives that
the HRI community should embrace. As an initial step in that
direction, we propose the creation of a large open dataset
of child-robot social interactions. We detail our proposed
methodology for data acquisition: children interact with a robot
puppeted by an expert adult during a range of playful face-to-
face social tasks. By doing so, we seek to capture a rich set of
human-like behaviours occurring in natural social interactions,
that are explicitly mapped to the robot’s embodiment and
affordances.

I. MACHINE LEARNING: THE NEXT HORIZON FOR
SOCIAL ROBOTS?

While the family of recurrent neural networks have re-
peatedly made the headlines over the last few years with
impressive results, notably in image classification, image
labelling and automatic translation, they have been largely
ignored in many other fields so far as they are perceived to
require very large datasets (hundreds of thousands to millions
of observations) to actually build up useful capabilities.
Even though neural networks have demonstrated compelling
results in open-ended, under-defined tasks like image la-
belling, they did not stand out as attractive approaches to
problems involving high dimensions with relatively small
datasets available – like human-robot social interactions.

Besides, if one considers “social interactions” to also
entail joint behavioural dynamics, and therefore, some sort of
temporal modeling, neural networks look even less enticing
as time is notably absent from most of the tasks which neural
networks have been successful at.

In 2015, the Google DeepMind team demonstrated how a
convolutional recurrent neural network could learn to play
the game Break-Out (amongst 48 other Atari games) by
only looking at the gaming console screen [1]. This result
represents a major milestone: they show that a relatively
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small sample size (about 500 games) is sufficient for an
artificial agent to not only learn how to play (which requires
an implicit model of time to adequately move the Break-
Out paddle), but to also create gaming strategies that look
like they would necessitate planning (the system first breaks
bricks on one side to eventually get the ball to break-out and
reach the area above the remaining bricks, therefore ensuring
rapid progress in the game). We argue that the complexity
of mechanisms that such a neural network has been able to
quickly uncover and model should invite our community to
question its applicability to human-robot interactions (HRI)
in general, and sustained, natural child-robot interactions in
particular.

However, the lack of a widespread HRI dataset suitable
for the training of neural networks is a critical obstacle to
this initial exploration. Therefore, as a first step, we propose
a design for such a dataset, as well as a procedure to acquire
it. We hope that discussions during the workshop may help
in further refining this proposal.

II. MACHINE LEARNING AND SOCIAL BEHAVIOUR

Using interaction datasets to teach robots how to socially
behave has been previously explored, and can be considered
as an extension of the traditional learning from demonstration
(LfD) paradigms to social interactions (for instance [2],
[3]). Previous examples have generally focused on low-level
recognition or generation of short, self-standing behaviours,
including social gestures [4] and gazing behaviours [5].

Based on a human-human interaction dataset, Liu et
al. [6] have investigated machine learning approaches to
learn longer interaction sequences. Using unsupervised learn-
ing, they train a robot to act as a shop-keeper, generating
both speech and socially acceptable motions. Their approach
remains task-specific, and while they report only limited
success, they emphasise the “life-likeness” of the generated
behaviours.

Kim et al. [7] highlight that applying deep learning to
visual scene information in an HRI scenario was successful,
but that generating behaviours for the robot to be able to act
in a dynamic and uncertain environment remains a challenge.

These examples show the burgeoning interest of our
community for the automatic learning of social interactions,
but also highlight the lack of structure of these research
efforts, as further illustrated by the quasi-absence of public
and large datasets of human-robot interactions. To our best
knowledge, only the H3R Explanation Corpus [8] and the
Vernissage Corpus [9] have been published to date. The H3R
Explanation Corpus is a human-human and human-robot



Fig. 1. The acquisition setup: a child interacts with a robot in a range
of interactive tasks. The robot is physically guided by an adult expert. We
record, in a synchronised manner, the full joint-states of the robots, the RGB
and depth video stream from three perspectives (global scene and each of the
participant faces), and the sounds (notably, the verbal interactions between
the participants).

dataset focusing on a “assembly/disassembly explanation”
task and includes physiological signals (22 human-robot
interactions), but is not publicly available. the Vernissage
Corpus includes one museum guide robot interacting with
two people (13 interactions in total), with recordings and
annotations of poses and speech audio (stated to be publicly
available). Both these corpora are however too small for
machine-learning applications.

III. THE PLYMOUTH INTERACTING SOCIAL ROBOTS
DATASET (PINSORO)

A. High-Level Aims

The Plymouth Interacting Social Robots (PInSoRo)
Dataset is intended to be a novel dataset of human-guided
social interactions between children and robots. Once cre-
ated, we plan to make it freely available to any interested
researcher.

This dataset aims to provide a large record of social child-
robot interactions that are natural: we aim to acquire robot
behaviours through corresponding human social behaviour.
To this end, we propose that an expert adult will puppet
a passive robot (Fig. 1). As such, the gestures, expressions
and dynamics of the interaction are defined and acted by a
human, but as he/she uses the robot body to actually perform
the actions, the motions are implicitly constrained by (and
thus reflect) the robot embodiment and affordances.

The interactions are supported by a range of short social
tasks (described in Section III-B). Critically we propose to
limit these tasks to face-to-face social interactions, either
dyadic or triadic. This constrains the dataset to a more
tractable domain, and should ensure technical feasibility. The
tasks have to fulfil several key requirements:

• be fundamentally social, i.e. these tasks would make
little or no sense for an agent alone;

• foster rich multi-modal interaction: simultaneous
speech, gesture, and gaze behaviours are to be observed;

• exhibit non-trivial dynamics, such as implicit turn-
taking;

• should cover a broad range of interaction contexts and
situations.

While the tasks will initially be short (in order to acquire
a diverse enough dataset), we believe that the captured
social behaviours could also be used to inform long-term
child-robot interaction. Indeed, naturalistic, rich and socially-
oriented multimodal behaviour (beyond simple stereotyped
and reactive behaviour) sets the expectation in the human
that long-term interactions and social presence [10] can
be supported by the robot. Furthermore, we expect such
a dataset to allow researchers to uncover several implicit
and/or micro-behaviours that, while essential for long-term
natural interactions, are difficult to explicitly characterise,
and therefore difficult to implement.

B. Tasks

We suggest an initial set of four tasks, lasting about
10 minutes each. They involve collaborative manipulation
of simple objects (such as toy cubes), (acted) storytelling,
and dialogue-based social gaming. The tasks are intended
to be sufficiently different from one another in order to
collect a variety of different behaviours, and to minimise
task-dependency of the behaviours eventually learnt from the
dataset. Physical manipulation of objects across the tasks is
limited by the Aldebaran Nao grasping capabilities; the tasks
are designed with this in mind, e.g. pushing objects away or
to the side is possible, whereas pulling them is more difficult.

The tasks are also designed to be playful and engaging,
and are derived from classic childrens’ games and activities
(they are directly inspired by tasks used in other child-robot
interaction work, such as [11]). They are thus expected to
elicit social interactions that are particularly relevant to child-
robot interaction.

a) Task 1: Spatial reasoning: In this task, one part-
ner (child or robot) has a “completed” model made from
shapes. Their role is to explain to the other partner how to
arrange an identical set of shapes in order to re-create the
completed model. The partner with the completed model is
not allowed to directly touch the shapes. This task is intended
to encourage verbal communication and deictic as well as
iconic gestures. It is possible to tune the difficulty of the
task through, for example, providing multiple pieces with
the same colour, or shape. Similar spatial tasks have been
used in other HRI experiments both with adults [12] and
children [13].

b) Task 2: Storytelling: The second task revolves
around storytelling. To provide a context and collaborative
element to the storytelling, “Story Cubes” are incorporated
into the task. These cubes are like dice, but with pictures
in place of numbers; the pictures serve to guide the story.
The two partners are asked to invent a story together, and
they take turns in throwing one (large, custom-made) die,
arranging the new picture into the story line, and proceeding
to tell, and act out, the unfolding story. This task is expected
to primarily generate verbal interaction, accompanied by
iconic gestures.



Fig. 2. A sokoban-inspired task requiring collaboration to complete given
limitations in robot manual dexterity: the robots face each other across the
long edge of each puzzle. Each object (red/blue square) must be pushed
to its own goal (red/blue G), in three example levels of difficulty: (A) red
and blue objects each simply pushed by one individual, both interactants
required, but no explicit collaboration; (B) again a single object requires
only a single interactant to manipulate, but some coordination is required
due to shared path; (C) each object requires both interactants to manipulate,
as well as coordination due to joint path.

c) Task 3: Collaborative strategising: The third pro-
posed task is inspired by the Sokoban game (Fig. 2): the
two partners must correctly move a set of cubes to locations
within a 2D playground by only pushing the cubes. Due to
the physical setup of the interaction (Fig. 1), the robots are
essentially limited to pushing away the cubes, transforming
the game into a necessarily collaborative activity.

d) Task 4: Party game “Taboo”: The fourth proposed
task involves triads in a social party game chosen not to
require specific gesturing. One such game is “Taboo”, a game
where one must get others to guess a word without using the
word itself. As the game relies only on verbal interaction,
we expect all the gestures and gaze behaviour performed
by the players to be social backchannel communication, and
therefore of direct relevance for the dataset. Using triads is
also expected to elicit a richer set of social situations. We
expect it to prevent the overfitting of the model to the specific
features of dyadic social interactions.

C. Methodology

The envisioned dataset would be comprised of a large
number (> 50) of about 30 minutes long recordings of
interactions between one child and one puppet-robot, guided
by an experimenter (Fig. 1). The pair would be invited to
play one or several of the proposed tasks (to be defined after
initial pilots). The children would be between 8 and 14 years
old. A possibly narrower age range is to be specified once the
tasks are precisely defined to ensure the tasks are suitable and
engaging for the target age group. Children would typically
be recruited from local schools.

We propose to use a Nao robot, and to record the full joint-
state of the robot over time. The robot is mostly passive:
the feet are firmly fixed on the support table, and all other
degrees of freedom, except for the head, are free. The head
is externally controlled so that the robot gaze follows the
gaze of its human puppeteer in real-time.

The choice of the Nao robot is guided by its small size,
making it suitable for puppeting, and its prevalence in the
HRI community, resulting in a dataset relevant for a broader

academic audience. Also, since Nao is a relatively high
degrees-of-freedom (DoF) robot (25 DoFs in total, 5 DoFs
per arm), it mimics human kinematics reasonably well. As
the motions are recorded in joint space, the dataset can
be mapped to other robotic embodiments with similarly
configured degrees-of-freedom.

D. Recorded Data

The dataset would comprise the following raw data:
• full 30Hz 25 DoF joint-state of the Nao robot,
• RGB + depth video stream of the scene (see Fig. 1),
• RGB + depth video stream from the child, as seen by

the robot,
• speech recording.
Recorded in a fully synchronised manner, these data

streams are intended to represent a useful input for many
machine-learning techniques. They provide a rich dataset for
a range of domains related to social child-robot interaction:
from analysis of behavioural alignment between partners
(via metrics like the recently proposed Individual Motor
Signature [14]), to modeling of the dynamics of turn-taking,
to the uncovering of implicit in-the-moment synchronisation
mechanisms.

This would be complemented by higher-level, post-
processed data:

• 68 face landmarks on the child’s face, providing options
for further facial analysis (like emotion recognition),

• child’s skeleton extraction,
• the gaze localisation of each of the participants,
• the 3D localisation of all physical actors (child, all robot

parts, cameras, table, manipulated objects),
• the verbal interaction transcripts (automatic transcript

with manual verification and correction).
All these sources would be acquired via the ROS mid-

dleware (which provides the required mechanism for time
synchronisation between the sources) and stored as ROS bag
files, making it simple to replay the interactions.

As this dataset would contain sensitive data involving
children, strict and specific guidelines to ensure the ethical
handling of the dataset will be issued before effectively
sharing any data.

IV. DISCUSSION

A. Envisioned Applications

The recent advances in machine-learning described in the
introduction raise the question of its applicability to the key
challenges of artificial intelligence for robotics. Social HRI is
a particularly difficult field as it encompasses a large range of
cognitive skills in an intricate manner. Application domains
of social HRI are typically under-defined, highly dynamic
and difficult to predict.

From the data collected, a starting point for machine
learning could entail a probabilistic model for reactive be-
haviours in a given task, i.e. finding for each “social cue” the
possible set of responses and their probabilities. This could
be made generative by using the probability distribution to



seed a roulette-wheel action selection mechanism, effectively
creating a probabilistic reactive controller. Whilst simplistic,
this is an illustrative example of how the data may be used.

As suggested in the introduction, we also believe that such
a dataset could be used to train deep neural networks. While
the proposed dataset is very likely not comprehensive enough
to train a neural network into an autonomous interactive
system, it may be sufficiently rich to train interesting hidden
units whose activations would be conditional on specific
social situations. For instance, one could imagine that an
adequately configured network would generate hidden units
able to activate on joint gaze, or on deictic gestures. It must
be emphasised that such findings are entirely hypothetical,
and we only conjecture them here.

B. Possible Methodological Alternative

Several methodological issues that may impact on the
quality of the interaction, the data collection, and the gener-
alisability of results have been anticipated. As the puppeteer
behaviours are bound to the embodiment of the robot, it may
be that this manipulation inhibits the production of natural
behaviours. A small-scale pilot will be used to explore
whether or not the puppetted behaviours of the robot inhibit
natural interactions with the children.

Besides, one drawback of the proposed acquisition
methodology is that the puppeteer remains partially visible
to the child (the hands, legs, torso are visible), which may
impact the clarity of the interaction (is the child interacting
with the robot or with the human behind it?). An alternative
acquisition procedure is considered where the puppeteer
would remotely control the robot from a different room,
using Kinect-based skeleton tracking for the posture control,
a head-mounted device for immersive remote vision, and
a headset for remote audio. While this adds significant
complexity to the acquisition procedure and increases the
level of dexterity a task may require, it would provide a
cleaner interaction context.

While the tasks have been designed to collect a variety
of social behaviours and interaction dynamics, it may be
that they are still too similar for any subsequent machine
learning to acquire adequately general (i.e. not task-specific)
behaviours for broader use. Similarly, the use of a single
robot may prevent generalisation to other robotic platforms.
However, it is not possible to know until algorithms have
been applied and tested.

C. Long-Term Considerations

If useful social behaviours can be learnt from the initial
dataset collected, then this would warrant further collection
and exploration of the technique. Transfer to adult-adult
pairs could be conducted (possibly with modification of the
tasks). Child pairs performing the tasks without the robot
could be used to further update behavioural models, as could
human behaviours in response to learned robot models, thus
providing longer-term adaptivity of behaviour.

Whilst we must acknowledge that the task-centred in-
teractions we propose as part of the PInSoRo dataset are

relatively short-term, we do argue that they are capable of
simultaneously capturing a range of subtle and complex
naturalistic behaviours across a range of different modali-
ties. This type of rich behaviour (by going beyond simple
stereotyped and reactive behaviour) supports the expectation
in the human that they are interacting with a truly socially
competent agent, thus providing the conditions in which
long-term child-robot interactions could take place. The ap-
plication of machine learning algorithms (particularly “deep”
methods) provide an opportunity to automatically datamine
the solutions to this vastly complex problem that may not be
possible with hand-coded systems. Whilst this methodology
may yet prove to not be sufficient for a complete solution,
we propose that the PInSoRo dataset (and others that may
follow) establishes a necessary foundation for the creation
of socially-competent robots over long-term interactions.
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Abstract—The relationship between personality and social
human-robot interaction is a topic of increasing interest. There
are further some indications from the literature that there
is an association between personality dimensions and various
aspects of educational behaviour and performance. This brief
contribution seeks to explore the single personality dimension of
extroversion/introversion: specifically, how children rate them-
selves with a validated questionnaire in comparison to how
teachers rate them using a relative scale. In an exploratory
study conducted in a primary school, we find a non-significant
association between these two ratings. We suggest that this
mismatch is related to the context in which the respective ratings
were made. In order to facilitate generalisation of personality-
related results across studies, we propose two general reporting
recommendations. Based on our results, we suggest that the
application of personality assessments in a child-robot interaction
context may be more complex than initially envisaged, with some
dependence on context.

I. INTRODUCTION

The role of personality in human-robot interaction is be-
coming of greater interest in the field, as attempts are made to
increase the adaptability and personalisation of the robots. For
example, preference has been found in a rehabilitation context
for a robot that matches one’s own personality [1]. Similarly,
in children, robots that take into account the personality of
the interacting child (e.g. if shy) can adapt its behaviour
accordingly to promote interaction [2]. In our research, we
are generally interested in having robots adapt to children
within interactions in order to facilitate some outcome such as
learning or behaviour change, e.g. [3]. As a trait upon which
adaptation can be based, personality is therefore of interest.

There are a number of problems with administering of
lengthy questionnaires to children, particularly those related
to personality assessments. Primarily, these include the level
of concentration required for completion, and the conceptual
level of the questions (specifically if abstract, or relating to
life experiences that may not be typical for children). For this
reason, there have been a wide range of development and
validation efforts to produce short-form questionnaires in a
range of languages. Part of this validation process frequently
involves examining the convergence of personality ratings
between parents, teachers and the children themselves, with
high agreement being used to support validity, e.g. [4]. One
such effort is an abbreviated Junior Eysenck Personality Ques-
tionnaire [5], which attempts to characterise four dimensions
of extroversion, neuroticism, psychoticism, and (questionnaire)

reliability using 24 questions. This was validated with children
in the age range 13–15, although related work showed valid
application to children of a slightly younger age [6]. In
the present study, we employed a short-form version of a
five-factor model questionnaire that has been validated with
children [4]: the BFQ-C.

We focus specifically on the single dimension of extrover-
sion. Prior work has, for example, suggested that extroversion
is positively associated with verbal-imagery-based learning in
children [7], and with help-seeking behaviours (self-regulated
learning) in adults [8]. These make it a dimension of interest
to our educational context. Extroversion is also suitable as a
characteristic of interest since it is a dimension (extroversion
vs introversion) that appears in a range of human personality
theories (for example both the Eysenck and five-factor ‘big 5’
models).

In this study, we examine the relationship between self-
rated scores of extroversion with teacher ratings of relative
extroversion. As a secondary consideration, we also consider
the possible relationship to learning outcomes in a subsequent
collaborative learning task with a social robot, although this
is not the focus of this paper. The work described here
accords with our wider goals of ethologically-appropriate and
valid empirical investigations for child-robot interaction in
educational contexts [9]. First we introduce the exploratory
study (section II), before interpreting the results (section II-B)
as suggesting that care must be taken in considering the
context of the personality assessment (section III).

II. EXPLORATORY STUDY

As an exploratory study, we do not propose hypotheses.
However, from the discussion above, we may venture the
predictions that the child self-ratings of extroversion and
the teacher-ratings of the same will be positively associated
(reflecting that the teachers know the children), and that there
will be a positive association between ratings of extroversion
and learning outcome. In the following, we assess whether the
data provide any support for these predictions.

A. Setup and Method

The study was conducted in two primary schools in the
U.K. 38 children, aged 7–8 years old took part (22 boys,
16 girls). The study was run in accordance with a protocol
approved by the Plymouth University Faculty of Science and



Fig. 1. The teacher scale for relative introversion/extroversion child ratings.
Teachers were instructed to write the names of the children on the sheet.
Numbers in italics (not displayed to the teachers) indicate coding of the
position of the names on the sheet: names on (or next to) the dotted were
assigned the score shown; numbers in the space between dotted lines were
assigned an intermediate score (e.g. 0.3, 0.5, ...).

Technology ethics board. An opt-out consent was obtained
from all parents/guardians of the children, with separate opt-
in consent for image/video recording (not used in the present
paper). All children were permitted to withdraw from the study
at any point upon request. The experiment took place towards
the end of the school year, meaning that the teachers had
spent at least the majority of a school academic year with
the children.

The visit to each school began in the morning: after initial
attendance check, the experimenters were introduced to the
class. They informed the children of the purpose of the visit:
to play a sorting game with the robot and to fill in some ques-
tionnaires (both knowledge pre/post tests and the personality
questionnaire). The extroversion scale questionnaire was then
administered to the children as a group in the classroom, led
by the teacher: independent completion was instructed (and
enforced) by the teacher (i.e. prevention of copying).

Separately, the teacher was briefed on their rating of the
children’s extroversion. On the single dimension of extroverted
to introverted, represented on a single sheet of paper (figure
1), the teachers were asked to place the children in their class
in relation to one another, based on a similar rating scheme as
used in [10]. This scale was therefore an explicitly subjective
and relative rather than a subjective and independent measure
of this personality characteristic. The intention was to examine
the correlation between teacher-ratings and self-ratings rather
than a direct comparison of scores.

Through the rest of the day, the children were brought
one-by-one into a separate room in the school, where they
completed a pre-knowledge test on carbohydrates, engaged
in a sorting task with a Nao humanoid robot (Aldebaran
Robotics) on the topic of carbohydrates for five minutes,
and then completed a post-knowledge test (different pre and
post tests, counterbalanced between individuals, not containing
images used on the interaction).

B. Results

A qualitative inspection of the data does not suggest any
strong relationships between child self-rating of extroversion,
the teacher-rating of the same, and learning outcome (figure
2). The correlation between learning outcome, as measured by

TABLE I
CORRELATION COEFFICIENTS PER QUESTION (n=38 FOR ALL), BETWEEN

INDIVIDUAL RATINGS AND OVERALL SELF-RATING, AND OVERALL
TEACHER-RATINGS. SIGNIFICANT CORRELATIONS (α = .05) ARE

HIGHLIGHTED IN GREEN; ITALISISED VALUES HAVE MARGINAL p-VALUES
(IN RANGE 0.05<p<0.06).

Pearson CorrelationQuestion Self-rating Teacher-rating
Q1 0.4994 0.1207
Q2 0.1845 -0.2115
Q3 0.4734 0.3090
Q4 0.4141 -0.1541
Q5 0.3112 0.0076
Q6 0.3872 0.1234
Q7 0.3187 0.2414
Q8 0.5706 -0.0226
Q9 0.5675 0.1494
Q10 0.1577 0.1348
Q11 0.4890 0.0900
Q12 0.5463 -0.1016
Q13 0.3937 0.1888

pre- to post-test score change, and both self-rating (r=0.030,
p=.857, n=38) and teacher-rating (r=0.029, p=.863, n=38) is
not significant, with very low effect sizes. Due to the incidental
nature of learning outcome for the present contribution, we do
not consider it further, other than to note this lack of significant
association.

Of perhaps more unexpected nature is the low (non-
significant) correlation between the teacher-rating and the child
self-rating (r=0.142, p=.142, n=38, figure 2(a)). This indicates
that there was weak agreement between the children and their
teachers, despite spending extended periods of time with each
other (i.e. the school days).

Examining the correlations between the data obtained on
a single question basis further supports the observation that
there is at best only a weak link between the self-ratings
and the teacher-ratings. Firstly, as would be expected, there
is generally a high number of positive correlations between
the individual question responses and the overall self-rating
(table I). Secondly, however, this positive relationship is not
reflected in the correlation of self-ratings to the overall teacher-
ratings. Only for one question (Q3: “I like to move and to do a
great deal of activity”) is there a moderate positive correlation
(though not quite significant, p=0.059, n=38). Interestingly,
this positive correlation between physical activity and extro-
version has been found in children of this age [11], indicating
some (limited) support for the idea that the teachers do have
some familiarity with the children, and that there is divergence
between the ratings in spite of this.

A further result of interest is related to Q8 (“I like to
talk with others”). There is a strong positive correlation be-
tween the overall self-rating and the response to this question
(r=0.571, p<.001, n=38), but there is no correlation between
the response to this question and the teacher-rating of extro-
version (r=-0.023, p=.893, n=38). Assuming that willingness
of children to speak with others is likely to be one of the more
apparent characteristics of children to their teachers, this lack
of association is perhaps surprising.



Fig. 2. Raw data scatter plots showing the relationship between the metrics of child self-report extroversion (normalised scale), teacher-reported child
extroversion (normalised scale), and learning outcome (post-test score - pre-test score): (a) self-rating versus teacher-rating; (b) self-rating versus learning
outcome; and (c) teacher-rating versus learning outcome.

III. DISCUSSION

The results of this exploratory study suggest that there is
a difference between the way the children see themselves in
terms of extroversion and the way their teachers see them.
Extroversion in this context seems to be a particularly relevant
characteristic to explore in this way given its overt behavioural
component. These results are consistent with previous obser-
vations that there is little agreement between child self-ratings
and teacher-ratings (although parent-ratings fared better) [10],
although the present study extends these by significantly
extending the number of subjects involved. Indeed, the present
results also seem to be in accordance with the results from
the questionnaire validation itself, which suggested a non-
significant association between teacher ratings and child self-
ratings for extroversion, but only for younger children [4].

We, in this and other work, examine interactions between
children and robots in school environments. We are therefore
interested in characterising various aspects of this context in
particular.

One consideration having an effect on these results may be
the environment in which the study was conducted, and the
relationship between this and the teacher as involved observer.
The teacher interacts with the children only during the school
day (with the type of educational environment itself providing
potential biases of child behaviours and teacher interpretations
thereof), and would typically not do so outside of the context
of school. The children are naturally not constrained by school
alone, and as such will have a broader experience upon which
they base their personality self-assessments. It is thus perhaps
not surprising that there is an apparent mismatch between
the children’s perception of themselves (albeit on only one
personality sub-scale) and that of their teachers. The question
then becomes, which assessment (child or teacher) is more
relevant to school performance? This is only speculation, but
the results provide an basis for further empirical exploration.

There are a number of issues, both general and specific, with
the present study. Firstly, we were limited in our examination
of only one sub-scale of personality as characterised by the
5-factor model. Furthermore, while a questionnaire validated
with children was used, the three-item scale we employed

(for reasons of clarity for the children) is relatively coarse,
thus limiting the resolution of the measure. Nevertheless, the
wide range of responses obtained (see Appendix) suggests
that inter-personal variability was still discernible. Secondly,
we were comparing self-ratings from the questionnaire with
relational ratings from a third party (the teacher). Being
relational, this explicitly rated the children with respect to
one another: our prediction that it is reasonable to examine
the association of the two measures is clearly not borne out
by the results. While we interpret this as a context effect,
there is naturally the possibility that it is our comparative
measures approach that is flawed. The mis-matching results
nevertheless remain to be explained, and thus still in our view
constitute a reason to be wary of the self-rating (or other-
rating) measure alone. Thirdly, compared with personality
questionnaire validation exercises (with participant numbers
typically in the multiple hundreds), our sample size (n=38)
is relatively small. Given that at large sample sizes moder-
ate to small correlation coefficients can become statistically
significant, it is possible that a more extended study would
find that our results were also significant. However, the low
effect size (r=0.142) still suggests the lack of a straightforward
positive association between self- and teacher-ratings. Finally
(and in general), there are also a number of issues related
to the administration of questionnaires to children, e.g. [12],
as a result of effects such as social desirability, thus calling
into question the reliability of such methods. While validation
of the questionnaire with the appropriate subject group (i.e.
children in this case) can mitigate this effect, it is necessary
to remain cautious.

While these issues naturally reduce the potential power of
the results obtained, we believe that there are still a number
of pertinent points that are raised by this study. Generally, and
this is of course an important consideration for any empirical
investigation, how can we be sure that we are measuring what
we intend to measure? For our particular case, this was the
(relative) extroversion of the children who took part in the
study: the issue is whether the questionnaire used was adequate
given the context in which it was completed, and whether
the teacher-ratings (using the relative rating method, figure 1)



can give a ‘true’ reflection of the children’s extroversion in
the context of the classroom at least – and indeed whether
this could be different from a rating in a different context.
Validation of the questionnaire [4] suggests that it is a reliable
measure, but does this extend across all contexts? We assumed
that rating extroversion would be reasonably assessed by the
teachers given that it relates to observable behaviours (as
well as attitudes) that would be reasonably expected to be
manifested by the children in the classroom environment.

IV. CONCLUSIONS

In describing these apparently problematic elements of the
present study (section III), we do not seek to suggest that
there is no value in exploring personality characteristics and
its relationship to behaviours and performance. Instead, the
case study presented here suggests that the methodological
and reporting standards of such characteristics require clarity,
in line with similar suggestions for the field of HRI in general
[13]. In order to facilitate this, and to promote generalisation to
(and comparison with) other studies, we suggest the following
(modest) guidelines:
G1. Identify the source of the personality questionnaire (or
other characterisation method) used in terms of the assumed
dimensions (e.g. the ‘Big 5’ or the Eysenck dimensions), and
whether it has been validated with the age group (and indeed
language) under consideration.
G2. Identify the context in which the children completed
the personality characterisation, and indicate possible influ-
encing factors (e.g. completed in the presence of teach-
ers/friends/parents, at home/school, in group/individually).

These guidelines are not particularly novel, and do in
fact simply promote the complete reporting of measures and
possible confounds. However, through our exploratory study
we hope to have demonstrated that an apparent straightfor-
ward characterisation of one aspect of personality involves
a number of complicating factors that should themselves be
characterised. If the results we obtained were anomalous in
some way, we hope that by reporting these potential confounds
other researchers can build on them, by either accounting for
the effect, or discounting it through further investigation. At
the present time however, in our discussion of the results we
highlight the possibility that child self-ratings of extroversion
may be unreliable for child-robot interaction studies, whether
this is due to inherent age-related unreliability, environment
context effects, or others.

We do not suggest that we have a solution to the appar-
ent issues described in this paper, particularly the mismatch
between child- and teacher-ratings of extroversion, although
we do venture some ideas for why this occurred. Indeed, we
recognise a number of limitations in the study that prevent the
formulation of a solution. Nevertheless, the suggestion remains
that the application of personality assessments in a child-robot
interaction context may be more complex than may be initially
envisaged, with some dependence on context. As such, we
suggest that the proposed guidelines will at least provide a
basis upon which progress can be made.
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APPENDIX: ADAPTED EXTROVERSION QUESTIONNAIRE

The adapted child-personality questionnaire (BFQ-C; Extroversion
scale) used is as shown below [4]. Each Likert scale question had
3 possible responses: [Almost Never, Sometimes, Almost Always].
Answers were scored from 1 to 3, respectively, with all responses
scored positively. Maximum range of possible responses: [13, 39].
Actual range of responses recorded: [21, 37], m=31, sd=3.137, n=38.
Q1) I like to meet with other people.
Q2) I like to compete with others.
Q3) I like to move and to do a great deal of activity
Q4) I like to be with others.
Q5) I can easily say to others what I think.
Q6) I say what I think.
Q7) I do something not to get bored.
Q8) I like to talk with others.
Q9) I am able to convince someone of what I think.
Q10) When I speak, the others listen to me and do what I say.
Q11) I like to joke.
Q12) I easily make friends.
Q13) I am happy and lively.



University of Plymouth

PEARL https://pearl.plymouth.ac.uk

Faculty of Science and Engineering School of Computing, Electronics and Mathematics

2016

From Characterising Three Years of HRI

to Methodology and Reporting

Recommendations

Baxter, P

http://hdl.handle.net/10026.1/9460

10.1109/HRI.2016.7451777

Proceedings of the 2016 ACM/IEEE Human-Robot Interaction Conference (alt.HRI)

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with

publisher policies. Please cite only the published version using the details provided on the item record or

document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content

should be sought from the publisher or author.



From Characterising Three Years of HRI to
Methodology and Reporting Recommendations

Paul Baxter, James Kennedy, Emmanuel Senft, Séverin Lemaignan, Tony Belpaeme
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Abstract—Human-Robot Interaction (HRI) research requires
the integration and cooperation of multiple disciplines, technical
and social, in order to make progress. In many cases using
different motivations, each of these disciplines bring with them
different assumptions and methodologies. We assess recent trends
in the field of HRI by examining publications in the HRI
conference over the past three years (over 100 full papers), and
characterise them according to 14 categories. We focus primarily
on aspects of methodology. From this, a series of practical rec-
ommendations based on rigorous guidelines from other research
fields that have not yet become common practice in HRI are
proposed. Furthermore, we explore the primary implications of
the observed recent trends for the field more generally, in terms
of both methodology and research directions. We propose that the
interdisciplinary nature of HRI must be maintained, but that a
common methodological approach provides a much needed frame
of reference to facilitate rigorous future progress.

Index Terms—Challenges; Human-Robot Interaction; Method-
ology; Recommendations; Research Methods

I. INTRODUCTION

Human-Robot Interaction as a research field lies at the
confluence of multiple disciplines, each with their own goals,
assumptions, methodologies and techniques (figure 1). As a
result, it provides a rich environment for a variety of research
questions and empirical investigations. However, this inherent
strength brings with it shortfalls in terms of mismatches
between disciplines that should be accounted for. In this
paper, we provide an overview of the current state of the
field of Human-Robot Interaction through the prism of the
ACM/IEEE HRI conference, and on this basis provide a set
of guiding principles and technical recommendations that will
help to consolidate the progress made thus far, and provide
a platform for future contributions. In doing so, we seek to
promote introspection in the community to provoke discussion,
propagate best practice through our characterisations, and
provide a guide to newcomers to the study of HRI – an
important aspect given the multidisciplinary nature of the field.

We provide two levels of analysis, from researcher-level
to field- and community-level. At the researcher-level, we
identify good practice from both within and without the field,
and formulate practical recommendations that can be readily
applied to ongoing and future research. At the field-level,
we consider the broader themes resulting from the inherently
interdisciplinary nature of HRI, and how these relate to the
methodological and technical challenges faced by researchers.
In doing so, we seek to highlight common ground and future

Fig. 1. HRI as a field seeks to integrate knowledge and techniques from
multiple disciplines (also including design, psychology, etc), but has its own
unique challenges, a number of which we characterise in this paper – numbers
correspond to sections in this paper.

directions to provoke discussion in the field and ultimately
improve the impact of HRI in terms of both research and
applications.

We have summarised data from papers presented at the
last three HRI conferences (2013, 2014, 2015) to provide
recent trends in application and methodology at the primary
conference in the field. A total of 101 papers were analysed,
with each individual paper classified across 14 categories
according to the methods and approaches used within them.
This process provides insights into current approaches and
emerging trends in the field of HRI.

II. MOTIVATIONS AND SCOPE

As noted above, each discipline brought into HRI brings
with it sets of assumptions and motivations. They may also
bring different goals, which may or may not conflict. At the
highest level, for instance, we may make a distinction between
studies that are theoretically motivated vs. application oriented,
and between those that are robot centred vs. human centred.
For example, the use of modelling in cognitive science (where
there are increasing numbers of models ‘embodied’ on robotic
platforms) is typically intended to provide an exploration
or account of some human-centred phenomenon [1] rather
than explicitly seek to improve the robotic agents themselves
– although this is on occasion a useful consequence. For
robots intended for therapy, e.g. [2], the focus of development
is necessarily therapeutic efficacy (i.e. human centred and
application oriented) rather than models of robot cognition.
In contrast, research to develop physically safe robots to
interact with people are more robot-centred and application



oriented emphasising technical contributions, e.g. [3], whereas
developmental robotics as applied in human-robot interaction
contexts are more robot-centred but theoretically oriented,
e.g. [4].

While the presence of this plurality of motivations is not
at issue, these differing founding assumptions and intended
applications require the use of differing hypotheses and
consequently different appropriate methodologies to address
them. This is apparent for example when reconsidering the
examples from cognitive modelling and therapy: in the former,
explicit characterisation of the way a human and robot behave
(and possibly how they generate their behaviours) would be
necessary, whereas in the latter, a focus would typically be
on human behaviour metrics. Whilst such differences do not
necessarily result in tension, they can give rise to differing
and mismatched expectations between those with different
disciplinary backgrounds (as may be expressed in a peer review
process for example), typically where the results from one
domain are applied to another.

We maintain that this richness is essential for the HRI
community, and that it should be preserved. There is a benefit
in closer collaboration and the cross-fertilisation of knowledge
and methods. One potential means could be to provide a
set of benchmarks and target tasks to facilitate comparison
between approaches (as with the DARPA or RoboCup@home
challenges): a danger of doing so however is the alienation of
those parts of the community not engaged in these technical
challenges, and the eventual treatment of these benchmarks
as ends in their own right, rather than means as originally
intended. Therefore, we rather suggest that the provision of a
framework to set out common standards and best practice in
methodology and reporting centred on the main challenges in
the field would encourage and facilitate collaboration and the
cross-application of results without bias towards/against any of
the disciplines that feed into HRI. To this end, our intention in
this paper is to examine and characterise the approaches used
in recent HRI conference publications, the challenges that these
give rise to, and hence to derive a set of recommendations that
can serve as the basis for this common framework.

A reflection of the make up of the conference papers
analysed, our perspective in this paper is primarily experimental,
irrespective of the actual theme that may have been applied
to the paper (e.g. studies, technical advances, design, etc).
That is to say, we focus here on the running and reporting of
empirical studies rather than theoretical, design or technical
contributions in their own right, although we must acknowledge
the importance of each of these. Equally, we note that
qualitative and ethnographic approaches are fundamentally
useful, even if this is not reflected directly in the papers covered
in the present review; indeed, the methodological points we
discuss below are largely relevant to these approaches in HRI.

In conducting our review exercise in this paper, there
are a number of facets of HRI as a field that shaped our
decision to focus on recent conference proceedings, with
the HRI conference as a particularly important venue, as
previously suggested [5]. Since the field is fast paced, with

TABLE I
OVERVIEW OF PAPER AND STUDY TYPES COVERED BY YEAR. NUMBER IN
BRACKETS INDICATES FOR EACH CATEGORY THE PERCENTAGE OF PAPERS
THAT YEAR. NHST: Null-Hypothesis Significance Testing. A ‘UNIVERSITY

SAMPLE’ IS A STUDY WHICH TOOK A SAMPLE OF STUDENTS OR RESEARCH
STAFF FROM A UNIVERSITY OR RESEARCH INSTITUTION.

2013 2014 2015 Total

Number of papers 26 32 43 101
With study 25 31 40 96
NHST 24 (96%) 30 (97%) 36 (90%) 90
University sample 14 (56%) 13 (42%) 18 (45%) 39
Lab study 19 (76%) 23 (74%) 30 (73%) 72
>1 session study 0 (0%) 1 (3%) 4 (10%) 5
Uses WoZ 3 (12%) 11 (35%) 11 (28%) 25

new technological and theoretical developments rapidly shaping
the experiments that are run, conference papers provide the
most readily and rapidly available results in the peer-reviewed
domain, constrasted against the inherently slower publication
turn-around of typical journal articles. Our decision to restrict
our search to the past three years is similarly intended to
explore recent trends given a relatively volatile field.

Through classifying the papers according to the chosen
categories, we have identified a number of features of HRI
methodology and reporting that warrant consideration, which
we have coalesced into six challenges (figure 1 & section III).
These challenges are not restricted to any particular disciplinary
perspective, but are generally applicable, whilst remaining spe-
cific enough to result in practical and actionable recommenda-
tions. The aim in doing so is to structure our recommendations
so as to provide the foundation for a common frame of reference
within which HRI studies with all disciplinary flavours can
push the field forward.

III. METHOD

In order to explore the state of the field of HRI, three years of
published papers for the Human-Robot Interaction conference
were analysed (table I). All 101 full papers from the 2013,
2014 and 2015 proceedings were collated for analysis on the
14 categories shown in table II. All categories were assessed
by manually reading the papers and storing the values in a
spreadsheet (available at http://goo.gl/PfK1IC).

The categories we chose were ones that were common to
all experimental papers, which encompasses the vast majority
of papers examined (96 out of 101). They were chosen due
to their generality to experimental methodology, being aspects
that would be reasonably expected of any study conducted in
the field of Human-Robot Interaction. We thus include robot-
specific aspects (e.g. nature of control) as well as the standard
human-related factors (number of participants, etc), and we
suggest that we have included all relevant factors of this nature.

To collect this data, certain definitions were required. Firstly,
a lab study is considered to be one in which the participants
would have to leave their environment and come to the
evaluation location, whereas a non-lab (or ‘wild’) study is one
in which the experimenters go to the participants’ environment.
Secondly, levels of robot autonomy are described in detail in
section IV-A.



TABLE II
OUTLINE OF THE 14 CATEGORIES USED TO CLASSIFY EACH OF THE PAPERS

CONSIDERED. NHST: Null-Hypothesis Significance Testing.

Category Classes

Stimuli Colocated Robot / Non-Colocated Robot
/ Virtual Robot / Video / Photo / Text /
None

Interactive Yes / No
Robot type/model Name / N/A

Use of Wizard-of-Oz Autonomous / Perceptual WoZ / Cogni-
tive WoZ / User Tele-operation / Exper-
imenter Tele-operation / N/A

Occurences of ‘wizard’ n / N/A

Study with people Yes / No
University sample Yes / No
Mean age participants Mean / Unstated / Unclear
Conducted in lab setting Yes / No
Participants per condition Mean / Unclear / /N/A
Interaction duration (min) Mean / Unstated / N/A
Interactions per week n / N/A
Experiment length (weeks) n / N/A

Use of NHST Yes / No

The most common unit for each of the relevant categories
is used, with translations made if necessary. For papers that
present multiple studies, or pilot studies as well as a larger
evaluation, only the larger evaluation using a robot, or last
study was considered. For interaction durations, if a time range
was provided, then the maximum of the range was recorded.
Missing data, or cases in which the information was not clear,
were annotated in the data collection exercise, with clarification
notes appended.

IV. HRI CHARACTERISATION AND RECOMMENDATIONS

Examination of the collected data suggests six broad charac-
teristics that encompass a wide range of non-discipline-specific
aspects of HRI research. Roughly following the design process
of a system and its subsequent evaluation and reporting, we can
consider them to be comprised of (figure 1): robot autonomy
and study participants (interdisciplinary aspects), environment
and study length (methodological considerations), and statistics
reporting and replicability (validation for the community). In
the following subsections we provide summary information of
the collected data in the 14 identified categories. We note that
only 40 of the 96 (∼42%) papers with studies contain all of
the information in the 14 categories we examined.

A. Level of Robot Autonomy

We recorded whether or not there was any interaction
between the robot (or other stimulus used in an evaluation) and
the participants: i.e. those in which the behaviour of the robot
is in some way influenced by the behaviour of the interacting
human(s). Then, we define several categories in order to assess
the levels of autonomy used in HRI studies, shown below, with
the results reported in table III. These include a conceptual
division in the use of Wizard-of-Oz (WoZ) techniques:
– Autonomous: The robot is fully autonomous; minor interven-
tions are still possible, such as starting the system.

TABLE III
AUTONOMY LEVELS ACROSS ALL THREE YEARS OF HRI PUBLICATIONS OF

STUDIES, INCLUDING THE IDENTIFICATION OF NUMBER OF interactive
STUDIES. RELATIONSHIP BETWEEN LEVELS OF AUTONOMY

Autonomy Level Interactive Total

Autonomous 38 (40%) 46 (48%)
Perceptual WoZ 8 (8%) 9 (9%)
Cognitive WoZ 16 (17%) 16 (17%)
Participant tele-operation 12 (13%) 12 (13%)
Experimenter tele-operation 2 (2%) 2 (2%)
Not Applicable 0 (0%) 13 (14%)

– Perceptual WoZ: The wizard replaces a robotic function
(typically a perception capability, such as speech recognition)
that could be autonomous (algorithms or tools exist for that
function and could have been applied in that context). The
function is performed by a wizard for practical reasons (time,
difficult technical deployment, computational constraints).
– Cognitive WoZ: The wizard replaces cognitive capabilities of
the robot, such as deciding what speech to say, what gestures
to use, or what actions to take. This can possibly lead the user
into ascribing cognitive capabilities onto the robot that do not
exist.
– Participant Tele-operation: The participant in the study tele-
operates the robot as part of the study design, for instance to
study shared autonomy.
– Experimenter Tele-operation: An experimenter tele-operates
the robot as part of the study design, with no intent to deceive
participants that the robot has autonomous capabilities (as in
the case of WoZ).
– Not Applicable: Studies where the autonomy of the robot is
not relevant to the procedure, e.g. no robot is present, there is
no study, participants watch a video.

In many cases it was difficult to assess the level of autonomy
of a robot used in an evaluation. Indeed, 5 papers from 26
utilising a WoZ omit the word ‘wizard’ altogether. This has
previously been raised as an issue in HRI and clear reporting
guidelines have already been put forward [6]. Greater adoption
of these guidelines would clearly aid the field in understanding
the context of the studies conducted.

Note that the level of autonomy, as per our definition, is
not to be taken as a proxy for the system (or experiment)
complexity: some of the systems labeled as autonomous imple-
ment simple, fully scripted interactions. On the contrary, some
of the wizarded experiments do involve complex autonomous
processing for certain parts.

Wizard-of-Oz, as a manipulation technique, is often an
experimentally appropriate methodology. A case in point
consists in using the robot as a puppet to uncover specific social
human behaviours when confronted with a machine (which
is typical for the human centred, theory focused research line
introduced in section II).

When employed, Wizard-of-Oz necessitates special care:
since the interaction becomes partially (or in some cases, en-
tirely) a human-human interaction, mediated by a ‘mechanical
puppet’, the researchers need to ensure replicability of the
wizarded behaviours between participants, and be careful not to
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Fig. 2. Histogram of the average age of evaluation participants by age and
total from the last 3 years of HRI conference publications. There is a clear
peak for the age of student-based samples.

introduce human biases [7]. To avoid these pitfalls, a common
practice entails the wizard strictly adhering to a pre-defined
interaction script.

The level of autonomy of the robot may also alleviate these
issues: the more autonomous the robot, the smaller the human
intervention surface, and the less likely the introduction of
discrepancies between participants, given that a human operator
will adapt their own behaviour in the interaction.

According to our findings (table III), around 40% of studies
presented at the HRI conference over the last three years have
implemented an interaction with a mostly autonomous robot.
While this is certainly not negligible, it also means that a
majority of the research presented at the HRI conference does
not involve interactive autonomous systems.

To address this underlying misunderstanding caused by the
differing high-level research goals, and in line with our goal to
establish a common framework, one recommendation would
consist of explicitly commenting in academic publications on
the level of autonomy of the system, set in the perspective of
the longer-term scientific agenda.

B. Participant Populations

For ecological validity it is good practice to perform evalua-
tions with samples that are representative of the population with
which a system is intended for use (i.e. to avoid sample bias).
Such practice allows for better generalisation to the ‘real-world’,
which is particularly desirable given that a large quantity of
HRI research is conducted in the context of applications which
require practicable solutions (autism therapy, child education,
elderly care, etc.). There will undeniably be a trade-off between
striving for ecological validity and experimental control, but
there are a number of steps which can be taken with regards
to participant populations that would be of great benefit to the
validity of research in the field.

There is a clear imbalance of ages being used in HRI studies
(figure 2). When research was not conducted with children
(aged less than 18), or the elderly (aged over 65), 87% of
studies used samples which drew from university populations
(where age is stated). It may be the case that the intended end-
user of these findings would indeed be only students/academic
staff, or findings are not required to generalise to the wider
population, but this seems unlikely to be the case for all
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Fig. 3. Histogram of the average number of participants per condition of
evaluations from the last 3 years of HRI conference publications. The majority
of conditions have fewer than 20 subjects.

instances. Additionally, it is worth noting that of the papers
analysed that involved subjects, 18 did not report the age of
these participants (figure 2), which further reduces the extent
to which conclusions can be drawn.

Such samples are often dubbed ‘convenience’ samples, and
whilst it is indeed convenient to use students which are readily
available to test a system, questions must be raised as to how
much can be gleaned from any findings. This will vary from
case-to-case, but in principle, we feel that convenience samples
should be avoided, as they may give rise to sample biases.
We should strive towards greater ecological validity to push
the field forwards, and ensure that the conclusions do not
over-generalise away from the specific characteristics of the
participant group used.

In addition, a substantial portion of evaluations in the field
gather data from sample sizes which would be considered small
in terms of human studies (figure 3). In psychology there have
been concerns over small sample sizes leading to underpowered
studies, in turn creating an incoherent body of literature [8].

For HRI to avoid these same problems, larger and more
representative samples are required. However, this is not so easy
to put into practice due to the sheer amount of effort involved
in obtaining not just a greater number of participants, but also
more diverse ones to maintain the generality of conclusions
(where this is appropriate). Indeed, in some cases (e.g. in
therapeutic or medical domains), larger sample sizes may not
be possible. In this case, the importance of reporting standards
come to the fore.

C. Evaluation Environments

The environment in which an evaluation is run can have
a great influence on the behaviour and responses of par-
ticipants [9]. The majority of studies in HRI appear to be
run in laboratories, with an average of M=75% (SD=1%)
of experiments conducted in the lab over the last three
years of HRI conference publications. It has been debated
within psychology as to whether lab experiments provide
external validity (the extent to which generalisation to other
settings and samples is possible) [10], with the conclusion
that experiments at least require ‘experimental realism’: the
degree of authenticity with regards to the phenomenon under
exploration.



However, there is clearly a motivation for HRI experiments
to move out of the lab and into the field, or the ‘wild’, in order
to gather results which have demonstrable applicability. With
such a commitment to field studies, there comes a trade-off
between control and ecological validity. Some of these issues
have previously been discussed in the context of HRI [9]. On
the one hand, there is significant effort required on the part of
the experimenters to run studies outside the lab, which needs
to be acknowledged. Naturally however, the level of effort
does not in itself guarantee a good study. Indeed, there is the
possibility of introducing a number of new confounds related
to the environment itself: for example the potentially complex
effects of children talking to each other about the robot whilst
the experiment is taking place in a school study.

As with the participants themselves (section IV-B), we
suggest that ecological validity should be the main concern: is
the experimental environment suitable given the experimental
hypotheses? Secondly, we would suggest that since some types
of confound are difficult to control for, a minimal requirement
should be to report those confounds most likely to have an
effect on the hypotheses.

D. Length of Empirical Studies

Novelty has often been raised as a potentially confounding or
influencing factor for HRI studies [11], [12]. There is commonly
a call for more long-term studies, or a statement of the desire
for long-term investigation in the ‘future work’ section of HRI
research papers. Table I shows that from 96 studies in the
last 3 years, only 5 have consisted of more than one session
interacting with a robot (one in 2014 and four in 2015). Whilst
it is recognised that many longer-term studies may be published
in different venues (be they journals or other conferences), these
figures still raise questions about how we should consider the
length of empirical studies.

There are of course many situations in which researchers
may either wish to explicitly exploit a novelty effect, or a
novelty effect is simply not relevant for the hypotheses in
question. However, given a general desire to see HRI systems
applicable to, and deployed in, the real world (e.g. as consumer
systems), the issue of how human interactant behaviour will
change over time as the novelty effect wears off remains an
open question, whether this novelty effect applies at the level of
the individual with expectations shaped by the anthropomorphic
features of the robot (one person interacting repeatedly with a
single robot system) or at the societal level (as social robots
become commonplace in the public domain). For example, at
the individual level, there are some suggestions that once the
novelty effect is overcome, the robot behaviour will need to
be more than just believable at a shallow level and beyond the
role played by the robot embodiment, thus raising the necessity
for deeper models of cognition and human behaviour [13].

What then constitutes long-term HRI? We would suggest that
this is linked to the overcoming of the novelty effect, which in
turn is related to the robot, its behaviour, and the interaction
context, as elements influencing the extent to which novel
behaviours are preferred over familiar ones [14]. This non-

standard concept of the novelty factor may prove problematic
in terms of comparing different studies. However, one way of
addressing this could be to develop and use reliable behavioural
metrics (based on gaze and linguistic behaviours for example)
for the characterisation of familiarity.

E. The Approach to Statistics

Null-Hypothesis Significance Testing (NHST) is the de-
facto standard for evaluating the importance of results. In this
process, one checks the hypothesis that the data distribution
(comprising sample size, mean and standard deviation for
normally distributed data for example) obtained from an
intervention condition does not differ from the distribution from
a control condition (the null hypothesis): if this hypothesis can
be rejected (i.e. a p-value less than or equal to some threshold,
typically 0.05), the result may be considered ‘significant’. On
the face of it, this provides a useful means of characterising
the ‘success’ (or not) of a method or intervention. This state
of affairs is reflected in the HRI papers in our sample: ∼95%
(90 out of 96 studies, see table I) of the papers employ NHST
and report p-values to support the conclusions.

However, in recent years there has been increasing criticism
of the importance conferred onto this means of statistical
analysis in multiple fields of research1, e.g. [15]. Indeed, the
problematic nature of NHST has been acted upon by certain
psychology journals, which have effectively banned the use of
it to rest the main results of manuscripts on, e.g. [16]. This
reflects three main concerns (and others): the arbitrary threshold
for significance, replication sensitivity, and lack of effect size
information.

Firstly, significance is typically held at a p-value of 0.05 or
less (or 0.01 in the biological sciences). This is an arbitrary
threshold (1 in 20 chance) that persists for historical continuity
rather than theoretical or empirical merits. Determining the
utility and/or importance (and this is often how significance is
treated) of the result based on such an arbitrary threshold seems
flawed from the perspective of the scientific method. Secondly,
empirical results have suggested, and simulation studies have
shown, that the p-value is highly volatile in experiment
replications, with a variation in an initially significant p-value
in the range [0.00008,0.44], 80% of the time [17]. p-values
are thus unreliable in the face of replication. Thirdly, p-values
do not incorporate any information about effect sizes: a highly
statistically significant result from the perspective of NHST
does not relate to the size of the observed experimental effect,
and thus can not be used alone to assess the importance/impact
of the result.

Descriptive statistics is sensibly recommended as the first
stage of data analysis: we suggest that an increased emphasis
on this should form part of standard reporting practice to
circumvent some of the issues raised above. As an extension
to this, we thus recommend that a minimal requirement for
reporting mean-based data from multiple conditions should be

1Note that NHST is rigourous and mathematically valid, and thus not
intrinsically problematic - the issue is rather the interpretation of the result,
and the meaning derived from it in experimental contexts.



the provision by authors of Confidence Intervals (CI’s) [17],
[18], where the 95% CI is typically used2. Whereas p-values
vary to a great extent, CI’s have been shown to be more reliable,
with an 83% chance that replication will give a mean within
the CI of the original experiment [19]. CI’s also inherently
provide information about the effect size, thus providing an
additional benefit over the reporting of p-values alone.

A further approach that could be brought to bear on this
problem is statistical modelling. While this is on occasion seen
to merely be an alternative means of performing a statistical
analysis, we suggest that it should rather be seen as a change
of perspective. Rather than forming just another statistical test
of significance, the purpose is to gain an incrementally better
view of the phenomena under investigation. In the Bayesian
modelling perspective for example, there is an emphasis on
the accumulation of data, of integrating new observations with
existing knowledge. Previous results help to form priors for
example, which shapes the way new data is viewed. In this
perspective, the role of experimental methodology takes on a
more central importance – it becomes the means by which data
may be consistently integrated into ever more reliable priors.
Our focus on guidelines to form a common methodological
frame of reference thus feeds into these efforts.

F. Replicability

Replication (conducting the same experiment anew) and
reproduction (re-running analyses on the original data to
validate results) are instrumental in weaving a solid and
trustworthy scientific fabric. Concerns have been voiced over
the replicability of results in the sciences [20]. A recent large-
scale replication of 100 psychology studies resulted in only
36% of studies having significant results, while originally 97
of the 100 studies reported significance (p < 0.05). A looser,
subjective definition of replication found that only 39% of
results could be deemed as successfully replicated [21]. While
no published evidence exists on the replication of HRI studies,
it is likely that replication will be of a similar level, due to
the many methodological parallels between HRI studies and
psychology studies.

A first obstacle is the lack of replicability: HRI studies are
often challenging to replicate due to the nature of robotic
hardware, the experimental setup, and the particular platform,
environment and participants used. Access to specific robotic
hardware is often restricted, especially if hardware is rare,
expensive or difficult to access – e.g. androids or bespoke
platforms. In addition, publications often do not have a detailed
methods section facilitating replication, and software is, despite
increased attention for open source initiatives, not widely shared
in the HRI community.

On the other hand, increasing the reproducibility of our
studies is likely less of a challenge. It mainly calls for sharing
datasets and/or results and the means of analysing them (e.g.
data processing scripts). Whenever the datasets can not be made

2The use of 95% is a similarly arbitrary threshold as the 0.05 threshold for
NHST p-values. However, CI’s only provide a descriptive perspective, and not
a metric of significance in themselves, thus avoiding the threshold problem.

anonymous, privacy concerns are likely to arise: those may
be alleviated with agreed consent from the participants that
“their data may be used for academic purposes” and through
adequate sharing methods within the community. Note that we
observe in recent years a clear trend toward ensuring datasets
are available for papers to be considered for publication (case
in point, taken from the author guidelines of PLOSOne: “PLOS
will not consider submissions from which the conclusions are
based on proprietary data”). We can only encourage the HRI
community to actively embrace this practice.

A second obstacle however is the lack of incentive to
replicate or reproduce studies. Academic reward systems and
the current reviewing culture favour novelty over replication.
This not only leads to a lack of validation of results and claims,
but leads the field to chase the novel and exciting, rather than
confirming or –perhaps even more importantly– refuting claims.
As [21] eloquently points out, “Innovation points out paths
that are possible; replication points out paths that are likely;
progress relies on both”.

A possible solution might be to create a new outlet for
replication studies: if a journal or conference would welcome
brief publications on successful or unsuccessful replications,
this would demonstrate that replication is valued and would
incentivise the consolidation of HRI insights.

V. DISCUSSION

Our identification of six characteristics of HRI studies,
supported by recent conference publication trends, and our
subsequent exploration, have led to the proposal of six
recommendations. These are both specific researcher-level
recommendations that can be readily and practically applied
to ongoing empirical work and the reporting of these, and also
more general field-level recommendations that apply to the
level of the field rather than individual researchers (see table
IV for a summary).

A. Interdisciplinary Methods and Tools

Given the diversity of discipline-specific motivations and
goals (section II), there are a number of sources that emphasise
the importance of a common or shared mission if interdisci-
plinary efforts are to succeed, e.g. [22]. At the level of the
field, we caution against specifying a mission statement that is
too specific in terms of application or method. Such an effort
would be likely to provide exclusions from the field, which
we would suggest is (at least currently) unnecessary. From this
perspective the current (brief) mission statement listed on the
HRI community website provides a suitably general outline of
the field: “HRI is the multidisciplinary study of human-robot
interaction”. At the level of individual research contributions
however (e.g. a single study, series of experiments, or project),
we believe such a statement to be a necessity for clarity of
hypothesis, coherency, and appropriateness of the methods and
metrics employed to investigate them.

However, with such a broad mission statement as used by the
HRI community website, there need to be structures in place to
ensure coherence in the field and to promote cross-disciplinary



TABLE IV
A SUMMARY OF THE RECOMMENDATIONS, WITH OPERATIONAL SUGGESTIONS AT RESEARCHER-LEVEL (ON THE LEFT) AND AT THE FIELD-LEVEL (ON THE

RIGHT), WHERE APPROPRIATE.

R1: State the motivation, context and long-term goal of the research
State the end-goal of the research (e.g. therapy, cognitive modelling, etc) Provision and curation of collaborative, open tools to facilitate shared understanding

and best-practice

R2: Clarify the level of robot autonomy
The level of robot autonomy and/or ‘wizarding’ should be specifically and clearly
stated; wizarded robot behaviours should be avoided as a benchmark condition.

R3: Use of ecologically valid subject groups and experiment environments
Based on the experimental hypotheses, assess the appropriate subject group; recognise
the constraints that the use of a single subject group imposes on the study conclusions

R4: Relate the notion of long-term interactions to overcoming the novelty effect
Introduce metrics for familiarity of the study subjects with the robot as a means of
characterising the novelty effect

R5: Use descriptive statistics
As a minimal requirement, report 95% Confidence Interval for metrics of each
condition; emphasise the build up of evidence over arbitrary significance judgements.

Enforce reporting standards in conference and journal publications

R6: Support replication and reproduction
Ensure detailed methodology; provide source code whenever possible; publish
datasets and/or intermediary results, along with the tooling to analyse them (when
applicable)

Provision of a peer-reviewed publication venue specifically for independent experi-
mental replications; provide guidelines and infrastructure to share datasets

collaboration while preventing fragmentation. We suggest
above (section II) that the imposition of common benchmark
tasks could introduce unwanted biases in the long-term, and
introduce technical barriers to entry for certain sections of the
community. Our proposal to formulate a common framework
for methodological and reporting considerations forms the
beginning of an alternative approach. In the same way that a
characterisation methodology such as conversational analysis
can provide a common and formal basis for comparison of
qualitative observations between studies, so can such a common
framework do the same for the multiple disciplines within HRI.
The recommendations we propose (summarised in table IV)
are pitched at two levels to encourage a coordinated effort at
achieving this: standards for individual researchers to follow,
but also suggested changes in field-level infrastructure that can
bring about the wider cultural change desired to facilitate the
efforts of individuals. Indeed, such efforts are apparent in other
fields, for example in health research (equator-network.org).

Regarding this field-level infrastructure, the provision of a
number of tools for collaboration and shared understanding
would be of use in addressing some of the issues that arise from
a vibrantly interdisciplinary field. One such tool is a community
FAQ. Such a resource could contain technical advice/resources,
reporting recommendations, explanations of key jargon, best
practices, etc. covering all HRI disciplines (quantitative and
qualitative, technical and social). This would contribute to
bridging cross-cultural “language” issues by having one entry-
point that researchers (and newcomers to HRI research in
particular) could use as a reference.

However, as with any introduction of new standards and/or
recommendations, there is a need to minimise the ‘barrier to
entry’ to maximise uptake within the community. The more
specific researcher-level recommendations we make are pitched
to minimise this barrier, whilst providing significant benefits.

Our recommendations for collaborative tools and field-level
infrastructure (publication support for peer-reviewed replication
studies for example) on the other hand will require more
significant personal investment, although if such tools are
mandated as part of article submission processes (for example),
the motivation to conform is likely to prove sufficient to
overcome any initial inertia.

B. Facilitating Long-Term HRI

One feature raised from recent studies is a notably small
number of longer-term studies (section IV-D). Since novelty
effects are typically present in shorter-term evaluations, and
given the as yet under-appreciated role that robot morphology
design plays in shaping interaction expectations, it is difficult
to assess from current evidence what long-term phenomena
arise in genuinely long-term interactions between humans
and robots. In this case, there is a strong drive to increase
the autonomous competencies of the robots that are able to
support these studies. However, our paper review exercise has
shown, commensurate with the interdisciplinary nature of the
field of HRI, that levels of autonomy in robotic systems are
currently only limited (section IV-A). This clearly represents a
significant challenge for the community: with the requirement
for autonomous behaviour comes a need for more elaborated
models of appropriate robot behaviour generation in response to
social and environmental cues. Efforts in this area are becoming
increasingly prevalent in the fields of AI and Cognitive Science,
with a multitude of cognitive architectures being developed
[23], although these have as yet only a limited impact in HRI.

This requirement for deeper levels of cognitive model is
not in our view restricted to the more robot-centred strands
of HRI; we suggest it is also a central requirement for the
human-centred perspectives. There is a need to formalise in
some way the knowledge of human behaviour and adaptation
(including psychology, cultural studies, and neuroscience to



varying degrees) to enable application to HRI, whether it is
in the form of a robotic system, or as a means of analysing
human behaviour (whether it be reaction times or learning
outcomes) in an experimental setting.

C. Discipline Dependencies

From the outset of this paper, we have emphasised that HRI
lies at the convergence of multiple disciplines; we have also
suggested that it would be beneficial to maintain this plurality
of approaches. However, we must then also acknowledge that
these different disciplines have differing dependencies and
goals (section II).

For example, technical developments have the power to
advance the field. Given the central role of robots in HRI (in
all senses of the phrase), this is uncontroversial. However,
there are mutual constraints on these developments. For
example, as we have shown (section IV-A), robot wizarding is
partially employed to overcome various technical challenges,
which results in a limited capacity to engage in long-term
studies (section IV-D). Whereas technically-oriented papers
may typically appear in other publication venues, the more
recent introduction of the technical theme in the HRI conference
reflects an acknowledgement of this dependency on technical
issues. Nevertheless, it may be worth raising the expectations
of the technical content of all HRI contributions as part of the
review process, in the same way that methodological issues
are currently rigorously assessed.

There of course remain further open questions in the field
that will require multi-disciplinary consideration. One notable
example of this is the role that robot behaviour and morphology
relate to one another with respect to human perceptions and
reactions. Such theoretical and design questions are clearly
fundamental to overall progress in the field, including to
applications. We suggest that the resolution to these issues, and
others, will require the application of empirical investigation
to characterise and explore the phenomena: i.e. conducting
studies to collect data to subsequently inform further refinement.
Our focus in this paper on providing a common frame of
reference through methodological guidelines is precisely aimed
at providing support for such multi- and cross-disciplinary
efforts: our recommendations (table IV) provide the basis of
this frame of reference.

VI. CONCLUSION

What we advocate for the field of HRI is the maintenance of
the plurality of discipline-specific motivations, rather than the
imposition of a single set. Nevertheless, a common framework
should be provided to facilitate the interaction of these differing
approaches such that the non-unitary field as a whole can move
forward. In other words: to maintain HRI as a collaborative
field between disciplines, rather than their unification into
a new single field. In this paper, we have examined recent
trends in HRI publications to define challenges that face this
interdisciplinary approach, and derived both practical and more
general methodological recommendations that we suggest will
provide the start of a much needed common frame of reference

that will consolidate the progress made thus far, and provide a
platform for future contributions.
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Abstract—The field of Human-Robot Interaction (HRI) is
increasingly exploring the use of social robots for educating
children. Commonly, non-academic audiences will ask how robots
compare to humans in terms of learning outcomes. This question
is also interesting for social roboticists as humans are often
assumed to be an upper benchmark for social behaviour, which
influences learning. This paper presents a study in which learning
gains of children are compared when taught the same math-
ematics material by a robot tutor and a non-expert human
tutor. Significant learning occurs in both conditions, but the
children improve more with the human tutor. This difference
is not statistically significant, but the effect sizes fall in line with
findings from other literature showing that humans outperform
technology for tutoring. We discuss these findings in the context
of applying social robots in child education.

I. INTRODUCTION

An increasing quantity of research in HRI has considered the
use of robot tutors, particularly for educating children [1], [2],
[3]. It has been found that robot embodiment [1], [2], social
behaviour [4], and teaching strategies [3], [5] can improve
child learning. One question that often arises, particularly from
non-academic audiences, is how robots compare to human
tutors. The aim of such research is rarely to replace human
teaching, but to supplement it, so such a comparison is not
typically part of experimental hypotheses.

Given the link between robot social behaviour and learn-
ing [4], human behaviour is often used to derive behaviour
for robots to provide an upper benchmark of social behaviour
that robots can aim for in tutoring. The literature from other
fields suggests that human tutoring also provides an upper
benchmark in terms of learning gains [6], but this has not been
verified in HRI. Serholt et al. [7] found no significant difference
between the performance of children who had been tutored by a
humanoid robot compared to a human, but the robot speech was
controlled using a Wizard-of-Oz method, introducing additional
variability between conditions. The present paper reports on a
study in which the lesson content delivered by a human and
an autonomous robot is kept consistent in order to explore the
differences in child learning depending on the character (and
their social behaviour) providing the content. The aim is to
address the following hypothesis:

H1: Human tutoring will lead to more child learning when
compared to robot tutoring.

II. METHODOLOGY

The study employs the same methodology as seen in [2]
and [4]. Children aged 8 and 9 engage in a dyadic interaction
in their school with a tutor who guides them through a method
for prime number identification. The children’s learning is
measured through a pre-test and a post-test consisting of 12
numbers which need to be categorised as ‘prime’ or ‘not
prime’ (6 per category). Prior to the interaction, children have
not learnt about prime numbers, but the technique relies on
their ability to divide by 2, 3, 5 and 7, so this is also tested.
The tutor provides hints to help with the division, as well
as a lesson about how to identify prime numbers using the
Sieve of Eratosthenes technique. Two tests for prime number
identification are used in a cross-testing strategy to control for
exposure to the tests.

Two conditions were employed: (1) an autonomous ‘high
immediacy’ robot tutor [4], and (2) a human tutor (Fig. 1).
The robot tutor was designed to regularly gesture, look at the
child, make small body movements to appear ‘relaxed’, and
lean forwards. The human was given a word-by-word script to
match the lesson content of the robot, but was not constrained
in terms of social behaviour. Due to the script providing precise
lesson content (and the study focus on social behaviour and
embodiment differences) an expert tutor was not required. A
total of 22 children took part: 11 in the robot condition and
11 in the human (age M=8.8, SD=0.4; 12F, 10M). Interactions
lasted for M=14m05 (SD=3m16) in the robot condition, and
M=13m10 (SD=3m39) in the human condition.

III. RESULTS AND DISCUSSION

Children improve significantly in both conditions (Fig. 2).
Paired t-tests show the post-test score (M=7.6, 95% CI [5.5,9.8])
is significantly higher than the pre-test score (M=5.2, 95% CI
[3.7,6.7]) in the human condition; t(10)=2.425, p=.036. The
post-test score (M=7.0, 95% CI [4.9,9.1]) is also significantly
higher than the pre-test score (M=5.1, 95% CI [3.4,6.8]) in the
robot condition; t(10)=3.057, p=.012. Although the children
improve more between the pre-test and post-test in the human
condition (M=2.5, 95% CI [0.2,4.7]) than in the robot condition
(M=1.9, 95% CI [0.5,3.3]), this difference is not found to be
statistically significant using an independent samples t-test;
t(20)=0.459, p=.652.

The improvement from pre- to post-test score is not signifi-
cantly different between the robot and human conditions, but
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Fig. 1. Images of the interactions: (left) the robot condition, (right) the human condition. Interactions take place around a touchscreen which displays the
learning material. Both the child and the tutor (whether human or robot) can move numbers on the screen. Feedback is provided by the tutor, and not on screen.
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Fig. 2. Child pre-test and post-test scores for the robot and human conditions.
The improvement is significant in both conditions, showing that the children
learn. The difference between conditions is not significant, but the improvement
effect size is larger in the human condition. Error bars show the 95%
Confidence Interval.

this may be due to the relatively small sample size (although
t-test assumptions are met). If the trends here were to continue,
then this difference would become significant with more
subjects. The effect size seen in each condition provides a
clearer indication of the difference between them; Cohen’s
d=0.67 for the robot, but d=0.89 for the human. As such, this
provides some support for H1: that child learning is greater
when tutored by a human when compared to a robot. These
effect sizes are similar to those found in other literature [6]. It
should be noted that the effect sizes in [6] compare to a no
tutoring control, which is not done here since the nature of
the task makes learning unlikely without tutoring.

It is also worth noting that the human condition mean was
lowered by one instance where the child had clearly learnt
the technique, but confused the categories, and so scored 0
on the post-test (i.e. 100%, but incorrect). The child asked for
clarification, but as this help would not have been available in
the robot condition, it was not given by the human at the time.

The specific robot and human used in the tutoring task
will have had a large impact on the results. One robot (and its
behaviour) was compared to one human; these results are likely
to vary depending on the robot and human used. The learning
content was kept consistent between the conditions, but the
social behaviour was not constrained in the case of the human.

This means that the human can take advantage of some social
cues that the robot could not, and could subsequently be more
socially adaptive (for example, in mutual gaze) than the robot,
which may account for some of the learning differences. A non-
expert human was used due to the tightly specified learning
content, but an expert tutor may have used different social
behaviour, potentially leading to more learning. It remains to
be seen if the robot could close the gap in learning outcomes
with improved social sensitivity and behaviour.

Of course, the aim is not to replace human tutors; robots
offer additional opportunities to supplement current human
tutoring provision. Robots can assume a wider variety of roles,
for example, to assist teachers [1], or to offer children a chance
to teach a less-able peer [3], [5]. Alternatively, robots could
provide personalised support which falls outside of typical
lessons or the school environment, such as additional language
support for non-native children, as discussed in [8].
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Abstract—An increasing amount of research is being conducted
to determine how a robot tutor should behave socially in educa-
tional interactions with children. Both human-human and human-
robot interaction literature predicts an increase in learning with
increased social availability of a tutor, where social availability
has verbal and nonverbal components. Prior work has shown
that greater availability in the nonverbal behaviour of a robot
tutor has a positive impact on child learning. This paper presents
a study with 67 children to explore how social aspects of a
tutor robot’s speech influences their perception of the robot and
their language learning in an interaction. Children perceive the
difference in social behaviour between ‘low’ and ‘high’ verbal
availability conditions, and improve significantly between a pre-
and a post-test in both conditions. A longer-term retention test
taken the following week showed that the children had retained
almost all of the information they had learnt. However, learning
was not affected by which of the robot behaviours they had been
exposed to. It is suggested that in this short-term interaction
context, additional effort in developing social aspects of a robot’s
verbal behaviour may not return the desired positive impact on
learning gains.

Index Terms—Human-robot interaction; robot tutors; second
language learning; social availability; immediacy

I. INTRODUCTION

An increasing number of human-robot interaction (HRI)
researchers are exploring the utility of robots for tutoring
children [1], [2], [3]. Much of this research is centred around
the social behaviour of the robot, with a view to improving
learning outcomes and child responses to the robot [4], [5].
However, there are still many questions to be answered about
how a robot should behave in educational interactions in order
to achieve these goals [6].

Social interaction has been highlighted as a particularly
important element in language learning [7], and recent research
in HRI suggests that robots are able to make a positive impact
on learning in such contexts [1], [8]. One aspect of social
interaction which is positively correlated with learning between
humans is the ‘psychological availability’ of an instructor [9],
[10], [11]. Certain elements of ‘availability’ in social behaviour
have been studied in HRI before [12], [13], but an explicit
effort to manipulate this availability and examine the effect on
child learning remains to be carried out.

Child language learning provides an ideal domain for social
HRI to contribute to. In the case of language, children learn
better than adults, despite the increased cognitive capacity of
adults. Language learning has a ‘critical period’ in neurobiology

[14], which means that there is a window in which it is best
learned. As such, in this paper we conduct a study with children
aged 8 and 9 years old. At this age, the children are still within
the critical period, but have sufficient skill to read novel words
without assistance.

We aim to explore how the language learning of a child
can be influenced by the social behaviour of a robot tutor.
This paper presents an experiment in which a robot tutor
teaches children some aspects of a second language. The robot
behaviour is modified to be more or less socially available
through the verbal interaction it has with the child. The learning
of the children is measured in the short-term (immediately after
the interaction), and also the following week to check that
the learned information was retained. We seek to investigate
whether the intended availability of the robot is perceived by
the children, and whether a more socially available robot has a
positive impact on learning outcomes as predicted by the HRI
and human-human interaction (HHI) literature.

II. RELATED WORK

A. Language Learning with Robots

Social robots have proven their utility in language learning
environments with improved outcomes when teaching is
supplemented with robots [1], [2]. Alemi et al. [1] used a
NAO robot in a school classroom to support a human teacher
in teaching English as a foreign language. Knowledge was
assessed before and after 5 lessons (one per week for 5 weeks).
It was found that children in the condition with a robot learned
and retained significantly more vocabulary than children who
had a human teacher alone.

However, things are not as clear when the robot is interacting
one-on-one with students without a human teacher present.
Various experiments have sought to apply human-human
learning principles to child-robot interactions in the language
domain with mixed results [8], [15]. Curiosity of a robot was
used to inspire reciprocal behaviour in children as the HHI
literature predicts an increase in learning when children are
more curious. Although the children who saw the curious
robot adopted curious behaviours, their word learning did not
improve any more than those children who had not seen the
curious robot [4].

Some effects have been successful though: a robot with
personalised story-telling complexity resulted in children
using more words and more diverse words than children



who interacted with a non-personalised robot [15]. Socially
supportive behaviours have also successfully been implemented
in a robot which taught a novel language to children [16]. Those
in the socially supportive condition scored significantly higher
on a language test and in motivation measures (intrinsic and
task motivation). The socially supportive condition employed
many non-verbal behaviour manipulations, such as increased
empathy, attention guiding, and non-verbal feedback. Whilst
this is a promising result, more needs to be done to establish
solid models for robot social behaviour in interactions of this
nature. This paper seeks to address how the verbal social
behaviour of a tutor robot affects child learning and how such
behaviour might be characterised.

B. Social Behaviour and Learning

In order to maximise the potential of robots in learning
contexts, it is useful to explore how they should behave socially,
as many human-human studies have revealed a link between
social behaviour and learning [10], [11], [14]. Social behaviour
also has a great impact on how students perceive teachers [10],
[17]. In turn, this influences factors such as how much students
believe they have learnt, and how motivated they are to learn
[11]. Therefore, it is important for students interacting with
robots in educational contexts to have a positive perception of,
and relationship with, the robot.

One concept of human social behaviour which has been pos-
itively correlated with student motivation, student achievement,
and student attitudes is the ‘psychological availability’ of an
instructor [10], [11]. This concept considers how a teacher
acts towards any particular pupil (as opposed to the class as
a whole, given the classroom context of many studies in this
field). This availability is measured through ‘immediacy’ and
consists of verbal and nonverbal social behaviour components
[9], [18]. It should be noted that typical connotations of the
word ‘immediate’ regarding timing do not form part of the
measure. Instead, verbal immediacy includes behaviours such
as whether an instructor uses personal examples in teaching,
uses first names, solicits student opinions, and so on, whereas
nonverbal immediacy considers the use of overt nonverbal
social cues such as gaze and gestures [9], [17].

Research has been done in HRI with a view to improving
the bond between children and robots through some of these
means [19], although often not in the context of educational
interactions. It has been found that ‘off-activity talk’ - dialogue
with a robot which does not concern the task being completed
- encourages compliance in children in a therapeutic setting
[13]. Personalisation in therapeutic contexts has also been
considered. Children were asked a number of questions about
their preferences and the robot then mentioned these in an
interaction, the children who interacted with a personalised
robot enjoyed the interaction more, but subject numbers were
too low for statistical comparisons [12].

Part of the social availability construct (nonverbal imme-
diacy) has previously been used in HRI with findings in
agreement with the HHI literature [20], [21], suggesting
immediacy is suitable for use as a metric in HRI. This paper

Fig. 1. A child answering a question on screen during the interaction.

considers the other part of the social availability construct,
verbal immediacy, to measure and motivate robot behaviour
differences.

III. RESEARCH QUESTIONS

Following on from previous research with humans [9]
and robots [12], [13] we seek to test whether robot verbal
availability has a positive impact on children’s second language
learning as predicted by the literature. In order to make such an
assessment, it first needs to be clear that children perceive the
behaviour of the robot as intended. Verbal immediacy provides
a basis for measuring the children’s perceptions and also for
motivating differences between robot conditions. To ensure
that any observed learning effects are retained and not just the
product of short-term memory recall, we also aim to verify
children’s retention of the material outside of the short-term
interaction context (as in [22]). This leads to the following
hypotheses:
H1. Perception of robot behaviour. Children will perceive

and report differences in the robot’s verbal availability
(as measured through immediacy).

H2. Child learning. Children will retain the language skills
that they learn from the robot outside of the short-term.

H3. Effect of availability on learning. A robot exhibiting more
socially available verbal behaviour will lead to greater
child learning gains than a robot without this behaviour.

IV. DESIGN

French is commonly taught in English schools, so would
have clear relevance for the children. However, it does not
receive very much lesson time (the majority of schools offer
30-45 minutes per week at the age used in this study [23]),
so there is plenty of scope to teach new concepts. As such,
French was selected as the second language to teach in this
study. The learning material was developed in collaboration
with an academic researcher in language development, a native
French speaker, and a teacher.

The structure of the lesson content was designed based on
previous work in which children learnt mathematical concepts,
such as [5], and a pilot study involving a human tutor and
children. The aim was for the children to learn that nouns in
French have a gender, that this changes which article is used



Fig. 2. Screenshot from the touchscreen showing a question. Children can
touch a word, drag it to the blank space and release to answer. Here the correct
answer being ‘Portugal’.

(‘le’ or ‘la’), and that for some words there are patterns which
can be used to help work out which article to use.

An Aldebaran NAO robot acted as a tutor, delivering all
lessons through speech and moving words on a touchscreen
(Fig. 1). As such, the children were exposed to both the words’
pronunciation and orthography. The robot demonstrated how
questions could be answered by dragging and dropping the
correct answer in the blank space (see Fig. 2). The robot first
explained the concept of words having a gender by using an
English example (using ‘waiter’ for a man, and ‘waitress’ for
a woman). Following this, it explained how the French word
for ‘the’ could be ‘le’ or ‘la’ depending on the gender of the
noun it precedes. The robot then explained rules for working
out whether to use ‘le’ or ‘la’. After explaining each rule, the
child’s understanding was checked (Fig. 3).

During the lessons the robot would explain a rule and then
use the screen to show an example. The rules used were
taken from online French language learning guides1,2 and
were verified by a French native speaker. The rules were as
follows: 1) ‘le’ is used for male people, and ‘la’ is used for
female people, 2) ‘la’ is used for countries ending in ‘e’, 3) ‘la’
is used for fruit or vegetables ending in ‘e’. Whilst these are
recognised techniques for people learning a second language,
it should be made clear that it is unlikely that a native speaker
would learn in this way, and that there are a limited number
of exceptions to rules 2 and 3 (but these were avoided in the
lesson content here). We do not seek to determine the best
teaching strategy for the concept, but the effect that robot
behaviour has on any learning.

Questions were designed to get progressively more complex
as the interaction progressed. To start with, English translations
and pictorial representations of the words were provided
alongside the French. At this stage, the child was only required
to select the article ‘le’ or ‘la’ to add to the word. Towards the
end of the interaction, all English translations were removed so
that only the French and the pictures remained. The question
structure was also changed in later stages: the child was required
to match a noun to the article (Fig. 2), which requires them to

1http://goo.gl/JPjmPO
2https://goo.gl/WY37z5

R: introduction to word genders

R: lesson for human rule

C: 6 questions on human rule

R: lesson for country rule

C: 4 questions on country rule

R: lesson for fruit/vegetable rule

C: 4 questions on fruit/vegetable rule

C: 3 questions on rules combined

R: goodbye

R: reminder of all rules

R/C: O�-activity talk

LOW HIGH

uses child name

uses child name

uses child name

tells child its own name

reveals personal information

reveals personal information

throughout: use we/our, higher praise feedbackthroughout: use the/your

asks child about material

asks child about material

asks child about material

asks child about material

asks child about material

asks child about material

Fig. 3. Structure of the task. R refers to robot explanation sections and C
refers to child question answering sections. The robot dictates the structure of
the interaction through speech and by presenting questions on the touchscreen,
informing the child of when it is their turn answer questions on the screen.
The HIGH condition includes many manipulations in the verbal behaviour to
make it more ‘available’.

assess several nouns for each question, rather than just one as
in the earlier questions.

All feedback was provided verbally by the robot; no feedback
was shown on the screen. When providing feedback, the robot’s
TTS would switch to French so that the child could hear the
correct pronunciation. The robot was autonomous throughout,
except for some short vocal phrases in one condition, which
were triggered by the experimenter (see Section V-C).

V. EVALUATION

A. Participants

A total of 67 children were included in the study after
exclusions due to technical issues (1 child) or absence from
school during one of the two visiting periods (7 children). All
children were native English speakers and were from the same
year group (with three class teachers) from a primary school
in the U.K. (average age M=8.8, SD=0.4; 30M, 37F). Only
one child was fluent in another language (this language was
not used in this study). Children were distributed randomly
between groups whilst balancing for gender and class teacher.
All children had parental/guardian permission and gave their
consent to take part in the study.

B. Measures

Learning was measured through pre-, post- and retention
tests, which can be seen online3. These tests sought to examine
various aspects of the children’s learning, including their

3http://goo.gl/hrIQEe



vocabulary acquisition, and their ability to apply each of the
3 rules in isolation and combination with each other. The
test consisted of 12 questions: 3 vocabulary-based (1 French-
English and 2 English-French), 2 about humans (rule 1), 2
about countries (rule 2), 3 about fruits and vegetables (rule 3),
and 2 combined all three rules. Each question had 4 multiple
choice answers and used the same formats as questions on the
touchscreen. The majority of the test questions used words
that the children had not seen in the learning material in order
to ensure generalised learning was taking place, rather than
memorisation of specific instances; exceptions are discussed
in Section VII. The pre-, post- and retention-tests were all
the same as this was necessary to account for children’s prior
knowledge (they had learnt some French vocabulary in school
before), and to accurately measure their recall. The children
were not given any feedback on their tests at any stage.

The child’s perception of the robot was measured through
a questionnaire combining verbal immediacy and nonver-
bal immediacy items. This 23 question questionnaire was
completed on paper and was multiple choice. The verbal
immediacy and nonverbal immediacy items were based on
those used in [10], but were modified such that the language
could be understood by children. The final questionnaire used
can be seen online4. Verbal immediacy includes aspects of
behaviour such as personalisation, off-activity talk, and student
opinion solicitation. Nonverbal immediacy covers overt social
behaviours, such as whether gestures are used, whether the
robot looks at the child, and so on.

C. Conditions and Robot Behaviour

In order to address the hypotheses in Section III, three
conditions were devised: 1) a robot with high verbal availability
(HIGH, n=20), 2) a robot with low verbal availability (LOW,
n=20), 3) a control with no robot and just a pre- and retention
test (CTRL, n=27). The robot with low verbal availability
doesn’t have the verbal behaviours which lead to being
considered available as measured by verbal immediacy (Fig. 3).
The control condition is used to verify that there are no learning
effects due to exposure to the test material.

In both robot conditions, the nonverbal behaviour was kept
constant. The behaviour used was designed to be of high
nonverbal immediacy, with the robot’s gaze randomly moving
in the direction of the child, gestures during speech, a slight
lean forward of the body, and slight motor noise in the arms
to give the impression of being relaxed. The perception of this
behaviour as being of high nonverbal immediacy is verified
through the questionnaire after the interaction (as described in
Section V-B).

The speech of the robot was kept the same in both conditions
outside of the experimental manipulations as described below.
This ensures that the lesson content is largely unchanged
between conditions, although the experimental manipulations
require some language adjustments, these should not impact
on the coherence or intelligibility of the lessons.

4http://goo.gl/UoL5QM

Verbal immediacy can be used to measure aspects of avail-
ability of an instructor, so the verbal immediacy questionnaire
[9] was used to create the robot conditions with different
availability levels. In order to generate the behaviour for the
conditions, we therefore applied all of the verbal immediacy
questionnaire items possible to the speech for the HIGH
condition, and did not apply them for the LOW condition.
The following differences were present in the HIGH condition
robot behaviour, but not in the LOW condition5:

1) use the child’s name (3 times)
2) tell the child its name
3) reveal personal information about itself (twice in addition

to its name)
4) ask the child how they felt about the material (e.g. “does

everything make sense to you so far?” 6 times)
5) ask the child about their hobbies and continue the

discussion for 2 or 3 speech turns
6) use “we/our” work (as opposed to “the/your”, throughout)
7) provide higher praise feedback (e.g. “You’re doing really

well! That was right”, as opposed to simply “That was
right” in the LOW condition)

Two items of the verbal immediacy questionnaire were not
manipulated: humour and feedback provision. Humour was
considered to be inappropriate to add given the context of the
interaction and difficulties in selecting a comment that would
be universally funny. Whether or not feedback was provided
was not manipulated between conditions as in this context, the
only way of getting feedback was from the robot and missing
feedback here would confound any findings related to learning.

To compensate for unreliable speech recognition, a Wizard-
of-Oz intervention was used in the HIGH condition to let
the robot reply ‘that’s great’ after the children answered a
question from the robot about their understanding of the
material (children always said they had understood the lesson),
and to trigger pre-scripted phrases at the appropriate time for
the discussion about the child’s hobby.

D. Procedure

The interactions took place on the school premises in a quiet
working space familiar to the children. The child sat across
from an Aldebaran NAO with a 27 inch touchscreen placed
horizontally between them (Fig. 1). Two video cameras were
used to record the interactions. One experimenter sat behind
and to the side of the child, out of their view (Fig. 4). The
time children spent interacting with the robot was on average
M=11min 26s (SD=1min 11s).

The experimenter spent a full week in the school, plus
one day the following week. On the first Monday of the
visit, pre-tests were delivered to all children in their main
classrooms. These were completed under the supervision of
the experimenter and the class teacher to make sure that
children completed them individually. Throughout the week
those children interacting with the robot would be taken out
of class individually, take part in the interaction, and then

5Please also refer to the video figure for this publication
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Fig. 4. Schematic overview of the interactions being investigated in this paper.
The child and the Aldebaran NAO robot sit across a touchscreen from one
another. An experimenter sits behind and out of view of the child. Two video
cameras record the interaction. Figure not to scale.

complete the post-interaction test and questionnaire on paper,
to the side of where the experimenter had been sitting (so
they can no longer see the robot or touchscreen). The robot
condition was switched between each interaction to ensure a
balance throughout the week.

On the Monday of the following week the experimenter
returned to deliver the retention test to the children under the
same conditions as the pre-test. Children in the control group
therefore completed a pre-test and a retention test without any
teaching input. The children had not been informed that they
would be tested again on the material that they had covered
with the robot. After each class had completed the retention
test, the experimenter gave an overview of the study and a
presentation of social robots to all children. This meant that
all children understood the study and had the opportunity to
interact with the robot.

VI. RESULTS

A. Perception of the Robot

To address H1 (that children will perceive differences in
the verbal availability of the robot), the results of the post-
interaction questionnaire were analysed. The questionnaire is
broken down into the several parts which measure different
constructs, as described in Section V-B. The manipulations
were conducted on the verbal immediacy element of the
questionnaire, where a higher verbal immediacy score would
indicate a higher perception of verbal availability. An unpaired t-
test reveals a significant difference between the average verbal
immediacy measure for the LOW condition (M=31.2, 95%
CI [28.1,34.3]) and the HIGH condition (M=44.9, 95% CI
[41.6,48.2]); t(38)=6.322, p<.001. This confirms H1; children
could indeed perceive the difference between the conditions
(despite not having seen the other condition for comparison).

Nonverbal immediacy scores were also compared; the
difference between the nonverbal immediacy score in the
LOW condition (M=18.5, 95% CI [17.0,19.9]) was not found
to be significantly different to that of the HIGH condition
(M=19.6, 95% CI [17.8,21.3]); t(38)=1.020, p=.314 (Fig. 5).
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Fig. 5. Verbal and nonverbal immediacy scores for the high availability
(HIGH) and low availability robot (LOW) conditions. The HIGH condition is
perceived to have significantly higher verbal immediacy while having the same
nonverbal immediacy, showing that the children perceive it as more available.
Error bars show 95% CI.

This provides some validation for the control of nonverbal
behaviour between the conditions.

B. Learning Gains

Learning gains are measured through scores on the tests
conducted before the interaction (pre-test), immediately after
the interaction (post-test), and 3-7 days after the interaction
(retention test). Questions on the tests are equally weighted, so
scores are out of a maximum of 12. Before analysis of the two
robot conditions can be conducted there are some potential
confounds which must be eliminated as factors: the differences
in time between the interaction and retention test, and the
impact of exposure to the test (as the same test is used).

It could be expected that children who interacted with the
robot at a time closer to the retention test would outperform
those who interacted with the robot earlier in the visit. To
explore whether this was a factor, the day on which the
interaction took place was correlated with the difference
between the post-test and the retention test. The correlation is
weak and non-significant; r(36)=-.079, p=.637, indicating that
the time from interaction to retention test can be eliminated as
a factor. We would suggest that the absolute number of days
does not make a difference to the retention, but the number of
days out of school during this period is more important, which
was constant for all children (a weekend of 2 days).

The control condition is used to verify whether exposure
to the test makes a difference to the findings. It would not
be expected that there would be a difference as the children
are given no feedback on the tests at any stage, but the
control condition allows verification. For children in the control
condition, the pre-test score (M=3.96, 95% CI [3.26,4.66])
and retention test score (M=3.89, 95% CI [3.28,4.49]) can be
considered equivalent. Two one-sided t-tests (TOST) [24] with
a 1 point threshold confirm the test scores are equivalent at the
p<.05 level: t(52)=−2.061, p=.022/t(52)=2.391, p=.010. This
indicates that exposure to the test is not a confounding factor.

A repeated measures ANOVA was used to explore H2
(that children will retain their learning) and H3 (that the
robot condition will affect learning); Fig. 6 and Table I show
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Fig. 6. Pre-test, post-test and retention test scores by condition (chance
score=3; maximum score=12). Children learn a significant amount from the
robot between pre- and post-tests; this gain is sustained to the retention test.
Error bars show 95% CI.

the results for test scores by condition. Mauchly’s Test of
Sphericity indicated that the assumption of sphericity had not
been violated, χ2(2)=1.873, p=.392. No significant interaction
was found between test and condition; Wilk’s Lambda=.998,
F(2,35)=0.04, p=.963. A main effect was found for test, Wilk’s
Lambda=.391, F(2,35)=27.21, p<.001, but not for condition;
F(1,36)=0.08, p=.774. Bonferroni pairwise comparisons find
that there is a significant difference between pre-test and post-
test, and pre-test and retention test scores (all p<.001), but no
difference between post-test and retention test (p=1.00).

These results support H2, as children learn between the
pre- and post-tests, and retain their learning in the retention
test. Further support for H2 can be gained through Weber &
Popova paired-samples equivalency tests [25] which show that
the post and retention test scores are equivalent in both the
HIGH (t(18)=0.67, p=.022) and LOW (t(18)=0.73, p=.025)
conditions, with Cohen’s d=.50. Whilst this is an ‘intermediate’
effect size for demonstrating equivalency, it should be noted
that the sample size is relatively small on a per-condition basis,
leading to a higher variation in scores, which raises the level
at which equivalency can be shown. Combined, these findings
provide evidence in support of H2 as the children learn a
significant amount from the pre-test to the post-test, and the
post-test and retention test scores can be considered largely
equivalent, demonstrating their retention of the learning.

The ANOVA results do not support H3 (that higher avail-
ability will lead to greater learning) as no significant effect was
found for robot condition. Nor can a significant difference be
seen between the improvement in the LOW condition (M=3.80,
95% CI [2.55,5.05]) and the HIGH condition (M=3.35, 95%
CI [1.78,4.92]); t(38)=0.470, p=.641. The drop in score from
post-test to retention test can also be considered equivalent
between conditions; using a Weber & Popova independent-
samples equivalance test, t(36)=0.07, p=.004 with Cohen’s
d=.50. Therefore, Hypothesis H3 must be rejected as there
are no significant differences observed between conditions in
terms of learning.

Based on the rules taught to the children, one could suggest
that learning a very simple rule of: “if the word ends in an ‘e’,

TABLE I
TEST SCORE RESULTS BY CONDITION.

Condition Pre-Test
M [95% CI]

Post-Test
M [95% CI]

Retention Test
M [95% CI]

CTRL 3.96 [3.26, 4.66] N/A 3.89 [3.28, 4.49]
LOW 3.65 [3.10, 4.20] 7.45 [6.17, 8.73] 6.84 [5.64, 8.05]
HIGH 3.65 [2.90, 4.40] 7.00 [5.72, 8.28] 6.58 [5.22, 7.94]

then use la, otherwise use le” may be adopted as a ‘shortcut’
and could account for the learning differences. This would then
have nothing to do with learning aspects of language, but be a
basic memory phenomenon. This had been anticipated in the
study design, so later questions in the learning material made
sure to challenge this approach by including several words
ending in ‘e’ as possible answers, but with those words relating
to humans of male gender (therefore requiring ‘le’, rather than
‘la’ and violating the shortcut rule). Additionally, a question
in the tests used adopted this approach, with several words
ending in an ‘e’, but not all being feminine. This was done to
verify whether the shortcut rule had been adopted, or whether
the children had really learnt the material as it had been taught,
with the ability to discriminate between different types of words.
If the children had only learnt the shortcut rule then they would
answer this verification question incorrectly, however, it was
answered correctly above the average level for the rest of the
questions in the test (63% for the verification question, versus
60% for the other questions). This provides some evidence
that the children learnt intricacies of the language that was
presented to them; further evidence in support of this will be
provided in Section VII.

VII. DISCUSSION

The results show that the children perceived the verbal
availability of the robot conditions as intended, which confirms
that the behaviour was designed appropriately to address
the research hypotheses. The nonverbal behaviour was kept
constant between the two conditions, and this was reflected in
the children’s questionnaire responses. The children in both
robot conditions exhibited significant learning gains between
the pre-test and post-test, as well as between the pre-test and
retention test, with equivalent scores in the retention test and
the post-test. This is a positive result, as it would have been
plausible that the children would quickly forget what the robot
had taught them once the interaction was over, especially as
the children were not aware that they would be re-tested, and
so had little motivation to attempt to actively try and retain
the information.

The tests which the children had to complete were designed
to be challenging. Each answer had four options with no
obviously incorrect answers, so the likelihood of a guess being
correct would be chance (25%). It was found that children
scored slightly above this on the pre-tests as they had done
a small amount of French before, so scored closer to 4 than
the 3 that would be expected with random guessing. This
significantly improved to over 7 out of 12 in the post-tests.



Given the difficulty of the tests and the relatively short time
the child interacts with the robot learning and practising the
material, this is an impressive increase. Indeed, only 6 of the
40 children who interacted with the robot did not improve
from pre-test to post-test. Learning of ‘le’ or ‘la’ as the article
choice could have contributed to part of the increase in scores,
however if children had learnt the choice to be le/la then the
chance score would go up by 1.5 points from pre-test (chance
= 3) to post-test (chance = 4.5). The children actually improve
by an average of 3.6 (95% CI [2.6,4.5]), suggesting learning
beyond any improvement due to the higher chance score.

Despite the children being able to perceive the difference in
verbal aspects of availability between the two robot conditions
(measured through verbal immediacy), no significant difference
was observed in learning in either the post- or retention-test.
This finding is surprising given the positive correlation between
verbal immediacy and learning in human studies [9], [11].
Previous work has found that nonverbal aspects of availability
can lead to additional learning above that gained through just
exposure [20]. The work here explored whether verbal aspects
of availability would have a similar positive effect on learning,
but they did not.

Aspects of the behaviour manipulated here, such as per-
sonalisation [12] and off-activity talk [13], have been studied
before in HRI with promising results. However, these studies
had too few subjects to make conclusions about learning
[12], or did not assess learning [13]. In contrast to [13], we
do find here that the children perceive differences between
the conditions, but in our study the questionnaire is targeted
towards specifically measuring the perception of the behaviours
which were manipulated, rather than assessing an overall
feeling towards the robot. It is possible that despite children
perceiving differences in the availability of the robot, this did
not translate into any difference in feeling towards the robot. If
the relationship the child feels towards the robot is no different
between conditions then this may go some way to explaining
the lack of difference in learning.

The interpretation of the robot character could have been
influenced by the TTS voice used by the robot, which would
switch when the language changed. These voices were clearly
different and this could have impacted how the children
perceived the robot. However, the children have no prior
experience with the robot, so they may have accepted this
as part of the robot’s behaviour. As the voices are clearly
different, they may also have interpreted this not to be part of
the robot’s character, but to be the robot playing back other
media (akin to a teacher playing recorded French). It is not
possible to determine how the children perceived this switch
in voice from the data collected, but perceptions of voice
switching of multi-lingual robots could be worth explicitly
exploring in future work.

Another factor which may have influenced the learning
results is novelty. Novelty is often an issue for HRI studies [26],
[27], and it possibly played a role here as the children interact
just once with the robot for a brief period of time. Verbal
immediacy has been found to consist of four factors, including

‘individual friendliness’ [10]. Even if the children were to
bond more strongly with the high availability robot because
of increased friendliness, the short interaction time might not
be enough for differences in the relationship to manifest into
learning outcomes. Furthermore, it could be that the behaviour
of the more available robot cancels out its own benefits by
being so novel as to distract from the learning material. For
example, when the robot is conducting off-activity talk during
the interaction, this is time when the children are not focussing
on the learning task and are possibly forgetting information
they have learnt. This doesn’t mean that off-activity talk should
be avoided for fear of distraction, but that it might only be
appropriate in longer, or repeated interactions where novelty
is less of an issue. We would hypothesise that given a longer
interaction timescale, the learning benefits predicted by the
literature of greater availability [9], [11] would be observed as
the novelty wears off [2], [26].

In the HHI literature, a lower correlation between verbal
immediacy and learning has been found when compared to
nonverbal immediacy and learning [11]. Nonverbal immediacy
has previously been found to make a difference to learning
in HRI [20], [21]. This could suggest that verbal behaviour
may not be as important for learning (at least in short-term
interactions) as overt nonverbal behaviour. It has also been
found in humans that the impact of immediacy behaviours is
enhanced in line with increases in class size [9]. It could be
that the effect of verbal immediacy is simply too far reduced
when placed in a one-to-one tutoring context as in this study,
rather than the larger classroom setting. The availability of the
robot would be experienced to some extent in both conditions
simply through the nature of the one-to-one interaction.

One interesting finding from the data collected which was
not hypothesised was the ability of the children to acquire
vocabulary despite the learning material not explicitly requiring
them to do so. Three questions of the test were vocabulary
based: two requiring translation from English to French, and
one French to English. Two of these questions referred to words
which the children would have seen on screen and heard the
robot say (as they were answers to questions in the learning
material). The remaining question was about a word which
they would have seen on screen, but the robot did not say
(as it was not a correct answer). It is suggested that the two
words which were answers in the learning material were more
likely to be recalled as the children would have looked at
the word for longer and the robot would have said the word.
However, a significant increase was found for all 3 of the
questions independently, and a repeated measures ANOVA
found a significant increase for the average score (out of 3) of
children who correctly translated the words from pre-test to
post-test, and from pre-test to retention test. Mauchly’s Test of
Sphericity indicated that the assumption of sphericity had not
been violated, χ2(2)=0.661, p=.719. No significant interaction
was found between test and condition; Wilk’s Lambda=.968,
F(2,35)=0.58, p=.565. A main effect was found for test,
Wilk’s Lambda=.595, F(2,35)=11.94, p<.001, but not for
condition; F(1,36)=0.14, p=.710. Post-hoc Bonferroni pairwise



comparisons find that there is a significant difference between
pre-test (M=0.8, 95% CI [0.6,1.0]) and post-test (M=1.6, 95%
CI [1.3,1.9]), and pre-test and retention test (M=1.4, 95% CI
[1.1,1.7]) scores (p<.001 and p=.001, respectively), but no
difference between post-test and retention test scores (p=.883).

It is of course possible that the children remembered the
words from the pre-test and made an effort to learn these
words when they were presented on screen, but this seems
unlikely given the time (up to 4 days) between many of the
pre-tests and the interactions, and the sheer number of words
they were exposed to in the learning content (over 40). For
a child to concentrate on learning 3 words from the pre-test,
days after having seen it, when being taught a different aspect
of language would seem to be highly improbable. As such,
this is a promising finding with robots that confirms data
from human-human literature whereby children of this age will
acquire language through exposure in social interactions [14].

VIII. CONCLUSION

Children perceived the relative social availability of the
two robot conditions as intended in the design. This confirms
that the manipulations made were appropriate to address the
question of whether an increase in verbal aspects of availability
would lead to an increase in learning. As expected, the children
did learn elements of a second language from the robot. This
was measured immediately after the interaction and also some
days later. The retention test scores were slightly lower than the
pre-test scores, but can be considered statistically equivalent.
However, surprisingly there was a lack of any significant
difference between conditions in the immediate post-test score,
or the longer-term retention test score. Literature from human-
human interaction studies [9], [11] and human-robot interaction
studies [12], [13] would predict an increase in robot verbal
availability to lead to an increase in learning, but this was not
found. These findings suggest that in this short-term dyadic
interaction context, additional effort in developing social aspects
of a robot’s verbal behaviour may not return the desired positive
impact on learning gains.
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Abstract. This paper introduces a research effort to develop and evaluate social 

robots for second language tutoring in early childhood. The L2TOR project will 

capitalise on recent observations in which social robots have been shown to have 

marked benefits over screen-based technologies in education, both in terms of 

learning outcomes and motivation. As language acquisition benefits from early, 

personalised and interactive tutoring, current language tutoring delivery is often 

ill-equipped to deal with this: classroom resources are at present inadequate to 

offer one-to-one tutoring with (near) native speakers in educational and home 

contexts.  L2TOR will address this by furthering the science and technology of 

language tutoring robots. This document describes the main research strands and 

expected outcomes of the project. 

1 Background 

Second language learning has become an important element of formal education for 

many children in Europe and beyond. For some children, the language used at school 

is a second language (noted as L2), as they speak a different language or dialect at 

home. This not only holds for immigrant children, but also for children speaking an 

official minority language of their country of residence. Preschool years are important 

to develop adequate knowledge of the academic language, as later educational success 

builds on it (Leseman & van den Boom, 1999; Hoff, 2013). Thus, it is essential that 

children with a different home language than the dominant one receive “sensitive” bi-

lingual input and interaction once they enter day care and preschool settings. The robot 

tutor we propose here serves that crucial aim. 

The current challenges of standard L2 teaching in classrooms are that the interaction 

between tutors and students often is one-to-many. In addition, language teaching does 

not reflect how language is naturally acquired and the tutor is often either not fluent in 

the second language or not proficient in the child’s mother tongue. While there is large 

variation in L2 proficiency in young children, with factors such as gender, socio-eco-

nomic background and home education having a significant impact, there is ample ev-

idence for the current language education provision and the young learners’ subsequent 

L2 performance being on occasion suboptimal (Brühwiler and Blatchford, 2011; De 

Feyter and Winsler, 2009; Kim et al., 2014). While a number of educational approaches 



remedy this through, for example, immersion approaches, second language teaching 

remains challenging, especially for immigrant children (Collins et al., 2012). 

It has long been established that one-to-one tutoring can result in significantly higher 

cognitive learning gains than group education. Bloom (1984) found that one-to-one tu-

toring resulted in 2 standard deviations improvement against a control group, conclud-

ing that "the average tutored student was above 98% of the students in the control class" 

(p. 4). Whilst research since has shown that the effects are not as large as first observed, 

there is nonetheless a distinct advantage to the one-to-one tutoring approach (VanLehn, 

2011). However, traditional school classroom arrangements mean that one teacher is 

responsible for many children. In such situations it is not possible for teachers to offer 

as much one-to-one tutoring as would be desired. 

More recently it has emerged that social robots can be used to teach children and 

adults. However, what is remarkable is that social robots seem to have a distinct ad-

vantage over alternative digital one-to-one tutoring technologies, such as screens and 

tablets. When tutoring is delivered by a social robot this leads to greater learning gains 

compared to the same content delivered on-screen (Han et al., 2005, Hyun et al., 2008, 

Kose-Bagci et al., 2009, Leyzberg et al., 2012), with performance increases of up to 

50% compared to interactive screen technology (Kennedy et al. 2015). The reasons for 

this are still unclear: it might be that the social and physical presence of the robot en-

gages the learner more than just on-screen delivery and feedback, or it might be that the 

learning experience is a more multimodal experience thus resulting in a richer and em-

bodied pedagogical exchange (Mayer & DaPra, 2012), or of course a combination of 

these two. 

Of importance here is that robots (and digital media such as tablets and computers) 

allow for a fast-paced interaction, and digital devices can tailor the interaction to match 

the level and interests of the young learner. This allows for the system to stay within 

Vygotsky’s Zone of Proximal Development of the child and adopts an interactionist 

perspective to learning (Chapman, 2000); both approaches are central to this project. 

L2TOR (pronounced ‘el tutor’), runs for 3 years starting early 2016, and aims to 

design a child-friendly tutor robot that can be used to support teaching preschool chil-

dren a second language by interacting with children in their social and referential world. 

In particular, the project will focus on teaching English as L2 to native speakers of 

Dutch, German and Turkish, and teaching Dutch and German as L2 to immigrant chil-

dren speaking Turkish as a native language. The L2TOR robot will be designed to in-

teract naturally with children aged four years old in both the second language and the 

child’s native language. The robot’s social behaviour will be based on how human tu-

tors interact with children, and will not only use verbal communication, but also non-

verbal communication, such as gestures and other forms of body language. The robot 

will be able to adaptively respond to children’s actions and engage with them in tutoring 

interactions. The child will be provided with increasingly complex stimuli and utter-

ances in the second language, as well as appropriate feedback that support the child’s 

language development.  



2 General approach 

The central goal of the L2TOR project is to develop an embodied digital learning 

environment in which a child-friendly, social humanoid robot serves as a tutor to assist 

children acquiring a second language. This robot will be able to interact with the child 

naturally at a level that challenges the child to learn new words and grammar, while at 

the same time feels like a friend. The robot will keep track of individual children’s 

development and will adapt its own interaction to facilitate the child to advance to the 

next level. As such, the robot will construct a scaffold that allows the child to acquire 

new skills in interaction. Since the robot will teach the child a second language, profi-

ciency in the child’s native language is desirable, so it can provide explanations and 

instructions that the child can readily understand. 

The L2TOR embodied digital learning environment will not only consist of the ro-

bot, but it is a complete learning environment that also consists of a table-top environ-

ment that represents the contextual content of the system. Depending on the educational 

domain, this table-top environment will either be a table with moveable objects or an 

interactive tablet computer (Fig 1). Together with the child, the robot and table-top will 

constitute the contextual setting in which the tutoring will take place.  

 

 

Fig. 1. A robot teaching division skills and prime numbers to a primary school pupil (Kennedy 

et al., 2015). L2TOR will use a similar setup, using a tablet computer instead of a larger display. 

To develop an effective tutoring robot, the robot should interact with a child in sim-

ilar ways a caregiver or teacher would do when teaching the child language. Such in-

teractions not only include verbal content, but also nonverbal content and adequate so-

cio-cognitive skills, because these form the pragmatic backbone of language acquisition 

from infancy on (Matthews, 2014). This multimodal interaction allows the interactants 

to construct and maintain common ground, which is essential for language learning, 

because this provides the child with a suitable context to learn from. Since there are 

few observational data on multimodal interaction for L2 language tutoring, we will col-

lect our own data and analyse these such that they can be incorporated as a template for 

the L2TOR robot. 



The primary requirement for building common ground is to design child-robot inter-

actions that allow for mutual understanding of the communicative acts and the environ-

ment in which the interactants are situated. For the L2TOR robot, this means that the 

robot should be able to 

 perceive and recognize the objects and events that occur in the environment, 

 perceive and recognize the verbal and nonverbal signals produced by the child, 

 use Theory of Mind to take the child’s perspective, 

 be able to monitor linguistic/behavioural errors produced by the child, 

 respond to the child in a contingent manner, both temporally and semantically and,  

 produce appropriate utterances in different modalities (particularly, speech and ges-

ture) and in different languages (native and target language). 

The design of these capacities is the major challenge that the L2TOR project needs 

to tackle, but current technology is sufficiently advanced to provide pragmatic solutions 

for most issues. For example, the perception and recognition of social signals is un-

solved for open domains, but early work shows that for closed-domain interactions, we 

have sufficient interpretability to allow for full autonomy (Kennedy, Baxter & 

Belpaeme, 2015).  As far as possible, the implementation will rely on integrating exist-

ing technologies, especially for the hardware solutions, the input recognition and the 

motor control of the system. A key point here will be speech recognition, with current 

speech recognition system not performing with sufficient reliability for child speech; 

to mitigate this, interaction which be directed through a touch screen interface on which 

the young learner taps icons. The tutor robot will be realised by Aldebaran Robotics’ 

Nao humanoid (Fig. 1), which comes with a large range of suitable software for input 

and output processing. The challenges occur in the design and implementation of mul-

timodal interactions that have the capacity construct common ground with the child to 

facilitate L2 acquisition. 

3 Three lesson series 

While interaction design for robots has been explored extensively, research into how 

interactions should be designed to support tutoring and teaching is recent and as of yet 

inconclusive. As a first goal, the pedagogy of robot assisted language tutoring will have 

to be defined. For this purpose, the L2TOR project will design, implement and evaluate 

three series of lessons (each running 10-15 weeks,  3-4 sessions per week) for the three 

educational domains: 

1. Number domain: Learning language about basic number and pre-mathematical con-

cepts. 

2. Space domain: Learning language about basic spatial relations. 

3. Storytelling domain: Vocabulary and concept learning during storytelling. 

These domains were chosen to restrict the range of interactions such that the objec-

tives are feasible and measurable within the duration of the project, while at the same 

time being relevant and suitable for educational purposes in a pre-school setting. Each 



lesson will be implemented and evaluated for five language pairs L1 and L2: native 

speakers of German, Dutch and Turkish will be taught English, while Turkish (immi-

grant) children will be taught Dutch or German, depending on their country of resi-

dence. These language combinations are not only chosen for practical considerations 

(they cover the languages of the academic partner states involved), but also for strategic 

reasons. First, English is the most commonly taught second language across Europe. 

Second, many children of Turkish immigrants live in the Netherlands and Germany, 

and will learn Dutch or German in preschool and beyond. Thus, the latter will represent 

a common situation of ethnic minority children learning L2 at school. 

For each domain, learning targets will be developed. In the number domain, the 

learning targets will increase in complexity from mere counting objects and naming of 

shapes, to comparing numerosities, and to performing transformations on objects and 

sets (addition, subtraction, identifying geometrical shapes). In the space domain, learn-

ing targets range from exploring spatial relations between objects from an egocentric 

perspective (preposition and movement verbs), to spatial relations from an allocentric 

perspective (navigation through space and perspective taking), and performing a con-

struction task (building a model with blocks) following instructions involving spatial 

relations, spatial coordinates and movement through space. The learning targets for the 

storytelling domain include vocabulary about rare objects and events (e.g., “wooden 

bird”, “magical flying bird”), and basic narrative structures. 

For each lesson series, the L2TOR robot will communicate with the child following 

a specified scenario to obtain the learning targets. These scenarios describe the general 

sequence of targets that L2TOR aims to achieve by interacting with the child. The sce-

narios need to be adaptive, because the interactions between child and robot are adap-

tive and to some extent unpredictable. The contexts for the number and space domains 

are provided by a blocks/toy world that the children and -to a limited extent- the robot 

can manipulate. For the number domain, scenarios will be designed in which the objects 

can be grouped in countable sizes. For the space domain, blocks can be positioned in 

different ways (e.g., putting blue block on the red block) to test children’s use of spatial 

language for spatial relations between objects. In the storytelling domain, the L2TOR 

will show the child on the tablet a story about a (currently not available) “magical trans-

formation machine”, where a character (e.g. a wooden bird) chooses an object among 

several objects, puts is through a device and transforms into another object (e.g. a flying 

animate bird). The children will first be asked to form narratives about what they have 

watched. Later, the child will be given the opportunity to join in a different version of 

this story with the characters and actions of her own choice. 
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