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Executive Summary

This deliverable describes the output module for the space domain and general changes to the module
since Deliverable 6.1. We describe how the revised objectives have come to affect the development
of the output module for the large-scale evaluation study. We explain how various (rudimentary)
functionalities have been developed further and finalized for the purpose of this evaluation. We discuss
the ways in which we have circumvented several limiting factors of the current setup. Finally, we argue
for more exploration of data-driven approaches to the generation of robot behaviours — so as to avoid a
designers’ bias and reduce workloads — and briefly mention related work in progress.
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1 Introduction

Work Package 6 focusses on developing an output module, which is the part of the L2TOR tutoring
system concerned with the verbal and non-verbal communicative behaviour of the robot. As a humanoid
agent, the robot has the ability to interact with people using spoken natural language. The content of
the robot’s utterances will need to be generated to best suit the purpose, in case of the L2ZTOR project
to provide the means, and a context, for children to learn a second language. There are several options
for implementing natural language generation (NLG) [1]. For the L2TOR system we implemented
template-based language generation, where a mostly static template of an utterance is complemented
with task-related information, such as the name of the conversational partner or specific objects that
are involved in the completion of a task [2, 3]. The choice for a template-based solution was made
because alternative options (e.g., a machine learning approach) tend to result in output that is less
constrained and, therefore, less predictable. The use of templates ensures that learners are exposed to
similar content, which allows for a fair comparison between their experiences with the system and their
learning outcomes. Furthermore, because the aim of the tutoring system is to teach a language to a
young target audience, it was deemed important to avoid inappropriate or (grammatically) incorrect
language at all costs.

Non-verbal behaviours were designed and implemented as well. This includes the use of the robot’s
gaze to direct the attention of the child, and to help build rapport [4, 5]. Furthermore, the robot is able
to perform actions on the tablet, which are accompanied by a gesture to indicate the robot’s intention
(e.g., pretending to select an object by “tapping” on the screen). Because we noticed in a previous
experiment [6] (see Appendix) that the robot’s use of iconic gestures helped children with long-term
memorization of new words, a condition where the robot would perform iconic gestures was also
included in the large-scale study (further detailed in WP7).

The output module was largely functional at the time Deliverable 6.1 was submitted, however it was
only briefly tested in a pilot setting with only one lesson implemented. Since then, the system has seen
several more iterations so that it would support all of the planned lesson series and fulfil the technical
requirements for the large-scale study. This includes features that were (partially) left unfinished in the
previous version, new additions to the module, and future directions that were listed in Deliverable 6.1.
The integrated tutoring system has recently been evaluated in several (pilot) studies and it is currently
being used in the large-scale study. The details of this large-scale study have been described in the
Revised objectives document that was submitted on November 3rd, 2017.

While developing the various modules of the integrated tutoring system, we discovered that virtually
all of the planned functionalities were not specifically designed for one particular lesson or domain.
Instead, the technical implementation generalizes to a broad range of lesson content because most
of the lessons rely on the same functionality and interaction patterns (e.g., manipulating objects on
the tablet and repeating L2 utterances). By using abstractions such as “tasks” and “objectives”, it is
possible to create a platform that can be easily extended to support new content. Therefore, instead of
focussing on work that was done on the space domain in the context of Work Package 6, we talk about
the overall progress of technical developments within WP 6, as this will automatically cover what has
changed within the system to accommodate the lessons of the space domain.

The following sections will recapitulate the architecture of the integrated tutoring system as it is
being deployed in the large-scale study, focusing on additions and changes to this system since D6.1.
Furthermore, several studies that are currently being planned and executed within the context of WP6
will be highlighted.

Date: 02/07/2018
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2 Revised System Architecture

The overall system architecture, and the position of the OutputManager, remains as described in D6.1:

Underworlds (WP4) PerceptionManager (WP4)

Tablet Application InteractionManager (WP5) Control Panel

Outpt (WP6)

Figure 1: The integrated technical tutoring system and the role of the OutputManager.

It should be noted once more that there is a ConnectionManager, developed within WP3, working
behind the scenes to facilitate the communication between the various modules. Although the overall
architecture did not change, the features that were added to the OutputManager (as described in
the following sections) result in an increase in the amount of messages being sent between the
OutputManager and the InteractionManager and Tablet Application. However, the modules remain
independent, so that changes in one module do not directly affect all other modules, as long as
communication between modules occurs in the format that was agreed upon. This also allows modules
to be replaced by other versions, for example the OutputManager should not be affected if the current
InteractionManager was to be replaced by another version that adaptively goes through the storyboard
rather than linearly, or if we were to exchange the tablet game with another platform. This is possible
because each module generates certain outputs and expects certain inputs, as long as these are accounted
for the modules will be able to communicate with each other.

2.1 Output Module

The internal architecture of the OutputManager is shown in Figure 2. The existing submodules have
expanded with the new features and improvements described in the next section. One new submodule
was added to set up the tablet condition, which takes care of rerouting the audio from the robot to the
speakers in the tablet, and that all non-verbal behaviours from the robot are disabled. Furthermore, an
iconic gesture condition was implemented inside the OutputRealizer, and the FeedbackManager now
dynamically generates feedback based on the context of the current task.

3 Updates to and extensions of the Output Module

Several parts of the Output Module still had to be completed or updated before the start of the large-
scale study. A shared spreadsheet was used to keep track of features that still needed to be implemented,
and bugs that occurred while testing the system during various pilot studies. This allowed everyone in
the technical development team, as well as colleagues running the pilot studies, to be able to see and
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Figure 2: The internal architecture of the Output Module.

update the state of the Output Module. Priorities were assigned to each point on the list. The most
prominent changes since D6.1 are discussed in detail below.

3.1 Gesture condition

In the context of WP6, we have conducted a study on the effects of (iconic) gestures on L2 vocabulary
acquisition. This study, which was previously described and for which preliminary results were
presented in D6.1, has since been presented at the 13th Annual ACM/IEEE International Conference
on Human-Robot Interaction [6] (see Appendix).

One of our main findings was that children who had been presented with novel L2 words in
combination with iconic gestures were, on average, able to retain their newly acquired knowledge to a
higher degree than children who had not been exposed to these iconic gestures. This reaffirmed the
notion that the use of gestures can indeed be an effective scaffolding technique (e.g, [7, 8, 9, 10, 11]),
even when learning from a robot rather than a human tutor.

However, our study [6] was limited in the sense that the effects were only measured for a single
tutoring session. Whether these positive effects hold true when children interact with a robot tutor over
a longer period of time (i.e., multiple sessions) and for L2 words of various other domains is unclear.
Therefore, the decision was made to address these questions during the large-scale evaluation study by
introducing an additional experimental condition that would let us examine in isolation the effects of
(iconic) gesture use versus the mere presence of a more static robot over the course of multiple tutoring
sessions and for L2 words of various domains. This means that four experimental conditions were
defined for the large-scale evaluation study, namely a control condition, a tablet-only condition, a robot
without (iconic) gestures condition, and a robot with (iconic) gestures condition.

The decision to include iconic gestures meant that for each of the 34 target words, a gesture that was
acceptably iconic had to be designed and implemented, to be presented with the appropriate L2 target
word during the tutoring interactions. To this end, students of Koc University were recorded while
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(a) light, as performed by a human (b) light, robot implementation

Figure 3: Example of gesture mapping from human to robot for the concept light. On the left, a gesture
for light, as performed by a human; on the right, the implementation of the depicted human gesture.

performing gestures for the various target words. As some of the target words concern concepts that
are quite difficult to express non-verbally, the resulting gestures had varying degrees of iconicity. An
additional constraint was the mapping of these gestures, by means of puppeteering (this implementation
technique was previously explained in D6.1), to the NAO robot: given its limited degrees of freedom,
this proved challenging. For reference, see Figures 3 and 4, in which stills from gestures for target
words light and four are shown, performed by a human as well as the eventual robot implementation
(image from the virtual NAO in the Choregraphe workspace). Students of Tilburg University who
had followed a course on HRI were asked to implement gestures based of the video recordings. A
number of these implementations were used as the basis for gestures used in the actual large-scale
evaluation study, after being further refined by members of both the Koc and Tilburg teams; others
were redesigned and implemented from scratch (an example of which is shown in Figure 4, as the
human-produced gesture uses four fingers on one hand to indicate the target word four; a gesture that
is impossible for the NAO to perform as it only has three fingers on one hand).

The final challenge was to incorporate the gestures in the interaction without disrupting the flow.
The system’s architecture had initially not been designed to facilitate the use of gestures as required
for the large-scale evaluation study, as made apparent by complications involving the combined use
of verbal and non-verbal behaviours. In addition, the physical limitations can slow down the robot’s
execution of behaviours, which, in turn, slows down the interaction. To mitigate these issues, we
have carefully timed the execution of gestures with the accompanying speech: each time a gesture is
executed, a pause is inserted to synchronize the gesture with the appropriate part of the robot’s speech.
Although an interaction with the use of gestures will still take slightly longer than an interaction without
gestures, the interaction flow has been mostly preserved as a result of the use of these predetermined
pauses.

Date: 02/07/2018 Page 8
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(a) four, as performed by a human (b) four, robot implementation

Figure 4: Example of gesture mapping from human to robot for the concept four. On the left, a gesture
for four, as performed by a human; on the right, the implementation of the depicted human gesture.
Due to the robots physical limitations, a direct mapping was not possible.

3.2 Tablet condition

For the experimental condition where children would play only with the tablet, without the robot being
physically present, a version of the system would have to be designed with as little modifications
as possible so that results between the conditions with and without robot could be compared. The
proposed solution was to simply have all the speech output come from the speakers of the tablet instead
of the robot, and leave the game and storyboard the same as in the robot conditions. There would not be
any visual representation of a virtual agent, because the goal of including this experimental condition
is to compare a tablet game and an embodied agent, rather than a virtual and a physical agent. Together
with our colleagues from Utrecht University, the storyboards were checked and modified where needed
to ensure that all utterances worked for all conditions, with and without a robot present. Details of
these changes to the storyboards are described in D2.3.

Ideally, implementing the tablet condition would simply mean replacing the OutputRealizer sub-
module with one that uses a Text-to-Speech engine running on the tablet instead of the NAO robot, and
simply ignores all non-verbal cues. For consistency in the quality of pronunciation and comprehensibil-
ity, the idea was to have the tablet use the same voice as the robot. After consulting with SoftBank
it turned out that it would be a challenge to run this speech engine on a tablet, since it was licensed
specifically to run on their robotics platforms. Fortunately, the NAO robots have a feature to stream
all audio output to an external device over the network. This did allow us to play exactly the same
content in all conditions, with the drawback that the robot would still have to be present (but hidden
from view) for us to use its Text-to-Speech engine. An alternative option would be to record samples
of the robot’s voice and play them back from the tablet when needed. In this case the robot would not
have to be there, however this lacks the flexibility and extensibility of the current system because all of
the content and possible variations (e.g., name of the child, contextual information) would have to be
generated prior to running a lesson.

The PulseAudio software that is used for the tablet condition requires two parts: a server that has
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access to the audio output device that is to be used — in our case the tablet — and a client that streams
the audio signal to this server. The client is pre-installed on the NAO robot, it simply needs to be
configured so that it knows where to find the server, and to switch audio output to the server instead
of the robot’s speakers. We could not find extensive documentation on how to configure and run the
software reliably, however there was a member of the L2TOR project that had worked with it before,
who was able to provide valuable help with the initial set-up of the system. Although PulseAudio
support on Windows platforms was previously lacking, it appears to have become more stable in
recent years, allowing us to run the server on the tablet. The PulseAudio server is always started when
initializing the OutputManager, even if the tablet condition is not used — the robot will simply never
connect to it in this case. When the experiment is then started in the tablet condition, the process of
connecting to the robot and re-configuring it to switch output from the robot’s speakers to the tablet has
been automated. After a lesson in the tablet condition has finished, the output is switched back to the
robot’s speakers. We discovered a bug where the audio would stutter, mostly at the start of the session.
A work-around was discovered thanks to our target domain of language learning, where language
switches are common: it turns out that switching the language removes the stuttering issues, so when
initializing the tablet condition we now always change language to prevent the issue from occurring
during the interaction. Our findings while getting PulseAudio to work have been communicated to
SoftBank to help other projects in the future.

3.3 Context-sensitive prompts and feedback

After pilot testing with place-holder feedback such as “that’s not quite right”, as well as requests
for answer that simply repeated the last sentence of the task introduction, it became clear that these
interaction mechanisms would be much more efficient and cause less frustration if they would become
more intelligent by adding context-awareness. For interactions with the tablet game, the OutputManager
would already receive the required action (e.g., moving an object inside of another object) and the
unique identifiers of objects involved (e.g., monkey_1 and cage_1) from the InteractionManager. This,
combined with a template for each task and a dictionary that maps object identifiers to their descriptions
in the correct language was already enough to present basic tasks and feedback, for example:

Let’s put the giraffe in the cage.
The template for this type of task, to move an object, was:
Let’s put [obj_1] [rel] [obj_2]

To find out whether the two objects involved in this task, the giraffe and the cage, should be pronounced
in the L1 or L2, we look at the last utterance — where the task was originally introduced. While this
implementation worked for the first simple tasks that we encountered, there were a number of situations
in which a sense of context was needed, for example:

e There are several giraffes, but the target is the one that is inside a cage
o The target is the area that contains most animals: the feeding tray or the lake

In these cases, the information that the InteractionManager needs to verify whether the task was
completed does not provide enough input to formulate a task, which is needed to request an answer
or to give corrective feedback. For instance, the InteractionManager will only know that the correct
answer to the “cage with most animals” is cage_3, it is unaware of the contents of this cage or how to
describe it with words. To add this functionality to the OutputManager, we implemented a first version
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of a discourse model: a mental model of the objects in the tablet game, and their relationship to each
other at any point during the interaction. Parts of this functionality was already implemented within
Underworlds (WP4), but due to the strict time schedule in which the discourse model would be needed,
we decided to create a basic implementation ourselves to minimise the impact on Underworlds’ code
base. This also allowed us to rapidly explore and validate our requirements for the discourse model.

3.3.1 Discourse model

The discourse model is integrated with the parser that converts the Excel storyboards into JSON files
that can be read by the InteractionManager and OutputManager. While going through the storyboard
for a lesson, at certain times the tablet game will load a new 3D scene. A single JSON file is used by
the tablet game to build this entire scene, describing the background image and the details of all 3D
objects that should be created. Whenever a change in 3D scene is encountered, the parser also loads
this JSON file describing the 3D world and analyses the location and visibility of all objects contained
within. This is the initial state of the tablet game, of which initial spatial relations are inferred and
stored (e.g., objects that have walls are considered to be containers and objects that are positioned
within these walls are considered to be “in” these containers). As the storyboard plays out, the state of
this 3D world is likely to change: some tasks ask the child to move an object to a new location, and
some events that occur during the interaction will cause objects to be moved as well, or objects that
were previously hidden can become visible and vice versa. These tasks and events are all described
in the storyboard, therefore if the discourse model is updated accordingly we are able to derive the
location of each object, and its spatial relation to other objects, at any point during the interaction. The
discourse model was developed with a focus on practicality, there are several limitations that we intend
to address in the future:

e The model currently runs offline (when parsing storyboards), but could be made to run during
the interaction, allowing the OutputManager to request information from it at any time — in
co-operation with Underworlds (WP4), which already maintains the spatial relations between
objects in the 3D scene;

e The size of 3D objects is unknown, therefore the model cannot be sure about the initial spatial
relations between all objects;

e While the model is able to determine “the area with fewest things”, it does not support queries
such as “item of which there are fewest” — a work-around we use now is to have an invisible
dummy object which the dictionary translates into “item of which there are fewest”;

e Changes in the game world due to the robot performing actions are not yet updated in the
discourse model.

o Ideally, objects that are contained within other objects should also be recognized as valid targets.
For example, if a cage contains giraffes, clicking on those giraffes should also be correct when
the cage is the target. For now, the giraffes (and the floor of the cage) have to be added separately
as targets.

After creating the discourse model to keep track of the (virtual) context, the storyboard had to be
updated. Previously, the identifier of the correct answer to a task had to be listed:

< giveResponseToSelectObject(cage_3)>

Date: 02/07/2018
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After implementing the discourse model, this task has been changed to:

< giveResponseToSelectObject(cage with most animals)>

This makes the storyboard easier to read and create, because the object identifiers and the state of
the 3D scene do not need to be considered to be able to understand this task. While converting this
storyboard into the JSON files that are used by the system, the discourse model would translate the
description of the target object into the correct identifier, cage_3, for the InteractionManager, while the
OutputManager gets a data structure of the target object, such as:

"objective": {
"id": "Cage",
"is_plural": false,
"rel": {
"target": {
"id": "animal",
"is_plural”: true
|
lltype" : "most"

}

This data structure can then be turned into a textual description of the object, e.g., by looking up the
singular word for “cage” and the plural word for “animal” in the dictionary, in the correct language,
and then combining those into “the cage with most animals”. This full description of the target object
can then be plugged into the template for the current task type, which in this case is to touch an object.

3.3.2 Feedback

The basic workings of the FeedbackManager have previously been discussed in D6.1. The goal of
this submodule is to deliver feedback relevant to the context of the learning interaction. In practice,
this means that feedback messages are tailored to the specific task carried out by the learner. To
provide the FeedbackManager with the necessary context-awareness for the tailoring of these messages,
information is relayed from other modules and modified for use in specific syntactic templates. In
similar vein to the functionality of requesting answers, this information is parsed and used to fill the
gaps.

The current implementation of the FeedbackManager handles the requests for feedback step by
step. The pseudocode shown in Figure 6 describes the process of constructing a contextually-relevant
feedback message for an object selection task. To be more specific, Figure 6 highlights the generation
of a feedback message, in an interaction in which the L1 is Dutch, for an object selection task for
which the learner has provided an incorrect answer, and for which relationship information has been
found in the previously described “objective” data structure of the target object (of which an example
was provided). The feedback message will consist of either two or three parts: in case the learner
has provided an incorrect answer no more than once, the feedback message will be extended with a
prompt requesting the learner to try again to find the correct answer; if an incorrect answer has already
been provided twice, the learner will not be prompted again, but will instead be helped and guided
towards the correct answer by the tutoring system (see Section 3.4). In the first part of the feedback
message it is made explicit to the learner whether or not they have given a correct answer (e.g., “That
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is not quite correct”); the second part consists of the syntactic template, the gaps of which are filled
with task-relevant information. Finally, the conceptual message may or may not be followed by the
aforementioned prompt, depending on the number of attempts by the learner up to this point in the
interaction. Figure 5 shows an annotated feedback message for an object selection task.

Relationship target and object

Target, L2 | Object, L1

Jammer, dat kKlopt niet helemaal. Je moet the monkey in de kool aanraken. Probeer het nog maar een keer.

Feedback phrase Template Prompt

Figure 5: Example of a feedback message for an object selection task. The message consists of
three parts: a (negative) feedback phrase, the syntactic template with slots filled with task-relevant
information, and a prompt for the learner to attempt the task once more.

A more complete overview and motivated description of the various possible feedback messages is
provided in D2.3.
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negative feedback <« list of negative feedback options
feedback count < feedback count
if object selection task then
if L1 is Dutch then
if answer is correct then

else
if relationship information in objective then
parse objective
filled template < syntactic template with parsed objective for slot filling
new feedback < old feedback
while new feedback is old feedback do
new feedback < random select from negative feedback
end while
old feedback < new feedback
feedback message < new feedback + filled template
if feedback count < 2 then
feedback message < feedback message + prompt learner
return feedback message
else
return feedback message
end if
else

end if
end if
else

end if
else if ... then

end if

Figure 6: Highlight of procedure for the generation of a feedback message for an object selection task.
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3.3.3 Use of the child’s name

In several of the storyboards, the child’s name was occasionally used by the robot as part of the
conversation to make the interaction feel more personal, draw the attention back to the interaction and
to indicate a sense of urgency:

I think we’ve found all the animals! Jane, how many animals are there?

The storyboards were revised so that the name was mentioned more often, and the name was also
included for the second and third request for answer, for example:

Jane, let’s put the monkey in the cage.

3.4 Providing help and manipulating the tablet

To ensure that lessons can always be completed, even if the child does not understand the current
task, the robot will take over and perform the task for the child after several times of requesting an
answer, or after two incorrect attempts of completing the task. This is designed to reduce frustration
when a child does not succeed in a particular task. The output module receives a notification from
the InteractionManager when it is time to provide help, after which the robot will start by verbally
communicating its intention to give help. If a task requires action to be taken on the tablet (e.g., moving
or selecting an object), the robot performs the act for the child:

I will show you how to do it, look!

Depending on the type of interaction with the tablet, the robot will then perform a gesture that
simulates dragging or tapping of an object on the screen. While these gestures take place, signals are
sent to the tablet game at specific times so that it appears as though objects are actually being moved
by the robot (by animating and highlighting objects), even though the robot never physically touches
the screen. In the case of touching objects, we already know the unique identifier of the target object,
which allows us to highlight this particular object on the tablet. However, if the task is to move an
object to a new location, the desired target location was previously not known to the system. Therefore,
the storyboards were extended such that, in the definition of a move task, the coordinates of a correct
target location would have to be included:

<giveResponseToMoveObject (
bucket,
NOT_above,
shelf,
-133.40874719142187,
OI
73.25956648843038

) >

In this task, the child is asked to remove a bucket from the shelf. The last three values are the X, Y
and Z coordinates of a location on the screen that satisfies this task. This is the location that the robot
would move it to when providing help, although there are many other locations that also satisfy the
task condition (and the child is still free to use those). To increase the user-friendliness of creating and
editing storyboards, future work should include ways to infer correct locations automatically, such
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that the description of the task is enough to allow the robot to perform the task without needing fixed
coordinates. For example, the system could automatically scan the environment for a free spot (where
there are no other objects yet) that satisfies the condition NOT_above shelf, removing the need to
manually annotate the desired location.

When the task is to repeat a word or sentence, the robot provides help by offering to repeat the word
together with the child:

Let’s say it together. 3, 2, 1.. monkey!

This was something we had encountered with a shy child during one of the pilot studies, when there
was not yet a mechanism for the robot to provide help in place. In this case, the experimenter would
offer to repeat the word with the child, and this appeared to help. In the current implementation, even if
the child still does not repeat the word, we move on to the next task after this attempt to provide help.

Because at times it is also desirable for the robot to perform an action, not within the context of
helping a child perform a task but because it has tasks of its own, we also included in the storyboard
the option to include these interactions with the tablet in mid-sentence:

That was fun! Let’s bake another bread. Now I want to try it!
<move (bag, 4.5835913413192895,94,42.65093742920607,1,false)> There,
a bag of flour, and into the bowl.

In this case, right after the robot finishes the sentence Now I want to try it!, the bag of flour is moved
towards the bowl’s coordinates. This animation is allowed to take one second (the fourth parameter of
the move command) and is not supposed to loop (fifth parameter). Because the animation is always
completed within a certain amount of time, it matches the robot’s gesture to create the illusion that
the robot is actually manipulating the tablet game — objects that are further from their target location
simply move faster than those that are already closer to their destination.

3.5 Interruptions

There is a large amount of output from the robot, which is needed to explain the rules of the game and
what action is expected of the child, but also to ensure plenty of exposure to L2 words. Objects on
the screen are also locked (cannot be moved) while the robot is still explaining a task, to avoid the
system losing track of objects’ positions and the overall state of the game. However, during the first
pilot sessions it became clear that children want to move faster through the interaction, for example by
already attempting to complete a task while the robot is still introducing it. Particularly when a task
had to be repeated (e.g., “move three trees into the cage, one by one”) children knew what had to be
done after the first time. We noticed that children became impatient and sometimes even frustrated
when the game did not allow them to perform tasks because the robot was still talking. It also made the
robot seem less intelligent as it was less aware of its surroundings, particularly of the fact that the child
was ready to proceed.

However, sometimes a particular pace has to be imposed because we want all children to have the
same minimum amount of exposures to each target word in the L2, and in some cases the children
are clearly still guessing what the task will be. To include this knowledge of where the important part
of an utterance ends and the robot may be interrupted, together with WP5 we came up with the tag
< accept_answer > that can be placed in the storyboards, anywhere within an utterance before an
action is expected from the child. Whenever this tag is encountered during run-time, while the robot is
speaking, objects on the tablet are unlocked and the child can start interacting with them. When the
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child actually touches the tablet, the robot’s speech is interrupted and the InteractionManager starts
evaluating whether the performed action is the correct one.

If children do decide to interrupt the robot and perform a task, but incorrectly, negative feedback
includes context, as explained in 3.3.2, such that the child should still be able to understand the task
even if the original introduction was interrupted. As it is implemented now, the tag needs to be present
somewhere in the text whenever the child is required to interact with the tablet. A straight-forward
extension of the system could simply start accepting answers at the end of the robot’s utterance, if this
tag was not found within the text. This is already implemented for tasks where the child has to repeat a
word or sentence, where the robot cannot be interrupted because we anticipate that a future speech
recognition implementation will not be able to distinguish between the voice of the child and the robot.

3.6 Logging

With our colleagues that are responsible for the other modules, we agreed on a strategy of logging
everything that happens during the interaction. Each child has a memory file, where all important
events are stored per lesson. This file also contains information that is used to start the interaction,
such as the child’s name, identifier and the experimental condition. During each lesson, new events
are appended such that, at the end of all lessons, the file provides a complete overview of the child’s
interactions with the system. The InteractionManager is in charge of these files, while other modules
can send their events to be stored. For example, task performance (answer given, whether it was
correct) is provided by the InteractionManager. The OutputManager provides several events that are
linked to the main functionalities that the module has to offer, which will help to identify patterns that
occurred during the interaction, as well as the number of exposures to the L2 target words and to iconic
gestures:

e Feedback given: the number of times feedback was previously given, whether it is positive or
negative, which template was used and if there are any exposures to target words (currently only
with negative feedback)

e Gesture produced: whether it was an iconic gesture (could also be pointing or moving) and the
identifier of the gesture

e Request for answer: the number of times an answer was requested for this task already, and if
there are any exposures to target words

e Providing help: if there are any exposures to target words (currently only happens when the task
is to repeat something)

These events are all linked to points in time within the interaction, so that after aligning the starting
points of video and memory the data should be synchronized for the duration of the lesson. Each
module also has its own file where more detailed logs are placed, in the case of the OutputManager this
includes for instance every utterance said by the robot. The goal of these logs is mostly debugging and
they act as a fall-back in case something should happen to the memories.

3.7 Tablet speech

One of the limitations of the robot’s text-to-speech engine is that the pronunciation is not always clear
and correct. This is a challenge, especially when the goal of the interaction is to teach exactly those
words that are being mispronounced. To mitigate this, within the project we decided to ensure that the
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first exposure to a new target word or sentence would always have to come from a recording of a native
speaker. Usually, this recording is triggered after the child is asked to interact with an object on the
screen, so that it feels like a natural response from the tablet game:

...And I think we have four bags of flour. [...] Touch them, so that we can learn what four
is in English.

After this, subsequent exposures will come from the robot so the learner is in fact exposed to two
different versions of the target word. The drawback to this approach is in its scalability: when designing
additional lesson content that includes new target words, samples of the pronunciation of the words by
a native speaker have to be recorded. This has currently been done for all of the target words (and some
sentences that include these words) from the large-scale study, where we recorded a native (Canadian)
speaker of English. Several examples of each word were recorded so that the best (most clear) variation
could be extracted. The best sample of each word was extracted, noise was removed and it was then
saved to a file, which is placed in a specific directory that is part of the output module. The file names
of recordings can then be inserted into the storyboards at the desired location, so that they will be
played back during the lesson.

4 Ongoing and planned research

4.1 Large-scale study

Data collection for the large-scale study as proposed in the revised objectives document is currently
ongoing. The research question and main hypotheses have been preregistered at AsPredicted [12].
From the perspective of WP6, we are particularly interested in the differences between the learning
outcomes of children in the robot conditions with and without iconic gestures (H3 of the preregistration).
Based on existing research, as well as our findings from our previous experiment, we expect children
to retain more English words over time when iconic gestures were present while learning these words.
Other than trying to reproduce the positive effects of gestures we discovered previously, there are
several differences between our previous study and this large-scale study that could lead to new insights
regarding the design and application of gestures in a tutoring system. For example, the positioning
of the robot relative to the child has changed. During the previous experiment the robot was standing
opposite the child, approximately a meter away, and performing full body gestures while the child was
sitting. In the large-scale study both child and robot are sitting down, close to each other, and the robot
is on the right-hand side of the child. The gestures have therefore become “smaller”, consisting of only
arm and hand movements. This appears to affect the interaction in various ways: children are more
tempted to start touching the robot, and gestures are re-enacted more often than in our previous set-up.
Furthermore, the effect of iconic gestures may also be affected by the fact that there are now multiple
sessions instead of one, that the lessons are more complex and less repetitive, and that there is a larger
number of words to learn (34 compared to 6).

4.2 Comprehensibility of recorded gestures

In our previous experiment with iconic gestures, as well as the large-scale study, the gestures that were
performed by the robot were all designed manually. This was done by positioning the robot’s limbs and
storing the orientation of the robot’s joints as key frames. When playing back these gestures, the robot
then interpolates between these key frames to create a motion. The main drawback of this method is
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that the implementations of the gestures are based upon the ideas and mental models of the person
that is designing them, combined with the physical limitations (e.g., limited degrees of freedom) of
the robot. We feel that a more natural way to design these gestures is to have the robot learn them
from humans, performed in a setting that is as natural and spontaneous as possible. This learning
process can be done using a depth sensor such as Kinect to record gestures, followed by a mapping that
translates these human joint positions into joint orientations specific to a robotic platform, in our case
the Softbank Robotics NAO. Because the Kinect recordings are unaffected by this mapping process,
they can easily be used to also map to different platforms as new, different robots become available.

When trying to record and then map gestures onto the robot, details will be lost due to the limitations
of the robot as well as the recording hardware. We intend to investigate to what extent this loss of
information reduces the comprehensibility of the gesture, by conducting a study where participants are
shown recordings of gestures being performed (by a human or a robot) and are asked to guess which
object is being depicted.

5 Conclusion and Future Directions

In this deliverable we have described the current status of the output generation module of the L2ZTOR
system. Recent additions to this system include the implementation of iconic gestures, a variation of
the system that runs without robot (tablet only), context-sensitive language generation and coordination
with the tablet game. The tutoring system is currently being used for the large-scale study described in
section 4.1. Deliverable 6.3 will discuss our findings from this study.

As mentioned in D6.1 with respect to the (automatic) mapping of human gestures to humanoid
robots, we are currently preparing an experiment to investigate to what extent gestures can be extracted
from video recordings of gestures from human participants to be mapped to the NAO robot with limited
(or possibly without) supervision. An important motivation for this study is to find how well these
gestures can be mapped to the robot and whether their intended meaning is preserved in the process. In
addition, we intend to examine the gesture recognition capabilities of a robot system supported by a
Kinect camera.

References

[1] Albert Gatt and Emiel Krahmer. Survey of the state of the art in natural language generation:
Core tasks, applications and evaluation. Journal of Artificial Intelligence Research, 61:65-170,
2018.

[2] Emiel Krahmer, Sebastiaan van Erk, and André Verleg. Graph-based Generation of Referring
Expressions. Computational Linguistics, 29(1):53-72, March 2003.

[3] Emiel Krahmer and Kees van Deemter. Computational Generation of Referring Expressions: A
Survey. Computational Linguistics, 38(1):173-218, March 2012.

[4] Candace L Sidner, Cory D Kidd, Christopher Lee, and Neal Lesh. Where to look: a study of
human-robot engagement. In Proceedings of the 9th international conference on Intelligent user
interfaces, pages 78—-84. ACM, 2004.

[5] Sean Andrist, Tomislav Pejsa, Bilge Mutlu, and Michael Gleicher. Designing effective gaze
mechanisms for virtual agents. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 705-714. ACM, 2012.

Date: 02/07/2018
Version: No 1.0



$l)Tol

[6] Jan de Wit, Thorsten Schodde, Bram Willemsen, Kirsten Bergmann, Mirjam de Haas, Stefan
Kopp, Emiel Krahmer, and Paul Vogt. The effect of a robot’s gestures and adaptive tutoring on
children’s acquisition of second language vocabularies. In Proceedings of the 2018 ACM/IEEE
International Conference on Human-Robot Interaction, pages 50-58. ACM, 2018.

§

[7] Marion Tellier. The effect of gestures on second language memorisation by young children.
Gestures in Language Development, 8(2):219-235, 2008.

[8] Spencer D. Kelly, Tara McDevitt, and Megan Esch. Brief training with co-speech gesture lends a
hand to word learning in a foreign language. Language and Cognitive Processes, 24(2):313-334,
2009.

[9] Manuela Macedonia, Karsten Miiller, and Angela D. Friederici. The impact of iconic gestures on
foreign language word learning and its neural substrate. Human Brain Mapping, 32(6):982-998,
2011.

[10] Meredith L. Rowe, Rebecca D. Silverman, and Bridget E. Mullan. The role of pictures and

gestures as nonverbal aids in preschoolers’ word learning in a novel language. Contemporary
Educational Psychology, 38(2):109 — 117, 2013.

[11] Jacqueline A. de Nooijer, Tamara van Gog, Fred Paas, and Rolf A. Zwaan. Effects of imitating
gestures during encoding or during retrieval of novel verbs on children’s test performance. Acta
Psychologica, 144(1):173 — 179, 2013.

[12] Rianne van den Berghe, Mirjam de Haas, Emiel Krahmer, Paul Leseman, Ora Oudgenoeg, Josje
Verhagen, Paul Vogt, Bram Willemsen, and Jan de Wit. Aspredicted.org preregistration — L2TOR
(#8181). http://web.archive.org/web/*/https://aspredicted.org/6k93k.pdf. Accessed: 03-05-2018.

Date: 02/07/2018
Version: No 1.0



Session Tu-1B: Tutoring and Child-Robot Interaction

HRI’18, March 5-8, 2018, Chicago, IL, USA

The Effect of a Robot’s Gestures and Adaptive Tutoring on
Children’s Acquisition of Second Language Vocabularies

Jan de Wit Thorsten Schodde Bram Willemsen
TiCC* Faculty of Technology, CITEC' TiCC
Tilburg University Bielefeld University Tilburg University
j.m.s.dewit@uvt.nl tschodde@techfak.uni-bielefeld.de b.willemsen@uvt.nl
Kirsten Bergmann Mirjam de Haas Stefan Kopp
Faculty of Technology, CITEC' TiCC* Faculty of Technology, CITEC'
Bielefeld University Tilburg University Bielefeld University
kirsten.bergmann@uni-bielefeld.de mirjam.dehaas@uvt.nl skopp@techfak.uni-bielefeld.de
Emiel Krahmer Paul Vogt
TiCC TiCC
Tilburg University Tilburg University
e.j.krahmer@uvt.nl p-a.vogt@uvt.nl

ABSTRACT

This paper presents a study in which children, four to six years old,
were taught words in a second language by a robot tutor. The goal is
to evaluate two ways for a robot to provide scaffolding for students:
the use of iconic gestures, combined with adaptively choosing the
next learning task based on the child’s past performance. The results
show a positive effect on long-term memorization of novel words,
and an overall higher level of engagement during the learning
activities when gestures are used. The adaptive tutoring strategy
reduces the extent to which the level of engagement is diminishing
during the later part of the interaction.
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1 INTRODUCTION

Robots show great potential in the field of education [24]. Embodied
agents in the form of humanoid robots, in particular, may deliver
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educational content for various subjects in ways similar to human
tutors. The main advantage of using such a robot compared to
traditional learning tools is its physical presence in the referential
world of the learner [20]. The human-like appearance and presence
in the physical environment may facilitate interactions that are, to
some extent, similar to the ways in which human teachers would
communicate with their students. Care should be taken, however,
to design for the correct amount of social behavior, so as to avoid
distracting students from the task at hand [16].

When designing such interactions, we can draw upon ways in
which human teachers give contingent support to students in their
learning activities. For instance, particularly in one-on-one tutoring
situations, teachers tend to adjust the pace and difficulty of learning
tasks based on the past development and current skill set of the
student [29]. For example, teachers may help by scaffolding, taking
the initial knowledge base as a starting point and trying to optimize
the learning gain by choosing the hardest task to perform that still
lies within the zone of proximal development [32] of the student.

The use of gestures that coincide with speech is another way
for teachers to provide scaffolding, particularly when the concepts
which the gestures refer to are not yet mastered by the student
[1]. For instance, when teaching a second language (L2), gestures
can help to ground an unknown word in the target language by
linking it iconically or indexically to a real world concept. Such a
facilitating effect on word learning has been found for imitating
gestures of a virtual avatar [2]. However, it is an open question
if the embodied presence of a robot can be exploited to support
language learning through a robot’s gesturing, and if so, what kind
of gestures would have a positive impact.

In this paper, we present the results of an experiment conducted
to explore how these two tools for scaffolding the learning of lan-
guage — choosing the task that yields the greatest potential learning
gain for a particular student and the use of appropriate co-speech
gestures — carry over to a humanoid robot. Both were combined
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in one study to better estimate what the relative importance of
the respective techniques is, while keeping all other factors con-
stant, and to find out whether the benefits of the two strategies can
potentially reinforce or impede each other. The techniques were
implemented and tested in a one-on-one tutoring system where
children, four to six years old, play a game with a robot to learn
an L2. In the next section, we briefly present the approaches taken
to realize the adaptive tutoring along with co-speech gesturing of
the robot. We then describe the experimental methodology, before
reporting and discussing the results obtained.

2 BACKGROUND
2.1 Adaptive Bayesian Knowledge Tracing

A robot tutor that personalizes the learning experience for indi-
vidual students has been shown to have a positive effect on per-
formance [19]. This robot is also perceived as smarter or more
intelligent and less distracting or annoying. In order to simulate
the way human tutors tailor learning activities and difficulty levels
to a particular student, an adaptive tutoring system would have
to measure and track the knowledge level of the student. Often
the knowledge is traced skill-wise, where in the case of language
learning, the mastery of particular words or phrases in the target
language is represented probabilistically (e.g., [11]). This approach
yields promising results, but it lacks flexibility because of the need
to define domain-specific distance metrics to choose the next skill.
Others have used Dynamic Bayesian Networks to represent the
learner’s knowledge about a skill, conditioned on the past inter-
action and taking into account skill interdependencies [14]. This
approach requires detailed knowledge about the learning domain
to model those interdependencies and their parameters. Recently,
Spaulding et al. [27] used a simpler approach based on Bayesian
Knowledge Tracing (BKT) [6]. The general BKT model consists
of latent variables S representing the extent to which the system
believes a particular skill to be mastered by the student. The be-
lief state of the system is updated based on observed variables O?,
which correspond to the result of a learning action (e.g., correctly
or incorrectly answering a question), while accounting for possible
cases of guessing p(guess) and slipping p(slip) during the answer
process. It was shown that this model outperforms traditional ap-
proaches for tracing the knowledge state in learning interactions,
and that it can be easily extended to, for example, incorporate the
emotional state of a child. In previous work [26], we have extended
the basic BKT with action nodes to also model the tutor’s decision-
making based on current beliefs about the student’s knowledge
state (see Figure 1). Additionally, we employed a latent variable S
that can attain discrete values for each skill, corresponding to six
bins for the belief state (0%, 20%, 40%, 60%, 80%, 100%). This allows
for quantifying the robot’s uncertainty about a learner’s skills as
well as the impact of tutoring actions on future observations and
skills.

This so-called Adaptive Bayesian Knowledge Tracing (A-BKT)
approach can be used to choose the next skill from which the
learner will most likely benefit, by estimating the greatest expected
knowledge gains. It tries to maximize the belief of each skill while
also balancing over all skills and not teaching a particular skill over
and over again, even if the answer to the task was wrong and the
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At

Figure 1: Dynamic Bayesian Network for BKT (taken from
[26], with permission): with the current skill-belief the ro-
bot chooses the next skill S’ and action A’ for time step ¢
and observes O’ as response from the user.

skill belief is the lowest. The system does not only allow to choose
the best skill to address next, but also the action to be used for
scaffolding the learning of this skill. In this context, actions can be,
for example, different types of exercises, pedagogical acts, or task
difficulties. For the sake of simplicity, three task difficulties have
been established (easy, medium, hard) to address a skill and to find
the best action for a given skill.

The goal of this strategy is to create a feeling of flow which
can lead to better learning results [7]. It strives not to overburden
the learner with tasks that would be too difficult nor to bore them
with tasks that would be too easy, both of which may lead to disen-
gagement and thus hamper the learning. Note that this approach is
comparable to the vocabulary learning technique of spaced repeti-
tion as implemented, for instance, in the Leitner system [18]. The
implementation of A-BKT used in the current study is identical
to the one used previously in [26]. However, it has not yet been
evaluated with children nor in conjunction with other techniques
that might affect action difficulty (such as gestures). Furthermore,
its impact on student engagement has not been explored previously.

2.2 Gestures

Iconic gestures elicit a mental image that corresponds directly, ei-
ther in form or execution, to the concept or action that is being
described verbally at the same time [23]. For example, a flying bird
could be depicted by stretching both arms sideways and moving
them up and down. Studies have shown that iconic gestures, when
performed by a human teacher, may aid the acquisition of L2 vocab-
ularies [8, 15, 21, 28]. Hald et al. [12] provide an overview of how
gestures can contribute to learning an L2. They propose that ges-
tures might have a ‘grounding’ effect by linking existing perceptual
and motor experiences to a new word. This is expected to result in
a richer mental representation. Research by Rowe et al. [25] shows
that gender, language background, and level of experience in the
native language (L1) influence the extent to which gestures can
contribute to L2 learning. The positive effects of gestures hold true
for younger students as well; in fact, gestures are suggested to be a
crucial part of communication with children [13]. It has also been
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shown that gestures help not only to acquire knowledge, but also
to retain it over time [5].

Previous research has explored the use of gestures by virtual
agents (e.g., [2]) and robots (e.g., [30]), finding similar, positive
effects on memory performance when gestures are produced by an
artificial embodied agent compared to a human tutor. While humans
tend to spontaneously perform and time their gestures, they will
often need to be manually designed and coordinated with speech for
the robot. Due to its limited degrees of freedom, however, the robot
is unable to perform motions with the same level of detail, finesse,
and accuracy as a human. This may lead to a loss in meaning when
human gestures are being translated directly to the robot, indicating
aneed for alternative gestures. As a concrete example, the SoftBank
Robotics NAO robot that was used in this case is unable to move its
three fingers individually, preventing it from performing pointing
gestures or finger-counting. However, research suggests that iconic
gestures are almost as comprehensible when performed by a robot,
compared to a human [4].

3 METHODOLOGY

An experiment was conducted to investigate the effect of using
iconic gestures and an adaptive tutoring strategy on children’s
acquisition of L2 vocabularies, with the intention of answering the
following three hypotheses:

H1: There is a greater learning gain when target words are
accompanied by iconic gestures during training, than in the
case of not using gestures.

H2: There is a reduced knowledge decay when target words
are accompanied by iconic gestures during training, than in
the case of not using gestures.

H3: There is a greater learning gain when target words are
presented in an adaptive order during training, based on the
knowledge state of the child, than when target words are
randomly introduced.

These hypotheses rely upon the underlying assumption that chil-
dren are able to acquire new L2 words during a single session with a
robot tutor, regardless of experimental conditions; this assumption
was also put to the test.

The experiment had a 2 (adaptive versus non-adaptive) x 2 (ges-
tures versus no gestures) between-subjects design. In the two con-
ditions with the adaptive tutoring strategy, the A-BKT system de-
scribed in Section 2.1 was used to select the target word for each
round, based on the believed knowledge state of the child. In prac-
tice, this meant that children would be presented with a particular
target word more frequently if they had answered it incorrectly in
the past, thereby changing the number of times each target word
occurred during training, although each target word was guaran-
teed to occur at least once. Other conditions had a random selection,
where each of the six target words would always be presented five
times, in a randomized order, for a total of thirty rounds. In the
gesture conditions, whenever a target word was introduced in the
L2 it was accompanied by an iconic gesture (as shown in Figure 2).
All conditions had the robot standing up and in “breathing” mode,
which meant that it slowly shifted its weight from one leg to the
other and had a slight movement in its arms to simulate breathing.
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Figure 2: Examples of the stroke of two iconic gestures per-
formed by the robot (taken from [9], with permission). Left:
imitating a chicken by simulating the flapping of its wings;
right: imitating a monkey by scratching head and armpit.

3.1 Participants

Participants were 61 children, with an average age of 5 years and
2 months (SD = 7 months), 32 girls. They were recruited from
primary schools in the Netherlands, by first contacting schools and
then sending out an information letter together with a consent form
through the schools to the parents of children that satisfied the age
limit of four to six years. Only native Dutch children with Dutch
as their L1 are included in the evaluation, although all 99 children
that had signed up were allowed to participate in the experiment.
The children were randomly assigned to conditions, while taking
into account a balance in age and gender.

3.2 Materials

The aim of the tutoring interaction was to teach children six animal
names in English: bird, chicken, hippo, horse, ladybug, and monkey.
These specific words were chosen because the Dutch words are
distinctly different from their English translations and because it
was possible to create uniquely defining iconic gestures for them.

The SoftBank Robotics NAO robot was used, which was standing
in front and slightly to the right of the child. After an experimenter
had filled in the name of the child and pressed the start button,
the experiment ran fully autonomously. Two experimenters were
always present, where one would take care of getting the child
from the classroom and explaining the procedure of the experiment,
while the other would set up the system. To avoid having the child
seek them out for feedback, the experimenters would announce
that they would be occupied. The child was asked to sit on pillows,
close to the tablet which was raised on a box and slightly tilted.
Two cameras were used to record the interaction, one facing the
front of the child and one at an angle from the side. The basic setup
is shown in Figure 3, although it differed slightly between locations
due to the layout of the rooms. In the condition with gestures every
occurrence of the target word in L2, except when giving feedback,
was accompanied by the matching iconic gesture (see Figure 2). The
gesture was timed in such a way that the pronunciation of the target
word would coincide with the stroke of the gesture, i.e., the accented
phase that is most related to the meaning. A perception study
was conducted to evaluate the quality of the gestures [9], where
14 participants were shown video recordings of all six gestures
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Figure 3: The setup for the experiments.

performed by the robot and then asked to indicate which out of the
six target words corresponds to each particular recording. Based on
the results of this study, each gesture was deemed to be sufficiently
unique to distinguish between the six target words.

The adaptive tutoring system starts with medium (0.5) confi-
dence for all target words, a value associated with two distractors
during training. Each distractor is a false answer to a task, an image
belonging to one of the five other target words. In the random
conditions, since there is no knowledge tracing the difficulty was
always set to medium (two distractors). The tablet was used to get
input from the child, because speech recognition does not work
reliably with children [17]. This is also why only comprehension
and not production of the target words is evaluated. An example of
what the tablet screen would look like is shown in Figure 5. The
images used during training belong to a different set of images
than the ones used for the pre-test and post-tests. The set of images
used during training matches the gesture that the robot performs
related to the animals, for example the image of the horse for the
training stage (shown in Figure 5) also includes a rider because the
robot shows the act of riding a horse as a gesture. The image that
was used during the tests did not include a rider and the horse is
standing still, facing the opposite direction (shown in Figure 4). In
addition to changing the pose or context of the animals, colors also
varied. Together with having a recorded voice in the tests instead of
the robot’s synthesized speech, this aims to verify whether children
learn how the English words map to the concepts of the animals
and their matching Dutch words, rather than to one specific image.

3.3 Procedure

Prior to partaking in the experiment, participants were introduced
to the robot during a group introduction. This approach is inspired
by the work of Vogt et al. [31] with the intention of lowering the
anxiety of children in subsequent one-on-one interactions with
the robot. The introduction consisted of a description of what the
robot is like, including a background story and how it is similar to
humans in some respects, and different in others. Together with
the children (and sometimes teachers and experimenters) the robot
performed dances, after which all children were presented with
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Figure 4: The pre-test and post-tests on a laptop, using a
recorded voice and a different set of images from those on
the tablet.

Figure 5: The tablet during training, showing images corre-
sponding to the target word and two distractors.

the opportunity to shake the robot’s hand before putting it to bed.
Introductory sessions were scheduled several days before the first
participant was to take part in the experiment, allowing time for
the children to process these new impressions.

Before starting the tutoring interaction, a pre-test was admin-
istered to gauge the level of prior knowledge with respect to the
animal names in the L1 (Dutch) and L2 (English). This test was
administered on a laptop, where images of all six animals were ran-
domly positioned on the screen. A recording of a (bilingual) native
speaker pronouncing one of the six animal names was played, after
which the child was asked to click the corresponding image on the
screen (Figure 4). This was done for all six target words, first in
Dutch and then in English.

After completing the pre-tests, the child would go through each
target word one by one, still using the laptop. This is done to give the
children a first exposure to the correct mappings between target
words and the concepts they refer to, to avoid turning the first
rounds of learning with the robot into a guessing game. Because
there is no feedback during the pre-tests, this also ensures that
concepts are linked to the correct word, rather than having the child
assume that their answers during the pre-tests were all correct. For
each word, the image of the corresponding animal would be shown
in the center of the screen and the laptop would play a recording
by a (bilingual) native speaker saying: "Look, this is a [target in L2].
Do you see the [target in L2]? Click on the [target in L2]!"
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The training stage of the experiment consisted of the child and
robot playing thirty rounds of the game I spy with my little eye. The
robot, acting as the spy, would pick one of six target words and call
out: "I spy with my little eye..", followed by the chosen word in the
L2. For this stage, children were assigned to one of four conditions:

(1) Random tutoring strategy, no gestures (N = 16)
(2) Random tutoring strategy, gestures (N = 14)
(3) Adaptive tutoring strategy, no gestures (N = 15)
(4) Adaptive tutoring strategy, gestures (N = 16)

Prior to playing the game, the robot explained the procedure and
asked the child to indicate whether they understood by pressing
either a green or a red smiley. If the red smiley is pressed, the
interaction would pause and an experimenter would step in to
provide any further explanations. After this introduction, there
were two practice rounds: one in Dutch and one in English.

After the robot had "spied" an animal, a corresponding image
was shown on the tablet along with a number of distractor images
(Figure 5). The child was then asked to pick the image that matched
the animal name that the robot had spied. The number of distractors
was determined by the difficulty level of the round, which in the
case of the adaptive conditions depended on the confidence that the
system had in that the child knew this particular target word. A low
confidence resulted in only one distractor, while a high confidence
had three distractors.

Feedback to the task was given by both the tablet and the robot.
The tablet highlighted the image selected by the participant, either
with a green, happy smiley if the correct answer was provided or a
red, sad smiley if the selected image was an incorrect answer. The
robot then provided verbal feedback, which in the case of a correct
answer consisted of a random pick out of six positive feedback
phrases (e.g., "well done!"), followed by "The English word for
[target in L1] is [target in L2]". In the case of negative feedback,
the robot would say "That was a [chosen answer in L1], but I saw a
[target in L2]. [Target in L2] is the English word for [target in L1]".
Whenever an incorrect answer was given, the same round would
be presented once more but at the easiest difficulty (with only one
distractor: the image that was incorrectly chosen in the previous
attempt). This, combined with additional exposures in the corrective
feedback, means that the number of times each target word was
presented in the L2 may vary between children, depending on
how many rounds were answered incorrectly. After finishing thirty
rounds of training with the robot, the child was asked to complete a
post-test on the laptop. This test is identical to the pre-test that was
administered at the start of the experiment, in L2. Finally, the post-
test was repeated once more, at least one week after the experiment,
to measure long-term retention of the newly acquired knowledge.

3.4 Analysis

Immediate learning gain was measured as the difference between
the number of correct answers on the post-test, administered di-
rectly after the training stage, and the number of correct answers
on the pre-test, taken prior to the tutoring interaction. Test scores
were always between 0 and 6 because each target word was asked
once in the L2. The post-test was administered once more, (at least)
one week after the experiment. We then looked at the difference
between this delayed test and the pre-test for long-term learning
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gain. Finally, we took the difference between the delayed test and
the immediate post-test as a measure of knowledge decay. The
design of these tests is described in more detail in Section 3.2.

Children’s tasks during training were of varying task difficulty in
the adaptive tutoring condition, with one to three distractor images.
To account for these differences, as well as to allow a comparison
with the post-test results (five distractor images), we mapped binary
task success (1: correct response; 0: incorrect response) onto the
span between 0.0 and 1.0 by subtracting a value of 0.2 for each of
the potential five distractor images that was not provided, which
would, for example, result in a score of 0.6 for a correct response in
a task with three distractors. The total score during training was
then divided by the number of rounds (30), resulting in a training
performance value between 0.0 and 1.0 (Figure 7).

4 RESULTS

The average duration of the training stage of the experiment was
18:38 minutes (SD = 3:03). Including the introduction, pre-test,
and post-test this amounted to a session length of roughly thirty
minutes. To confirm whether children managed to learn any new
words from a single tutoring interaction, regardless of strategy
or the use of gestures, a paired-samples t-test was conducted to
measure the difference between post-test and pre-test scores for all
conditions combined. There was a significant difference between
the scores on the pre-test (M = 1.75, SD = 1.14) and immediate
post-test (M = 2.85,5D = 1.61), t(60) = 5.23,p < .001. The same
analysis was conducted for the delayed post-test that was taken (at
least) one week after the experiment. Results revealed a significant
difference between the pre-test scores (M = 1.75,SD = 1.14) and
the delayed post-test test scores (M = 3.02,SD = 1.40), t(60) =
6.81,p < .001. However, there was no significant difference between
the delayed post-test and the immediate post-test, #(60) = .92,p =
.34. This means that H2 is not supported by these results, since no
significant decay was observed in any of the conditions.

To investigate the effects of the different conditions on training
performance, a two-way ANOVA was carried out with tutoring
strategy (adaptive versus non-adaptive) and the use of gestures (ges-
tures versus no gestures) as independent variables and performance
during training as the dependent variable (Figure 7). As described in
Section 3.4, these scores are weighted by the number of distractors
present and divided by 30 rounds, resulting in a value between 0.0
and 1.0. For the 30 rounds of training there was a main effect of ges-
ture use, F(1,57) = 18.23,p < .001, r]“?J = .24, such that training with
gestures led to higher score (M = .38, SD = .09) than learning with-
out gestures (M = .29, SD = .08). Children in the adaptive condition
achieved a higher score (M = .36,SD = .12) than children in the
non-adaptive condition (M = .32,SD = .06), but the effect of tutor-
ing strategy was not significant, F(1,57) = 3.62, p = .06, qf, = .06.
There was a significant interaction effect between use of gestures
and tutoring strategy, F(1,57) = 4.72,p = .03, r]f, = .08. Without
gesture use, there was no significant difference between tutoring
strategies. When gestures were present, however, children in the
adaptive condition turned out to perform better than those in the
non-adaptive condition. Hence, children’s learning outcome was
best when gesture use and adaptive training were combined.
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Figure 6: Test scores for the gesture vs no gesture conditions (left) and the adaptive vs random conditions (right).

Another two-way ANOVA was carried out to measure learning
gain, with the difference score between the post-test results and
the pre-test results as the dependent variable (Figure 6). There
was no significant effect of tutoring strategy, F(1,57) < .001,p =
.95, r]f, < .001, or use of gestures, F(1,57) = 1.53,p = .22, 17123 =.03.
These results do not support H1 and H3 (greater learning gains
when gestures and adaptive tutoring are used). The same two-way
ANOVA with the difference score between results of the delayed
post-test and the pre-test also did not give a significant effect of
tutoring strategy, F(1,57) = .36,p = .55, ryf, = .006, but there
was a significant effect for use of gestures, F(1,57) = 6.11,p =
.02, r]f, = .097, indicating that the learning gain between pre-test
and delayed post-test was greater when gestures were used during
training (M = 1.70,SD = 1.56) than when no gestures were used
(M = .81,5SD = 1.25). Although this does not fully support H1 or
H2, it does show a long-term learning gain when gestures are used
during learning. No interaction effect was found, F(1,57) = .04,p =
84,15 < .001.

4.1 Evaluation of engagement

The engagement of the children during the training stage with the
robot was examined to find out whether children became more
disengaged with the tutoring tasks towards the end of the thirty
rounds, and whether the application of an adaptive tutoring strategy
and gestures would influence the change in engagement levels.
This was done by asking 18 adult participants, without specific
training in working with children, to rate video clips (without
audio) of the children interacting with the robot. The choice for
conducting a perception study with adults using video recordings of
the experiment was made for two reasons: so that the training would
not have to be interrupted for questions regarding the experience,
thereby potentially influencing the engagement, and because it is
difficult for children of a young age to reflect upon their experiences
and verbalize these thoughts [22]. For each child, one clip was taken
from the fifth round of training and one clip from the twenty-fifth
round, to get observations that are close to the beginning and end
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Figure 7: Interaction effects of gesture use and training strat-
egy.

of the training, but far enough from these actual moments to avoid
short bursts of engagement when children realize the experiment
is starting or finishing. The clips start right after the robot finishes
introducing the task, i.e., the point at which the turn switches to
the child to provide an answer. All clips then run for five seconds.
One child that was excluded from the previous analysis because
delayed post-test results were missing, was included for this part
of the evaluation. However, data from one other child was missing,
making the number of stimuli 122 (61 children, two clips each), with
14 to 16 children in each condition. Participants in the evaluation
were asked to rate all 122 clips, randomly presented to them, on a
scale from 1 (completely disengaged) to 7 (completely engaged). As
a practice round, two clips of a child that was not included in the



Session Tu-1B: Tutoring and Child-Robot Interaction

HRI’18, March 5-8, 2018, Chicago, IL, USA

Completely 1(7) OGestures Cadaptive
BNo gestures SRandam
Engaged (6)

Slightly engaged (5) |-

N

_

Neither disengaged/engaged (4)

N\

|

Slightly disengaged (3)

Disengaged (2)

Completely d jed (1)

Round § Round 25

Error Bars: +-1 8D

S

Round 5 Round 25

Error Bars: +~ 1 5D

Figure 8: Rated engagement levels early and late in the training interaction for the gesture versus no gesture conditions (left)

and the adaptive versus random conditions (right).

main experiment were presented, where one example was clearly
engaged and the other was clearly not engaged. After this practice
round, participants were told which features from the examples
showed engagement (i.e., rapid response to the question, upright
body posture, displaying joy after answering the question) and
disengagement (i.e., slower response to the question, supporting
the head by leaning on the arms, showing less interest in the task).

For each participant, the ratings were averaged over all children
belonging to the same experimental condition, resulting in a to-
tal of eight average ratings (four conditions, each with fifth and
twenty-fifth round). Figure 8 visualizes the data from the evaluation.
Results from a paired-samples t-test showed that children were con-
sidered to be significantly less engaged in the twenty-fifth round
(M = 4.38,SD = .84) than in the fifth round (M = 5.21,SD = .64),
t(71) = —12.09,p < .001. Furthermore, a two-way ANOVA with
tutoring strategy (adaptive versus non-adaptive) and gesture use
(gestures versus no gestures) as factors showed no significant effect
for the use of gestures, F(1,68) = 1.36,p = .25, 11‘12) = .02, but there
was a significant effect for tutoring strategy, F(1, 68) = 86.26,p <
.001, 7712, = .559. The drop in engagement between round five and
round twenty-five was less when an adaptive strategy was applied
(M = —.40,SD = .35) than when words were randomly presented
(M = —1.27,SD = .44). There was no interaction effect between ges-
tures and tutoring strategies, F(1,68) = .01,p = .93, q‘f, =.00. The
same analysis was conducted with the average engagement level
of the fifth and twenty-fifth rounds combined, to get an idea of the
overall engagement throughout the entire training session in differ-
ent conditions. In this case the overall level of engagement was sig-
nificantly higher in the gesture condition (M = 5.02, SD = .63) than
in the condition without gestures (M = 4.57,SD = .68), F(1, 68) =
8.75,p = .004, r]izJ = .114. There was also a significantly higher en-
gagement when an adaptive strategy was used (M = 4.97,SD = .67)
as opposed to a random tutoring strategy (M = 4.63,SD = .67),
F(1,68) = 5.10,p = .03, 1712, = .07. No interaction effect between the

two factors was found, F(1, 68) = .08,p = .78, nf, =.001.
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5 DISCUSSION

The results presented above show that by spending a single tutor-
ing interaction of about twenty minutes with a robot tutor, young
children were able to acquire new words in an L2, regardless of
the experimental condition, and were also able to retain this newly
acquired knowledge for a prolonged period of time. Care was taken
to design the pre-test and post-tests in such a way to be clearly
distinct from the training session with the robot in terms of physical
context (laptop versus tablet), voice, and characteristics of the im-
ages used, with the aim of getting a reliable measure of the attained
knowledge. Results from the pre-test show that there is indeed
a realistic amount of prior knowledge, on average above chance,
presumably because some children have been exposed previously
to the target words, for example in television programs. The ob-
served number of correct answers on the immediate and delayed
post-test are higher than on the pre-test, indicating the expected
knowledge gain after engaging in learning activities. The scores on
the post-test are lower than the number of correct answers towards
the end of the training stage, which could show that indeed the test
evaluates whether children acquire the underlying concepts, rather
than simply being able to link a word being pronounced by the
robot to one specific image (in some cases with the help of gestures
that are not present in the tests). One potential point of improve-
ment for the tests could be to introduce context when querying the
target words, for example by using sentences rather than isolated
words. Although explicitly instructed, children seemed not always
aware that they were supposed to select the image corresponding
to an English word, causing them to choose the animal with the
most similar sounding name in Dutch instead (e.g., bird was often
confused with the Dutch word ‘paard’).

When gestures were performed by the robot during training,
there was a higher retention of newly acquired words after at least
one week. This aligns with similar effects that were shown previ-
ously in the context of math with a human tutor [5] and indicates
that these indeed carry over to a robot; a compelling finding that
warrants future research into the intricacies of gesture use by hu-
manoid robots. As mentioned by Hostetter [13] with respect to
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human-human communication, it appears that gestures retain their
positive effects on communication when they are scripted rather
than being produced spontaneously. In this work, only iconic ges-
tures are used that clearly relate to the concept they describe. Future
work could investigate whether a similar contribution to learning
gain is found when non-iconic gestures are used. Furthermore, the
target words used in this experiment were chosen specifically such
that matching gestures could be designed for the robot. It would be
interesting to explore how well a broader range of gestures, describ-
ing various abstract and concrete concepts, could be performed by
a robot as opposed to a human interlocutor. Finally, asking children
to actually re-enact the gestures (e.g., as in [8, 28]), or to come up
with their own gestures, might further increase the potential utility
of gestures in learning due to the embodiment effect [10].

The test results regarding the adaptive tutoring system are cur-
rently inconclusive. This might be a result of the manner in which
learning gain was measured, i.e., a quantification of newly acquired
words — perhaps the adaptive system did not result in more words
learned, but rather led to a more focused acquisition of exactly
those words that the child found most difficult. The main remain-
ing difference between the ways in which human teachers and the
system presented here personalize content is that teachers tend to
draw upon a memory that spans a longer period of time. In this
experiment, the memory of the adaptive system was built up, and
then applied, over the course of a single session. The system might
come to fruition if there are multiple sessions with the same child,
allowing the results of one session to become prior knowledge for
the next one. It is also possible that the actions that the system
performs based on the estimated knowledge levels of the child are
too subtle. Currently, only the order and frequency of words is tai-
lored, within the thirty rounds, and different levels of difficulty are
represented by adding or removing one distractor image. Actions
and difficulty levels could be more complex than that, for example
by applying completely different tutoring strategies or games that
might fit a particular child better. For the sake of this experiment,
the number of rounds was fixed to thirty, but this session length
might also be left up to the adaptive system to control. This would
allow the interaction to end at the exact moment where the learning
is ‘optimal’, i.e., a point at which the adaptive system thinks that
the child has achieved his or her highest potential learning gain.
A final avenue for improvement that is currently being pursued is
to incorporate additional information about the affective state of
the child. Some children might not be in the right mood to learn
when they start, or their attention might fade during the interac-
tion; rather than focusing only on the learning objectives the robot
might want to engage in activities that work towards creating and
maintaining the right atmosphere for learning.

We found it valuable to include the measure of children’s en-
gagement during the interaction. A higher level of engagement in-
dicates increased motivation and willingness to learn [3]. Although
students might succeed in simple word learning with limited en-
gagement and the use of a low-level learning strategy, increased
engagement could stimulate them to go beyond simple memoriza-
tion and relate these new words to prior knowledge. Furthermore,
engagement can serve as a measure of how well the learning ac-
tivities are tailored to the child’s abilities — constantly presenting
tasks that are either too hard or too easy could have a detrimental
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effect on engagement. The results of our evaluation show that in-
deed the adaptive system appears to match the learning activities
to each child’s needs by providing a realistic yet challenging task,
resulting in a reduced decline in engagement towards the end of
the interaction. Gestures contribute to a higher overall engagement,
which could be explained by the fact that the robot appears more
active and playful in this condition, thereby stimulating the child
to remain engaged.

6 CONCLUSION

The study presented in this paper aimed to explore if a humanoid
robot can support children, four to six years old, in learning the
vocabulary of a second language. We found that, indeed, children
manage to learn new words during a single tutoring interaction,
and are able to retain this knowledge over time. Specifically, we
investigated whether the effects of tailoring learning tasks to the
knowledge state of the learner and using co-speech gestures — both
of which are strategies used by human teachers to scaffold learning
— transfer to the use of a humanoid robot tutor. Our results show
that the robot’s use of gestures has a positive effect on long-term
memorization of words in the L2, measured after one week. Fur-
thermore, children appear more engaged throughout the tutoring
session and are able to provide more correct answers when ges-
tures are used. An adaptive tutoring strategy helps to reduce the
drop in engagement that inevitably happens over the course of an
interaction, by providing contingent, personalized support to each
learner. By combining both methods in a tutoring session, adap-
tivity seems to succeed in finding the ‘sweet spot’ of challenging
children enough to keep them motivated while gestures can add to
overall engagement and support children in finding the correct an-
swer. Therefore, gestures can form an additional tool in the toolbox
of A-BKT to be deliberately employed, for example, when a reduced
difficulty is deemed necessary or engagement is decreasing.
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