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D5.1 Interaction management for the number domain

Executive Summary

This deliverable describes the development of the interaction manager including, but not restricted to
the number domain. We present the overall architecture, communication between the modules and
decisions taken towards each component. In addition, we provide insight gathered from qualitative
and quantitative empirical work that was executed to inform the interaction manager about well-suited
interaction patterns for child-robot tutoring, feedback mechanisms, motivational behaviors and cues of
interaction engagement the robot should attend to. Furthermore, we describe difficulties we encountered
during our pilot test and propose solutions to overcome these problems in the future.
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D5.1 Interaction management for the number domain

1 Introduction

The goal of work package (WP) 5 is the development of an interaction management component which
is responsible for planning and choosing the system reactions. The interaction manager receives its
input from the input recognition and interpretation modules (WP4), which record and interpret the
children’s behavior during the tutoring interaction. Based on this input, the interaction manager outputs
high level messages that specify semantic and pragmatic aspects and sends it to the multimodal output
generation (WP6), which will transform this high level behaviour to actual verbal and non-verbal output
realized on the tablet and robot (see Figure 1). The pragmatic output includes interaction management
functions, socio-relational functions, and tutoring-related functions. Besides, a major goal of WP5 is
the development and maintenance of a learner model. The model provides the central representation
for capturing and joining cues extracted from the child’s behaviour and forms the basis for planning
system responses. To that end, the model will enable a form of mental perspective-taking in the sense
that the system is able to reason about the understanding of the situation from the learner’s perspective,
and predict consequences of dialogue and tutoring moves on the state of the learner.

The project proposal specifies the content for Deliverable 5.1 as the interaction manager for the
number domain. The lessons for this domain consist of number words, e.g. one, two and three, and
knowledge about (pre-)mathematical concepts, such as weight, size and quantities. The child will
learn these target words through game-like activities played on a tablet together with the humanoid
robot Nao. Activities include for example counting animals in a zoo while dragging them into their
cage (comparing quantities, number words) or creating of a bouquet in a flower shop (comparing and
manipulating quantities, number words) and many more (cf. Deliverable 1.1). Although the settings
and target words will change in the different lessons and domains, the underlying mechanism for the
interaction management will not change much and can be defined in a more general way so that they
can be used in all three domains. Hence, we focus on the tasks for WP5 as specified in the proposal
from a more general view that is suitable to the number domain, but also for the other domains.

Figure 1: Workpackage overview and how they work together.
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D5.1 Interaction management for the number domain

Figure 2: Communication interface structure of all modules used in the L2TOR System.

2 Tasks of the Interaction Manager

2.1 Input and Output Specification and Representation (T5.1)

2.1.1 Overall Interfaces between Interaction Manager and the Other Modules

Since the interaction manager has to receive, organize and distribute information between all other
modules, and has to control the system flow, a communication protocol that can be used with different
programming languages is needed. Therefore Softbank provides a middleware called “Connection
Manager”, which is based on a TCP/IP connection. The communication flow between the interaction
manager as te integral module and all other modules is illustrated in Figure 2 (for more general
information about the project architecture see Deliverable 3.1).

As depicted in Figure 2, all modules, except for Underworlds, communicate via the Connection
Manager and share information and events. For a detailed list of all functions with parameters please
see Appendix A.

Underworlds
Some tasks during the learning interaction require the evaluation of spatial relations between the objects
on the tablet, hence, a software module called “Underworlds” has been integrated that is capable to
solve this problem. The module is initialized with the tablet scene and needs to be informed about all
changes in the position of all objects to work properly. We decided to integrate Underworlds with a
direct interface to the interaction manager, because of the delays while sending the messages between
the modules (tablet game - connection manager - underworlds - connection manager - interaction
manager and for feedback from interaction manager over connection manager to the output manager)
added up to an unacceptable amount of time to provide a smooth interaction. Due to that the interaction
manager will inform Underworlds about all object-position changes in the tablet game and can request
the spatial relations for a specific object directly if needed.

Output manager
The output manager is the second module that allows the interaction manager to communicate with the
learner. It will express requests and present the next task, request an answer, or give feedback. Later on,
it will also be possible to provide help based on all task-related information stored in the interaction
manager. To be able to control the flow, the interaction manager also needs to know when an action
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D5.1 Interaction management for the number domain

Figure 3: Internal structure of the interaction manager module.

(e.g., speech or gesturing) has been executed. Therefore, status events have been introduced, which are
sent from the output manager to the interaction manager as a result of an executed request.

Tablet Game
The tablet game represents the graphical user interface for the child-robot interaction. Here the interac-
tion manager takes care of which scene is displayed, and which objects have to be displayed, hidden,
enabled for touch, or highlighted to ensure a smooth interaction. Since another important task of the
interaction manager is the validation of the child’s response, the tablet game sends the identifier (id) of
the touched object and the touch position on the screen back to the interaction manager.

Control Panel
The control panel is capable of loading a child’s interaction history into the interaction manager or to
create a new one. Furthermore, the experimenter is able to control the interaction flow with start, stop,
pause and resume commands. This commands are also send to the interaction manager, which executes
the necessary steps and informs other modules if needed.

Kinect Module
The Kinect module provides all needed sensory data as voice activity, the gazed target, bodily activity
and facial features to detect the affective state of the learner (see Section 2.6). Also basic situational
information, e.g. if the child is still sitting in front of the tablet, are recognized by this module. All
sensed information will be stored and made available for decisions making in the interaction manager.

2.1.2 Internal Architecture of the Interaction Manager

For a better understanding how the interaction manager works, the internal architecture is described
in detail in the following. As can be seen in Figure 3, the interaction manager consists of four main
elements. The knowledge model traces the skill mastery of the learner to allow an adaptive lesson
planning. In the affect model the affective state of the learner, here engagement in the interaction,
is inferred from a bunch of behavioral cues as bodily activity, gaze target of the learner, and facial
expression (i.e., smiling). The interaction manager proper contains basic interaction patterns and
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General Child Information Description
Child-ID Unique identifier for a particular child.

Name The name of the child to be used by the robot to directly address the
child in a verbal utterances.

General Task Information
Task-ID The ID of a particular task

Task-Type The task-type, e.g., “select object” or “move object”.

Target words The target words addressed in the task.

Answer right/wrong The given answer and if it was right or wrong.

Response time The time it took the child to answer after the task was given.

Feedback-Type What type of feedback, or which feedback-parameters, were used.

Table 1: The different information which will be stored in the history model.

advanced flow control mechanism which are additionally informed by an external script containing
more advanced interaction patterns and task specifications. It is responsible for controlling the flow of
the interaction, maintaining the attention and engagement of the child, validating the task, requesting
an answer if the child is not responding, and providing feedback. The feedback will be parametrized
by the information stored in the knowledge, affect and history model. The history contains information
about the general task history (e.g. correctness and response time), and further the type of feedback
and knowledge that was provided and affective states of the past (see Table 1).

2.2 Model of the Child Learner’s States and Traits (T5.2)

The interaction manager needs to keep track of information about the child’s state in order to adapt to
the individual needs of each learner. The general information about the child’s performance is stored in
two modules: the “Knowledge Module” (see Section 2.4) and the “History/ Common Ground” module.
The latter will store all information related to the interaction history to enable the system to establish
a common ground (i.e., a shared history of experiences) between the system and the child. This will
include information about the child, as his/her name and an identification number (Child-ID), as well
as general task information, e.g., which tasks have been finished yet? were the answers given correctly?
how long did the child take to answer? what was the knowledge state and the affective state at the
moment? etc. It should be remarked that this module is not fully implemented yet. We are still running
experiments and pilot tests to decide which information will be finally stored. A preliminary list can
be found in Table 1. The history/common ground module can be regarded as a longterm memory,
which enables the system to adapt to each child based on the actual interaction state, but also under
consideration of earlier interactions. The system should hence be able to form expectations about each
child’s feedback preferences and learning speed according to earlier experiences.

2.3 Basic Interaction Management (T5.3)

To set up the basic interaction management for the different domains, we decided to design the
interaction on an empirical basis of human-to-human language tutoring data, to create a tutoring
interaction that matches children’s needs. For that purpose, video recordings of language tutoring
games were collected as they take place in kindergartens. Given that one-to-one interactions of educator
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D5.1 Interaction management for the number domain

and child can hardly be realized in kindergartens, the games typically involve one educator and a small
group of children. Data of four language tutoring games have been collected: reading a picture book
together with children in an interactive manner; card game “I spy with my little eye”; card game “I’m
giving you a present”; and a rhyming game. The collected data comprises round about 681 minutes of
recorded video data from children between age four and six. These recordings have been transcribed
and annotated with regard to the following categories:

• Dialogue acts: Utterances are classified due to the underlying intention based on the DAMSL
annotation scheme [1].

• Children’s mistakes: Types of language errors the children made, e.g. wrong plural form,
missing articles, wrong syntax, etc.

• Educator’s speech repair: Pedagogical acts used to correct the errors, e.g. reformulation,
corrected repetition, etc.

• Nonverbal behaviour: Nods, smiles, gestures etc. used by the educators.

On the basis of these annotations, overall patterns were identified to inform the detailed design of
the robot’s behaviour. These fall basically into two categories, (i) overall interaction structure and (ii)
feedback behaviour by the educators.

2.3.1 Overall Interaction Structure

A common pattern in all language tutoring games under investigation was the following basic course of
actions:

1. Opening: Marks the beginning of the interaction and should mitigate the children’s timidity as
well as it should motivate the child.

2. Game Setup: This step is used to prepare the game by explaining the task and clarify the
necessary terms.

3. Test run: A test run of the game is conducted to test whether the instructions have been
understood and to practice the game flow.

4. Game: Here, the main interaction game takes place. Every move is accompanied by the
educator’s feedback and motivations to continue.

5. Closing: Marks the end of the learning interaction. Additionally, it is used to ensure motivation
for future interactions by acknowledge the participation, joint singing a goodbye song and an
outlook on what’s going to happen next time.

2.3.2 Educator’s Feedback Behaviour

In addition, the educators’ behaviour when providing children with feedback was analysed. An
important and common pattern is that language errors are almost never corrected explicitly. Instead,
feedback is always provided in a positive way, falling into one of the following categories with the
percentage of their occurrence given in squared brackets: (i) praising the child for a correct utterance
whereby praise is often combined with a repetition of the correct word [13%] (ii) implicit correction
in case of an error made by the child: repetition of the word as if correct (e.g. correct pronunciation,
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with article, plural form, etc.) [54%], (iii) correct recasting of a sentence, e.g. after syntax errors
[32%], (iv) moving on to next task, e.g. when the child’s message is unclear due to incomprehensible
pronunciation [1%]. All kinds of educators’ feedback behaviour is typically accompanied by looking
at the child, smiling and nodding. These findings are also supported by our observations in schools,
where educators showed mainly positive feedback. Only a few times educators used negative feedback,
which is rather implicitly given, see Deliverable 1.2 for more details.

2.3.3 Conclusion

Besides the observational studies, we also evaluated different dialog managers as OpenDial [2] and
IrisTK [3], but the results gathered from observations mainly done in the realm of WP1 (see Deliverable
1.2) revealed that no full-fledged dialogue management is needed for our purpose, because large parts
of the tutoring interaction structure can be pre-designed and determined. The lessons learned from the
empirical studies have thus been used to build interaction scripts that ensure smooth and well-structured
tutoring interactions. However, these scripts can still be adjusted to allow some adaptation at predefined
points for intervention. For instance, the system can adapt the lesson to the learning speed of the
children (see Section 2.4). In addition, it is planned that the interaction can be paused at any time, or
at least after a task has been finished, to include motivational or relaxing activities for the children to
recover until the learning interaction will go on (see Section 2.6).

2.4 Probabilistic State Estimation and Update (T5.4) & Decision-theoretic Dialogue
Management (T5.5)

We developed a novel approach to personalize language tutoring in human-robot interaction [4]. This
adaptive tutoring approach is based on a model of how tutors mentalize about learners – by keeping
track of their knowledge state and by selecting the next tutoring actions based on their likely effects
on the learner. This is realized in an approach that combines knowledge tracing (of what the learner
learned) with tutoring actions in one causal probabilistic model. The combination allows the selection
of skills and actions based on notions of optimality – here the desired learner’s knowledge state as well
as optimal task difficulty – to achieve a given skill.

2.4.1 Knowledge Tracing and Decision Making

The approach is based on Bayesian Knowledge Tracing (BKT) [5], a specific type of Dynamic
Bayesian Networks (DBNs). The model consists of two types of variables, namely the latent variables
representing the belief state of ‘skills’ to be acquired (e.g. whether a word has been learned or not) and
the observed variables representing the observable information of the learning interaction (e.g. whether
an answer was correct or not). In our proposed model, each latent variable can attain six discrete
values, corresponding to six bins for the belief state (0%, 20%, 40%, 60%, 80%, 100%) representing
whether a skill is mastered or not. That is, we reduce the complexity we would get through continuous
latent variables but also attain more flexibility. The observed variables remain binary and still represent
whether a learner’s response is correct or not (see Figure 4). Moreover, the following update of the
belief state of the skill, i.e. the skill-belief, at time t+ 1 is not only based on the previous skill-belief,
but also on the chosen action and the previous observation at time t.

Based on this model, two types of decisions are made, (1) which skill would be the best to address
next, and (2) the choice of action(s) to address that skill. Regarding the former, we employ a heuristic
that maximizes the beliefs of all skills while balancing the single skill-beliefs among each other. This
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answer

Figure 4: Dynamic Bayesian Network for BKT: With the current skill-belief the robot chooses the next skill St

and action At for time step t (left). After observing an answer Ot from the learner, this observation together
with action At and the previous skill-belief St are used to update the skill-belief St+1 at time t+ 1 (right) [4].

strategy is comparable to the vocabulary learning technique of spaced repetition as implemented, for
instance, in the Leitner system [6]. Regarding the choice of actions, the model enables the simulation
of the impact each action has on a particular skill. To keep the model simple, the action space of the
model consists of three different task difficulties (easy, medium, hard). Consider an example where the
skill-belief appears relatively high, such that the skill is nearly mastered by the learner. In this case, a
less challenging task would only result in a relatively minor benefit for the training of that skill. In
contrast, if we assume the skill-belief to be rather low and a very difficult task is given, the student
would barely be able to solve the task, likewise resulting in a smaller (or non-existent) learning gain.
Instead, a task of adequate difficulty, not too simple nor too complicated for the student to solve, will
result in a higher learning gain [7]. This helps to position the robot as a capable instructor that uses
these scaffolding techniques to help children acquire new skills beyond what they could have learned
without help, by bringing them into the zone of proximal development (ZPD) [8].

2.4.2 Evaluation with Adults

When implemented in the robot language tutor, the model will enable the robot tutor to trace the
learner’s knowledge with respect to the words to be learned, to decide which skill (word) to teach next,
and how to address the learning of this skill in a game-like tutoring interaction. To evaluate this model
a study has been conducted (c.f. [4]), where participants (students) were asked to learn ten vocabulary
items German – ‘Vimmi’ (Vimmi is an artificial language that was developed to avoid associations
with other known words or languages for language-related experiments [9]). The items included colors,
shapes and the words ‘big’ and ‘small’. During the game, the robot introduced one of the Vimmi
words. A tablet then displayed several images, one of which satisfied the Vimmi description (e.g. one
object that is blue) and a number of distractors. The participant was then asked to select the image
corresponding to the described item. Participants learned vocabulary items in one of two conditions,
either in the condition with the adaptive model (20 participants) or in a non-adaptive (random) control
condition (20 participants). In the adaptive condition, the skill to be taught and the action to address
the skill were chosen by the model as described above. Participants’ performance was assessed with
two measures: (1) learners’ response behavior was tracked over the course of the training to investigate
the progress of learning, and (2) a post-test was conducted on the taught vocabulary in the form of both
L1-to-L2 translations and L2-to-L1 translations to assess participants’ state of knowledge following
the intervention.
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Figure 5: On the left, the mean numbers of correct answers at the beginning (first 7) and end (last 7) of the
interaction in the different conditions and on the right, the participant-wise amount of corrects answers grouped
by the different conditions for the German-to-Vimmi post-test.

Adaptive (A) Control (C) A, C
M SD M SD M SD

F7 3.75 1.37 4.00 1.17 3.88 1.27

L7 6.90 0.31 5.15 1.69 6.03 1.49

F7, L7 5.33 0.69 4.58 1.12

Table 2: Means (M) and standard deviations (SD) of correct answers for the initial quarter of the training
interaction (first seven items – F7) and the final quarter (last seven items – L7) in each condition, as well as the
inter-model (A, C) and intra-model (F7, L7) means and standard deviations.

To analyze the participants’ response behavior over the course of training, a mixed-design ANOVA
with training phase (initial, final) as a within-subjects factor and training type (adaptive-model-based,
control) as between-subjects factor has been conducted. Results are summarized in Table 2 and Figure
5 on the left. As expected, there was a main effect of training phase (F (1, 38) = 66.85, p < .001, η2 =
.64): Learners’ performance was significantly better in the final phase as compared to the initial
phase. In the first quarter of training, participants achieved a mean of 3.88 (SD = 1.27) correct
responses, whereas in the final quarter, a mean of 6.03 (SD = 1.49) items was selected correctly.
More interestingly, there was also a main effect of training type (F (1, 38) = 6.52, p = .02, η2 = .15)
such that participants who learned in the adaptive condition had a higher score of correct answers
(M = 5.33, SD = .69) as compared to learners in the control condition (with an average of M = 4.58,
SD = 1.12 correct answers). Finally, the interaction between training phase and training type was also
significant (F (1, 38) = 14.46, p = .001, η2 = .28) indicating that the benefit of adaptive-model-based
training develops over time (see Figure 5). While participants’ response behaviour in the first quarter of
training was similar across conditions, a benefit of training with the adaptive model became evident in
the final quarter. At this stage of training, participants in the adaptive model condition achieved a mean
of M = 6.9 (SD = .31) correct responses, whereas participants in the control condition achieved a
mean of M = 5.15 (SD = 1.69) correct responses.

The analysis of participants’ response behaviour over the course of training has clearly shown that
participants learned the L2 words during the human-robot interaction. Importantly, they learned more
successfully with our adaptive model as compared to a randomized training. That is, the repeated trials
addressing still unknown items as chosen by the adaptive model (until the belief state about these words
equaled that of known items) outperformed the tutoring of the same material (same number of trials
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Adaptive (A) Control (C)
M SD M SD

German-to-Vimmi 3.95 2.56 3.35 1.98

Vimmi-to-German 7.05 2.56 6.85 2.48

Table 3: Results of both post-tests (German-to-Vimmi and Vimmi-to-German): Means (M) and standard deviation
(SD) of correct answers grouped by the experimental conditions.

and items) but in randomized order. In the post-test, however, there was no significant difference across
experimental conditions, despite a trend towards better performance in the adaptive model conditions
over the controls.

In this post-test the participants’ learning performance has been measured with two translation
tests (L2-to-L1 and L1-to-L2). The results are summarized in Table 3. Paired-samples t-tests were
conducted to compare the number of correctly recalled words after training with the adaptive model
as compared to training in the control condition. For the German-to-Vimmi translation, there was
no significant main effect (T (38) = .25, p = .80). Participants who trained with the adaptive-model
recalled a mean of 3.95 (SD = 2.56) out of ten words correctly, while participants in the control
condition recalled a mean of 3.35 (SD = 1.98) words. Likewise, there was no significant main effect
(T (38) = .83, p = .41) for the Vimmi-to-German translation task. Participants’ performance after
learning with the adaptive model amounted to a mean of 7.05 (SD = 2.56) correct items, participants’
performance in the control condition to a mean of 6.85 (SD = 2.48) correct items.

Although no main effect of training type emerged in the post test, some details might nevertheless be
worth mentioning. In the German-to-Vimmi post test, a maximum of ten correct responses was achieved
by participants in the adaptive-model condition, whereas the maximum of participants on the control
condition were six correct answers. Moreover, there were two participants in the control condition
who did not manage to perform any German-to-Vimmi translation correctly. In the adaptive-model
condition, all participants achieved at least one correct response (see Figure 5 right).

Different explanations may account for this inconsistent finding. One potential explanation could
be that the way how responses were prompted was not identical in training sessions and post test.
In the training sessions, participants saw pictures reflecting the meaning of the to-be-learned words
whereas in the post-test they just received a linguistic cue in form of a word they had to translate. It
might be that repeated trials as they were particularly supported for difficult-to-remember items by the
adaptive model, led to stronger associations between linguistic and imagistic materials. This might
have caused a stronger decline of correct responses for participants who trained with the adaptive
model as opposed to those in the control condition. An alternative explanation could be that test results
measured immediately after the training session are subject to strong inter-individual differences among
learners. This is the reason why studies on vocabulary learning usually range over repeated sessions
spread over several days (cf. [10]). A typical pattern is that significant results emerge after two or
three sessions/days and/or in the long-term (measured several weeks after training took place). So it
might well be that further training sessions or delayed tests might result in a post test performance that
matches the picture of the during-session performance.

Overall, results from the evaluation study are, at least, in parts very promising: learners’ performance
during training was significantly improved by personalized robot tutoring based on the adaptive model.
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Figure 6: Average number of English words correct in Pre-test, Post-test and Retention test.

2.4.3 Evaluation with Children

Since the project aims for teaching a second language to children and not to young adults, another study
has been conducted with our project partners from Tilburg (for more details please see [11], Deliverable
6.1). Therefore the system, especially the tablet game and the verbal output, has been adapted to be
suitable for children. Additionally, the second language to be taught also has been changed to English
and the words to be learned are English names of animals. Furthermore, the study should not only test
the effect of the adaptive system but also the effect of iconic gestures on the learning gain of children.
Hence, the study was conducted in a 2 (system: adaptive vs. random) x 2 (gestures: present vs. absent)
between subjects design. For the testing of learned vocabulary, pictures slightly different from that
of the teaching session were presented, so that it could also be tested whether the child learned a
word-image mapping only, or if it learned the mapping of the word to the actual concept of the animal.
Images of all animals were shown at the same time on a computer screen, while the computer asks
for a specific animal to be clicked on. This way, the test was not a production test (cf. other study in
Section 2.4.2). In addition, a retention test has been conducted a week after the teaching session, to
check whether the learning effect in the post-test holds or even raises after time.

Results on learning gain
In total, 61 children between the age of four and six (M = 62.2 months, SD = 6.9 months) that
were native Dutch speakers were included in the analyses. To test whether children managed to
learn new words from the interaction regardless of strategy or the use of gestures, a paired-samples
t-test was conducted to measure the difference between post-test and pre-test scores for all conditions
combined (Figure 6). There was a significant difference between the scores on the pre-test (M = 1.75,
SD = 1.14) and immediate post-test (M = 2.85, SD = 1.61), t(60) = 5.23, p < .001. Children on
average recalled more words (animals) in the post-test compared to the pre-test. When considering the
retention test (at least) one week after the initial test, the difference to the pre-test was still significant
t(60) = 6.81, p < .001. The average amount of animals recognized one week after the test was
even slightly higher (M = 3.02, SD = 1.40) than immediately after the child–robot interaction.
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Figure 7: Interaction effects of gesture use and training strategy.

In summary, a learning gain was observable after the interaction with the robot regardless of the
experimental condition.

To investigate the effects of the different conditions on learning performance during training, a
two-way ANOVA was carried out with learning strategy (adaptive versus non-adaptive) and the use of
gestures (gestures versus no gestures) as independent variables and performance (response accuracy)
during training as the dependent variable.

For the 30 rounds of training there was a main effect of gesture use (F (1, 57) = 18.23; p <
.001, η2 = .242) such that training with gestures led to higher response accuracy than learning without
gestures. The effect of learning strategy failed to reach significance (F (1, 57) = 3.62; p = .062, η2 =
.060), but there was at least a trend such that children in the adaptive condition achieved a higher
response accuracy than children in the non-adaptive condition. In addition, there was a significant
interaction effect between use of gestures and learning strategy (F (1, 57) = 4.72; p = .034, η2 = .076),
which has been visualized in Figure 7. Without gesture use, there was no difference whether children
learned adaptively or not. In contrast, when gestures were present, children in the adaptive condition
turned out to perform better than those in the non-adaptive condition. So children’s learning outcome
was best when gesture and adaptive training were combined.

To test whether the learning gain from pre-test to post-test was affected by the experimental
conditions, another two-way ANOVA was carried out with the difference score between the tests
as dependent variable. There was neither a significant main effect of learning strategy, F (1, 57) =
.00, p = .95, η2 = .00 (as in the adult-study, see Section 2.4.2), nor of gesture use, F (1, 57) =
1.53, p = .22, η2 = .026, and also no interaction effect between both variables.

When considering the retention test results instead of the immediate post-test findings, there was still
no effect of learning strategy on the learning gain after a week, F (1, 57) = .36, p = .55, η2 = .006,
However, there was a significant effect for the use of gestures, F (1, 57) = 6.11, p = .02, η2 = .097
indicating that the learning gain between pre-test and retention test was greater when gestures were used
during training (M = 1.70, SD = 1.56) than when no gestures were used (M = .81, SD = 1.25).
No interaction effect was observable (F (1, 57) = .04, p = .84, η2 = .001).
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Figure 8: Rated engagement levels early and late in the training interaction for the gesture versus no gesture
conditions (left) and the adaptive versus random conditions (right).

Results on Engagement
In addition to learning, the engagement of the children during the training stage with the robot was
examined to find out whether children became bored and disengaged towards the end of the thirty
rounds, and whether the application of an adaptive tutoring strategy and gestures help to keep children
engaged. Therefore, we asked 18 adults without specific training in working with children, to evaluate
the video-recordings from the experiment (without audio). For each child, one clip was taken from the
fifth round of training and one clip from the twenty-fifth round, to get observations that are close to the
beginning and end of the training, but far enough from these actual moments to avoid short bursts of
engagement when children realize the experiment is starting or finishing. The clips start right after the
robot finishes introducing the task, i.e. the point at which the turn switches to the child to provide an
answer, and last five seconds.

Participants in the evaluation were asked to rate 122 clips (61 children, two clips each), in random
order, on a scale from 1 (completely disengaged) to 7 (completely engaged) based on their own
intuitions. As a practice round, two clips of a child that was not included in the main experiment were
presented, where one example was clearly engaged and the other was clearly not engaged.

Figure 8 visualizes the data from the evaluation, in which the gathered ratings were compared
between conditions using a paired-samples t-test. As a result, children’s engagement significantly
dropped from the fifth round (M = 5.21, SD = .64) to the twenty-fifth round (M = 4.38, SD = .84),
t(71) = −12.09, p < .001. Furthermore, a two-way ANOVA with learning strategy and gesture use as
independent factors showed no significant effect of gestures use, F (1, 68) = 1.36, p = .25, η2 = .02,
but of learning strategy, F (1, 68) = 86.26, p < .001, η2 = .559, on engagement. The drop in
engagement between round five and round twenty-five was lower in the adaptive strategy condition
(M = −.40, SD = .35) compared to the non-adaptive (random) condition (M = −1.27, SD = .44).
Also, no interaction effect was discovered (F (1, 68) = .01, p = .93, η2 = .00).

When considering the average engagement level of the fifth and twenty-fifth rounds in combination,
to get an idea of the overall engagement throughout the entire training session, a 2-factorial ANOVA
with gesture use and learning strategy as fixed factors revealed that the overall level of engagement
was significantly higher in the gesture condition (M = 5.02, SD = .63) than in the condition without
gestures (M = 4.57, SD = .68), F (1, 68) = 8.75, p = .004, η2 = .114. There was also a significantly
higher engagement when an adaptive strategy was used (M = 4.97, SD = .67) as opposed to a random
learning strategy (M = 4.63, SD = .67), F (1, 68) = 5.10, p = .03, η2 = .07. No interaction effect

Date: 16/10/2017
Version: No 1.0

Page 16



D5.1 Interaction management for the number domain

between the two factors emerged (F (1, 68) = .08, p = .78, η2 = .001).
In summary, the results of this additional study conducted with children demonstrated that children

actually gathered new knowledge, i.e. learned new words, through the interaction with robot and
tablet. Most interestingly, it was observable that the use of iconic gestures had a positive influence
on learning: training with gestures led to higher response accuracy than learning without gestures. In
addition, the learning gain between pre-test and retention test was greater when gestures were used
during training. Moreover, the inclusion of an adaptive learning strategy positively affected children’s
engagement during the interaction, although the use of an adaptive strategy had no significant impact on
performance or learning gain during this (short) interaction period. It is, however, possible that adaptive
strategies evolve over time and might develop a stronger impact over a longer course of learning.

Finally, an interaction effect between gesture use and learning strategy was observable with regard
to the children’s performance during the task: children performed equally well whether they learned
adaptively or not when no gestures were present, but performed better in the adaptive condition when
gestures were included. Hence, children’s performance can be increased through the usage of both
robot gestures and adaptive training.

Overall, the results revealed that the inclusion of gestures is beneficial for L2 word learning.
Furthermore, findings with regard to children’s engagement indicate that an personalized and adaptive
learning interaction can hinder drops in engagement compared to a random strategy. In conclusion, we
decided to integrate an engagement detector in our knowledge tracing network, so that it also can be
taken into account during predictive decision making process (see Section 2.6), while the action space
of the system could be extended by suitable gestures.

2.5 Modeling Interaction Patterns (T5.6)

In order to provide a smooth learning interaction for the children, different requirements have to be
fulfilled. Besides a specific structure for the interaction (see Section 2.3), the chosen content as well as
its presentation are crucial. Moreover, the tutoring interactions will include a tablet computer as well
as a humanoid robot, which also have to be considered when designing interaction patterns.

2.5.1 Interaction Patterns gained through Empirical Studies

To get a better idea of how to design the lessons, several studies have been conducted. According to
our findings from an observational study in a German Kindergarten, children prefer a specific structure
included in their learning games (see Section 2.3), so that they can concentrate on the content itself.
Regarding feedback we observed that educators prefer positive feedback, even if they have to correct
errors (see Section 2.3.2). Similar results where found by a study conducted by partners working on
WP1. They observed that educators primarily use positive feedback, but in a few cases also negative
feedback was observed. However, negatuve feedback was rarly used and mainly given implicitly, e.g.
by rephrasing an answer such as “It is a cat!” to “Yes, it is a dog!”One explanation might be, that the
teachers do not want to demotivate young children. A robot tutor should therefore also use this kind of
feedback strategy, although we plan to introduce the robot as a learning peer instead of a teacher. The
role of a peer has been demonstrated to be beneficial in tutoring, not only with regard to teaching, but
also with regard to the acceptance of a (not perfect) robot [12]. A peer is allowed to make mistakes and
maybe say something wrong.

Regarding the content of the tutoring interactions itself, several factors are important. Pilot studies
preceding experiments conducted by partners working on WP7 has shown, that the target words that
should be learned have to be repeated at least 10 times to produce a good learning effect (see Deliverable
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Figure 9: Screenshot from the zoo scene of the first session in the number domain in the 3D tablet game.

1.1), nevertheless the tasks should not be too repetitive. Therefore, the different lessons in each domain,
including the recap lesson at the end, have different topics and different types of tasks, e.g. moving an
object to its target location or selecting the right answer by touching static or moving objects in the
scene. In addition, the child was required to repeat the target words, as the combination of productive
and receptive learning tasks leads to higher (productive) learning gains than receptive learning tasks
only [13].

To decide whether physical objects are favorable for learning, especially in the spatial relations
domain, the usage of physical objects in comparison to virtual objects was investigated. Since children
are used to play with physical objects in learning contexts as well as in their leisure time, it was
assumed that physical objects are more suitable. What is not known is whether the manipulation of
3D models on a tablet is also sufficient. However, no significant difference were revealed regarding
the words learned depending on whether physical objects or 3D graphics on the tablet computer were
used (see [14]). In conclusion, virtual 3D objects are equally adequate for learning as physical objects,
hence we decided to use virtual objects which are far more easy to track.

2.5.2 Interaction Patterns gained through Pilots

To test the system with the already implemented interaction patterns, we conducted two small pilots
studies, in which the children were playing the first sessions of the tablet game, consisting of two
different scenes in the zoo (see Figure 9). In this game, the robot and tablet guided the children trough
the interaction in which they were asked to move particular objects to their target location, select an
object or repeat the L2 target words. But during these first pilots, several problems emerged on a more
technical level.

If the child did not listen to the robot attentively, no answer was given by her/him and (s)he was
waiting for further instructions while simply looking at the robot or trying to play with the tablet. To
make sure the children understand the task, it will be rephrased and presented again after a specified
amount of time, e.g. after 5 seconds. If a target word has been presented the first time, and the task
requires the interaction with and between several objects, e.g., moving the monkey into the cage, all
relevant objects get highlighted until they were touched the first time. This way also a visual hint
is given, which might help to understand the task, which is partially told in L2. Furthermore, very
attentive and concentrated children often try to answer very quickly, even before hearing the full task
description, as soon as all necessary information has been presented. They become impatient if the
system is not fast enough for them and this resulted in boredom and decreasing motivation to play
the learning game. To handle this, the system will now accept that the child starts to answer a task,
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when all necessary task information has been given (e.g.: “Now, I think there’s a very important task
for us! <tablet(on)> The monkey is loose and we have to put it in its cage! <accept answer> Put
<pointAt(tablet)><Gaze(tablet)> the monkey in its cage.”) and all output has been made interruptible.
This way the interaction can be speed up for fast children and can stay the same as before for slower
children. Additionally, to hinder the children from moving the objects around when the game proceeds
too slow, or when they simply want to play with the objects, we lock all movable objects until they
are needed. Another problem which has shown up during the pilots was that some children were
focused too much on the tablet game, so that they did not look at the robot while it was speaking
and gesturing. To allow the focus of the child to switch back to the robot, the tablet screen is now
turned off during important verbal or non-verbal output. Finally, some children seem to struggle with
dragging an item and dropping it at the target location. Instead they loose touch on the way and
hence drop it (unintentionally) in-between. This resulted in negative feedback, which nearly instantly
gets interrupted, because the child did take up the item again to complete the task. To overcome this
problem, we plan to provide a warm-up session for the children beforehand, so that they can familiarize
themselves with the tablet and the shown 3D environment. This hopefully will reduce the frequency of
losing objects during the actual teaching interaction. Furthermore, a small delay of 500ms between the
answer validation and the actual feedback will be introduced, but it still has to be tested whether this
delay is suitable.

Most of the mentioned issues that were discovered in initial studies and pilot tests have also been
considered in our so called ”Storyboard” (see Appendix B and Deliverable 2.1). The storyboard
is based on scripts developed by WP1 (see Deliverable 1.1), which have been transferred to a more
technical representation which is still editable from non-technical people. Thanks to that, the interaction
experts in our project can create this storyboards, which can in turn be automatically translated into a
machine-readable format to be used in the interaction manager and also in the output manager, later on.

2.6 Motivational-relational Strategies (T5.7)

Another important task for the interaction management is to use motivational and relational strategies
in an adaptive way to maintain engagement of the child [15]. Since not only a bad task performance
can influence the motivation of the child, but also tasks that are too repetitive or too boring, it is
important to track the affective state of each child during the interaction, since individual differences
and preferences can be expected.

To get an idea of which affective states occur and are important during child-robot tutoring, and
how they can be detected based on the observation, a qualitative approach was chosen. We used video
recordings from a previous study in kindergarten (see [16] for further details) and interviewed five
preschool teachers on their perception and interpretation of the childrens behavior during child-robot
interactions [17].

The experts were instructed that they should judge the behavior and related affective state of each
child in the 4 shown videos. After each video (one video relates to one child, see Figure 10) the
interviewer asked how the experts would react to negative changes in the childs state, e.g., if they
recognize a lack of attention, and how this could be realized with a robot.

Our major research questions were:

• RQ1: How do experts interpret the cognitive and emotional state of children during the robot-
child tutoring lessons?

• RQ2: To which behavioral cues do they refer when they remark changes (e.g., in the child’s level
of attention)?
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Figure 10: Screenshot from one of the videos shown to the experts during the interview. The learning interaction
is displayed from two perspectives.

• RQ3: How would the experts react to changes in the children’s engagement from the perspective
of the robot?

2.6.1 Extracted Behavioral Cues

According to the experts descriptions of the children’s states, categories of states were derived, see
Table 4. The analyses revealed that the childrens states can be classified into states of engagement,
disengagement, and negative engagement, on a meta level (RQ1, for a more comprehensive overview see
[17], Appendix D). Engagement is composed of concentration and thinking, activity and involvement,
as well as expressiveness. If a child kept eye contact with the robot and tablet, and sit still, the experts
interpreted their behavior as concentrated and engaged. If they mimicked the gestures the robot made,
or answered verbally or nonverbally (e.g., nodding, head-shaking), they were also described as involved
and thus engaged in the interaction. Likewise, expressive behaviors such as smiling, or showing a
thumb up were interpreted as a sign of engagement by the experts. On the other hand, behaviors that
were interpreted as signs of inattentiveness and distraction, or boredom were regarded as indicators of
disengagement. For instance, rubbing eyes, gazing away, or frequent changes of the seating position
were interpreted as inattentiveness. Additionally, supporting ones head with the hands, undirected
tapping with the fingers, and gazing away, were (among others, cf. Table 4) named as remarkable
behaviors that demonstrate boredom and disengagement. Finally, the category negative engagement
contains states like skepticism and averseness. These states were related to frowning, lowering mouth
corners, and head-tilt (RQ2).

When considering the frequencies with which each behavior was displayed by the children the
results indicate that eye contact (n = 4 children), smiling (n = 4), and self-touches to the head (n = 3)
were interpreted as a sign of engagement for multiple children in the video recordings. Regarding
disengagement, making grimaces (n = 4), gazing away (n = 7), turning away (n = 4), moving the
position (n = 2), and finger tapping (n = 3) were observed across several children. As a sign of
negative engagement, head tilt was for several children (n = 3) interpreted as showing skepticism.
Instead, giving verbal answers, nodding, head-shake, eye rub, frowning, and lowered mouth corners
were only addressed for one child, respectively, and appear hence less informative. Note that the
counts refer to the spontaneous mention of the cue per child and that the cues were overall mentioned
repeatedly over the course of the interaction.
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Meta-level
State

State
Interpretation

Behavioral Cue n additional
analyses

(non-expert
coders)

Engagement Concentration/
Thinking

eye contact 5 (4) 8/8

sit still 2 (2) 7/8

hand to head 4 (3) 3/8

Involvement/
Activity

mimic robots gestures 2 (2) 1/8

answer verbally 1 (1) 8/8

nodding 1 (1) 7/8

head-shaking 1 (1) 3/8

Expressive/
Proud

smiling 7 (4) 8/8

thumb up 1 (1) 0/8

raise fist 1 (1) 0/8

Disengagement Inattentiveness/
Distraction

rub eyes 2 (1) 0/8

grimace 4 (4) 0/8

gaze away 7 (4) 5/8

turn away (whole body) 10(4) 0/8

move position (stand up, lay down) 2 (2) 7/8

Boredom/
Impatience

support the head with hand(s) 3 (2) 4/8

move the head from left to right 2 (2) 1/8

undirected finger tapping 4 (3) 4/8

gaze away 2 (1) *

move position (stand up, lay down) 6 (4) *

Negative
Engagement

Skepticism tilt head 3 (3) -

Disinterest frown 1 (1) -

Averseness lower mouth corners 1 (1) -

Table 4: Children’s States and Related Cues, where n is the frequency of reference to a cue; the amount of
children for which the cue was observed is noted in parentheses
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Preventive actions Paraphrases n∗

Include verbal input It would be more motivating for the child if
it should talk to the robot (expert 2, video 2)

3

Heighten robot’s activity
(e.g., move head)

The interaction would be more engaging if
the robot moves. (expert 2, video 2)

3

Repair actions
React to the child’s behav-
ior/ give feedback

The robot should react to the behavior of
the child, e.g., tell him/her to sit down again.
(expert 5, video 1)

4

Change task difficulty The task should increase in difficulty to get
the childs attention back. (expert 1, video 3)

1

Include alternative activities
(e.g., play a game; stand up)

The robot could ask the child to stand up and
move around, so that he/she is ready to listen
again afterwards. (expert 3, video 2)

4

Allow a break A break or a continuation at another day
could be helpful to get the attention back
(expert 2, video 1)

2

Table 5: Possible actions mentioned by the experts, where ∗n is the amount of experts out of the 5 experts that
mentioned the strategy.

Additional Video-analyses by Non-Experts
To ensure that the extracted cues are not a result of the specific child-robot interaction displayed in
the videos, we had additional child-robot interaction recordings analysed by project partners. For that
purpose, our partners from Utrecht, coded eight additional videos of child-robot-teacher interactions,
and checked whether the cues mentioned before are recognizable in these interactions, too. The video
recordings included material from four girls and four boys interacting with the robot, supervised by a
human teacher. The coders only noted whether a specific cue was displayed by the child during the
interaction (present/absent), regardless of how often a cue was visible. The right column of Table
4 shows for how many children out of eight the cues were recognizable as signs of engagement or
disengagement by non-expert observers. In the cases where one cue is listed twice due to multiple
interpretations (e.g. gaze away as inattentiveness/distraction and boredom/impatience), an asterisk is
inserted when the cues is listed for the second time. Regarding cues for engagement, all cues except of
”thumb up” and ”raise fist”, were also displayed in the additional material. Especially, eye contact, sit
still, answer verbally, nodding, and smiling was more or less observable in all interactions (at least 7/8).
For the disengagement cues, rub eyes, grimaces and turn away with the whole body was not observed in
the video recordings. These cues hence appear to be too specific, and hence can be neglected for future
tracking of cues. In addition to the cues, which were extracted from the expert interviews, non-expert
coders further remarked that the children in the video-recordings also pointed to the robot (7/8), and
leaned forward (3/8), which was also interpreted as a sign of engagement in the interaction. However,
when the child leaned on the tablet (4/8), yawned (2/8), or started playing with the tablet before s/he
was allowed to (4/8) this was assumed to be a sign of boredom and thus disengagement.

In conclusion, the additional analyses support the behavioral cues of engagement and disengage-
ment that have been extracted from the expert interviews. Furthermore, the results demonstrate that
the unveiled behaviors are typically observable from children during child-robot interactions. With
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Figure 11: With the current skill-beliefs and engagement level Et the system chooses the next skill St and/or
action At for time step t to balance between maintaining engagement and raising the learning gain. If a teaching
action has been carried out and after an answer Ot from the learner has been observed, this observation together
with action At, engagement level Et and the previous skill-belief St are used to update the skill-belief St+1 at
time t+ 1.

respect to the interaction management it was also of interest how the robot should react if it recognizes
a sign of dis-engagement. Thus, we asked the experts in the interviews how they would intervene to
keep children engaged from the robots point of view (RQ3). Their suggestions were summarized into
categories of potential actions to re-engage children in the tutoring with the robot (see Table 5).

2.6.2 Intervention Strategies

Parts of the experts suggestions can be regarded as preventive strategies that can be employed in the
interaction from the outset. These are general strategies to keep children engaged in an interaction as
allowing multi-modal interactions (here: add speech) or more expressive robot behavior (e.g., gestures,
movements). Beyond that, actions were mentioned that can be useful to re-engage children in an
ongoing interaction after their engagement was lowered (repair actions, see Table 5). The robot could
for example suggest alternative activities to get the child’s attention back (e.g., play a game). In some
cases, it will even be necessary to stop the tutoring for a break according to the expert’s opinions.
Moreover, it was suggested that the difficulty of the task should be increased if signs of disengagement
are recognizable.

Additional Video-analyses by Non-Experts
When re-considering the video-recordings of the eight additional child-robot-teacher interactions (see
above), it has been observed that the teachers intervened in the interaction at some points when one of
the cues was present, namely:

• the child gazes away→ teacher leans forward to attract attention

• the child shows heightened activity→ teacher says ”pay attention”

• the child starts playing on tablet before introduction by robot is finished→ teacher says ”first
you have to listen”
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In conclusion, the analyses of the expert interviews as well as the additional analyses by non-experts
demonstrated that specific behavioral cues are displayed by children during child-robot interactions,
that can be categorized as signs of engagement and disengagement. Fortunately, the majority of these
cues can be easily recorded via existing technologies like Microsoft Kinect (e.g. activity, gaze).

Hence, our next step will be the usage of the information from the expert interviews to build a
classifier for “interaction engagement”. As first approach it is planned to use a Naive Bayesian Classifier
to check whether all cues (gaze direction, smiling and activity) could be tracked and combined into a
model and how strong the influence of each cue on the interaction engagement is. Since sensor data
can be noisy, we also will include cues like accuracy, correctness of an answer and the response time.

After the classifier has been evaluated with annotated videos which are accompanied by recorded
Kinect- and interaction data, the classified “interaction engagement” can be included into the “Adaptive-
BKT” model (see Figure 11).

This enables the system to choose not only the next skill and action from which the learner will
most likely benefit but also to balance teaching by maintaining the “interaction engagement”. Therefore
the action space will be extended. Some possible actions have been mentioned in the expert interviews
and can be seen in table 5. In fact, actions like allowing a break or include alternative activities already
have been shown to improve concentration during learning sessions [18].

3 Conclusion

In summary, the goal of WP5 is the development of an interaction manager for the L2TOR system,
which is responsible for planning the course of an second language learning interaction by choosing ap-
propriate actions based on its internal Knowledge-, Affect- and History-Models as well as pre-designed
interaction patterns. Therefore, this component has to (1) receive/send multimodal input/output, (2)
interpret the input, and finally (3) decide which action should be performed as a reaction to the actual
state. In the following we briefly highlight what has been accomplished with regard to the steps 1-3 so
far, and what still needs to be addressed in the future.

1. Input/Output (Task 5.1)
Interfaces to all other modules have been defined and implemented, which will be extended to fit
the changing requirements of new developed interaction mechanism (e.g., new types of tasks or
new robot behaviors as allowing the robot to move an object from position A to position B) and
patterns (e.g., allow the robot to help if the child get stuck in the interaction).

2. Interpretation (Tasks 5.2, 5.4, 5.7)
For the interpretation of the input information during the learning interaction three models are
important: (1) a model to keep track of the knowledge state of the child, from which a first version
already has been developed and evaluated (T5.4), (2) a model to keep track of the affective state
of the child, which is currently under development based on expertise from teachers of German
kindergartens (T5.7), and (3) a model to keep track of the longer-term interaction-, knowledge-
and affect-history to build up a common ground and inform the short-term tracing models (1) and
(2) to allow for further adaptation to the child (e.g., slow learner vs. fast learner). The latter is
currently under development and we are collecting information about which data will be needed
to enable long-term adaptation as well as an evaluation of the full system (T5.2).

3. Decision Making (Task 5.5; based on Tasks 5.3, 5.4, 5.6, 5.7)
A basic framework has been implemented to combine all collected and inferred information, to
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plan the next steps of the tutoring interaction, based in them. This will be our main focus in
the final year, the main challenge being to combine flexible decision-making with the designed
interaction patterns (T5.3, T5.6) to provide a smooth interaction, while maintaining positive
engagement and maximizing the learning gain. A first approach has been implemented, following
a predefined interaction structure (T5.3), which already takes decisions to maximize the learning
gain based on a predicted knowledge state of the learner (T5.5). As a next step we will extend
this approach by including the Engagement of the learner and actions to regulate this engagement,
which will enable the system to maintain a positive engagement (T5.7).
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A Interface Specification

A.1 Output

Module Function Description Parameters Used?

ControlPanel memoryLoaded Indicator-event that the memory has been
successfully created and/or loaded

ID of the memory which
has been loaded

X

TabletGame

loadScene Sends the content of the predefined scene-
file to be loaded on the tablet

scene specification in json
format

X

hintObject/hintRObject Add/Remove a glow to highlight objects List of object-IDs in json
format

X

showMap Go back to the town-map - X

showObject/hideObject Make objects visible or invisible List of object-IDs in json
format

X

makeMovable/makeStatic Make objects movable for the user or static
again

List of object-IDs in json
format

X

enableObject Enable objects for clicking/touching List of object-IDs in json
format

X

Underworlds loadScene Sends the content of the predefined scene-
file to be loaded on the tablet

scene specification in json
format

X

OutputManager

load session Sends the ID of the next lesson to be taught lesson-ID X

set child name Send the name and ID of the child to be used
in the verbal output and the log-files

Name and ID in json for-
mat

X

give task Next task should be given Task-ID X

give feedback Give feedback to the child Valid and task-type in json
format (not fully specified
yet)

X

request answer Request an answer from the child Task-type and task related
information like the ob-
jects to be used in the task
in json format

X

interrupt output Interrupt any kind of output - X

give break Give a break or a break filling activity like a
puzzle or a dance

not yet specified

give help Provide some verbal or non-verbal help not yet specified

grab attention Try to grab the attention back if the child is
inattentive

not yet specified
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A.2 Input

Module Function Description Parameters Used?

ControlPanel

loadMemory Load memory of child with ID X Filename X

createMemory Create a new memory for the child ID, Name X

CPinit Init message from Controlpanel to load all
lesson files, send them around and start the
interaction

Name of lesson file X

KinectModule

vadStart/vadStop Start/End of detected voice - X

setTrackingData Childrens’ gaze direction (looking at robot,
tablet or somewhere else), a normalized
value how active (moving) the child is and
a value of the happiness detection

gaze-direction, activity,
happiness

TabletGame touchDown/touchUp Start/End of touch (including the position
and touched object id)

Object-ID, 3D-Position X

Underworlds
updtSpRel Update of the spatial relations Relevant spatial relations

from all object to all others
in json format

X

OutputManager

give task completed Send when the robot finished the task de-
scription

- X

feedback completed Send when the robot finished giving feed-
back

- X

request answer completed Send when the robot finished requesting an
answer from the child

- X
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B Clipping of the Storyboard for the First Session of the First Domain
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ABSTRACT
In this paper, we present an approach to adaptive language
tutoring in child-robot interaction. The approach is based
on a dynamic probabilistic model that represents the inter-
relations between the learner’s skills, her observed behaviour
in tutoring interaction, and the tutoring action taken by the
system. Being implemented in a robot language tutor, the
model enables the robot tutor to trace the learner’s knowl-
edge and to decide which skill to teach next and how to
address it in a game-like tutoring interaction. Results of an
evaluation study are discussed demonstrating how partici-
pants in the adaptive tutoring condition successfully learned
foreign language words.

CCS Concepts
•Computing methodologies → Probabilistic reason-
ing; Cognitive robotics; •Applied computing → In-
teractive learning environments; •Human-centered
computing → Empirical studies in HCI;

Keywords
Language tutoring; Education; Assistive robotics; Bayesian
Knowledge Tracing; Decision making

1. INTRODUCTION
The use of robots for educational purposes has increas-

ingly moved into focus in recent years. This is due to two
major developments. First, robots became cheaper and more
robust so that applications in everyday environments are
now conceivable. In particular, technology has matured up
to a point where intuitive interaction using natural language
or gesture has become feasible. Second, the need for second
language learning becomes increasingly important, and em-
pirical evidence has demonstrated that learning with and
from a physically present, interactive robot can be more ef-
fective than learning from classical on-screen media [14, 15,
20, 22]. In fact, recent research showed that performance
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can increase up to 50% [17]. It can, hence, be assumed that
tutoring using social robots is qualitatively different from
alternative digital tutoring technologies. Nowadays, first
practical applications can be found, e.g. in nursery where
toy robots teach the alphabet to kids in a very simple way.
More generally, findings from a variety of settings seem to
suggest that robots can help small children to develop in an
educational setting [10, 18, 24, 27].

In the L2TOR project1, we investigate in how far a social
robot can support children at pre-school age with respect
to second language learning. Learning a language is a very
complex task. It involves not only acquiring vocabulary,
but also learning prosodic features, syntactical structures,
semantic meanings as well as situation-dependent language
use. Yet, it has been argued that social robots can create the
interactive environment and motivational experience needed
to learn languages [19].

One of the most important aspects in tutoring is the robot’s
ability to keep track of the knowledge state, i.e. the learned
and not-yet-learned skills, of the child interacting with it.
This information is indispensable to enable a personalized
tutoring interaction and to optimize the learning experience
for the child [27]. The tutor has to structure the tutoring
interaction, choose the skills to be trained, adjust the diffi-
culty of the learning tasks appropriately and has to adapt
its verbal and non-verbal behaviour.

The importance of personalized adjustments in the robot’s
behaviour has been substantiated in recent research show-
ing that participants who received personalized lessons from
a robot (based on heuristic skill assessment) outperformed
others who received a non-personalized training [22]. Sub-
optimal robot behaviour (e.g. too much, too distracting,
mismatching or in other ways inappropriate) can even ham-
per learning [17]. In this paper we present an integrated
approach for tracing the knowledge of the learner during a
L2 learning interaction together with a strategic adaptation
of tutoring actions.

In the following, we discuss related work in Section 2.
In Section 3 an extension of Bayesian Knowledge Tracing
is presented as well as a model to select the next tutoring
actions based on the predicted effects they may have on the
learner’s knowledge state. This model has been implemented
in a robot that provides language tutoring in a game-like
fashion. Section 4 introduces the empirical basis for this
scenario and observational studies on language tutoring in
kindergarten. Section 5 presents an evaluation study carried
out with this robot and Section 6 discusses the results.

1http://www.l2tor.eu
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2. RELATED WORK
Numerous studies have investigated the effects of social

robots in tutoring scenarios. Empirical evidence demon-
strates that learning with and from a physically present,
interactive robot can be more effective than learning from
classical on-screen media [14, 15, 20], and that robots can
help children to develop in educational settings [10, 18, 24,
27]. However, at the same time, it is found that suboptimal
behaviour of the robot can hamper learning [17]. Thus, a
crucial ingredient for successful robot tutoring is the ability
to provide personalized lessons [22] and to adapt in appro-
priate ways to the needs of the learner. The key question is
when and how to adapt robot tutoring, according to which
adaptation strategies, and based on what features of the
state of learner or the tutoring interaction.

2.1 Approaches to Adaptive Tutoring
In the realm of Intelligent Tutoring System (ITS), ded-

icated pedagogical modules are employed for planning an
optimal path through the curriculum by using an internal
model of the learner’s present knowledge state (cf. [8]). Cak-
mak and Lopes [3], for example, proposed a teaching algo-
rithm that selects the most informative demonstrations for
the learner. This learning agent makes use of Inverse Rein-
forcement Learning (IRL) to reduce the learner’s hypothesis
space of possible reward functions as fast as possible. In an
evaluation, the authors showed that a learner trained with
non-optimal selected expert demonstrations require signifi-
cantly more demonstrations to achieve a similar performance
as the optimally taught learner. This system, however, is de-
signed for a sequential decision task in which no uncertainty
about the learner’s knowledge/skill exists. This assump-
tion does not hold for the domain of L2 learning where the
learner’s current state of knowledge can, at best, be inferred
from observed behaviour. Another important limitation of
this approach is a lack of flexibility as no adaptation towards
students’ individual needs is considered.

Addressing especially the issue of adaptation towards stu-
dents’ individual needs, Partial Observable Markov Decision
Processes (POMDPs) have been employed as basis for the
pedagogical module of an ITS. Rafferty et al. [25], for in-
stance, proposed different algorithms for planning an action-
policy based on a POMDP and compared these against two
different random and a maximum information gain (MIG)
choice. They showed that even a simple action-policy based
on a POMDP can achieve a significant faster skill learning
than choosing actions randomly. But compared to the sim-
ple MIG algorithm, no significant difference was observed.
Only with increasing skill space the MIG algorithm seems
not to be sufficient anymore. A likely explanation for this
finding is that the knowledge tracing model is insufficient.
In addition, finding a good policy based on a POMDP is
often computational intractable.

Clement et al. [4] compared two algorithms choosing the
next skill and action in a tutoring interaction against a les-
son given by a human expert. Both algorithms based on
prior knowledge, e.g. the impact of actions on the learning
gain or the difficulty of different types of tasks, which had
been annotated by experts beforehand. The algorithms dif-
fered with regard to the adaptation method and the amount
of additional knowledge stored besides the prior. The au-
thors showed that even if the ITS does not make use of an
internal model to store beliefs about the child’s knowledge

state regarding a specific skill, the use of their algorithm can
lead to a higher learning gain compared to an expert lesson.
Furthermore their second proposed algorithm, which addi-
tionally stores information about the knowledge state of the
child, performed even better. Clement et al. concluded that
extending their system with a more complex model for trac-
ing the knowledge state of a student might lead to a higher
learning.

An often criticized issue in this line of research is the lack
of an effective knowledge-tracing method in the pedagogical
module of an ITS that could be profitable for the learning
interaction, e.g. by increasing the students’ learning gain.
Hence, we review research on knowledge tracing methods in
the following.

2.2 Knowledge Tracing
Knowledge tracing aims to model learners’ mastery of

the knowledge being tutored. An often used approach is
Bayesian Knowledge Tracing (BKT). BKT is a specific type
of Dynamic Bayesian Networks (DBN), or more precisely,
of Hidden Markov Models consisting of observed and latent
variables. The latent variables represent the ‘skills’ and are
classically assumed to be binary. That is, a skill is repre-
sented to be mastered or not. Generally, separate BKT net-
works are used for each skill to be learned [5]. Belief update
is based on the observation of an answer to a given task test-
ing a specific skill. The observed answer is binary too. Fur-
ther, BKT models have two types of parameters: The emis-
sion probability and the transition probability. The emission
probabilities are given by the ‘guess probability’ p(guess),
the probability of answering correctly without knowing the
skill, and the ‘slip probability’ p(slip) of answering wrongly
although knowing the skill. In contrast, the transition prob-
abilities are given by p(t), the skill transition from unknown
to known, and p(f) the probability of forgetting a previously
known skill. Often p(f) is assumed to be zero.

Spaulding et al. [29] recently adopted BKT to trace the
language-reading skill of children in robot-based language
tutoring. They proposed the ‘Affective BKT model’, which
is characterized by two further observable variables called
‘smile’ and ‘engagement’ to take into account the affective
state of the child. This model structure allows emotions to
influence the belief-state of each skill as they are included in
every belief-update. The authors showed that the affective
state of the children can be successfully integrated into BKT
and that this approach outperforms traditional models for
tracing the knowledge state in learning situations [29].

Another modification of BKT was published by Käser et
al. [16]. Instead of using a dedicated BKT for every skill,
they defined one comprehensive DBN to trace the knowledge
on all skills to be learned. This enables to trace the knowl-
edge on each skill individually and, in addition, to represent
and reason with skill inter-dependencies. This allows for
searching some kind of order in which skills may be learned
best. The authors could demonstrate that this more de-
tailed model outperforms other traditional models of knowl-
edge tracing, including the normal BKT, with regard to the
accuracy of the skill belief [16].

Finally, Gordon et al. [11] recently presented a so-called
‘active learner model’ to trace the word-reading skills of
small children. This model does not work on the basis of
BKT but employs a simple distance metric to approximate
the conditional probability p(w2|w1) of whether the child
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can read a word w2 if it already knows the word w1. Their
evaluation showed that their system is able to adapt to users
of different age and to trace their reading knowledge up to
a certain extent [11].

In this paper we present an expandable model based on
BKT for knowledge tracing that, in contrast to the systems
reviewed above [16, 29], allows for the simulation of actions
and decision-making in teaching interactions.

3. ADAPTIVE LANGUAGE TUTORING
As a basis for our approach to adaptive language tutoring,

we adopt the Bayesian Knowledge Tracing model [5] which
has been successfully employed in other work and was shown
to be easily extensible. However, we modify and extend the
BKT model in order to enable predictive decision-making
based on the represented beliefs about the learner’s knowl-
edge state. In this section, we first introduce our version of
BKT and then present the approach for decision-making.

3.1 Bayesian Knowledge Tracing
The traditional approach to BKT uses only one latent

variable S to represent the skill belief and one observable
variable O for the user’s answer. This suffices to represent if
a skill is mastered or not, and how probable it would be that
the user will answer correctly. Also, this information can be
used to choose the next skill to learn, e.g. the skill which has
the lowest belief probability of having been mastered. How-
ever, this model does not include information about how a
skill can be addressed for teaching. In consequence, there is
no possibility to take possible actions and their influence on
the update of skill beliefs into account. We thus add a deci-
sion node A for actions to the Bayesian network (see Figure
1). This node not only influences the possible observation
but also the belief update in the next time step. Further,
we use a latent variable S that can attain six discrete val-
ues for each skill, corresponding to six bins for the belief
state (0%, 20%, 40%, 60%, 80%, 100%). This allows for a
more detailed model of the impact of tutoring actions on
the possible observations and skills. Moreover, it becomes
possible to better quantify the robot’s uncertainty about the
learner’s skill.

With these changes, especially the conditional probabil-
ity table p(Ot|St) and the additional influence of the action
At on the observable (now p(Ot|St, At)), the classical BKT
update function, which was based on simple assumptions
about guessing p(guess) and slipping p(slip) during the an-
swer process, cannot be applied anymore. Instead, we apply
a normal Bayesian update rule for the conditioning of skill
beliefs including a transition probability p(St+1

i |sk, Ot, At)
where sk identifies a bin of the skill St

i . As a simplification
we substitute this probability with p(St+1|sk):

p(St+1
i ) := p(St+1

i |Ot, At)

=
∑

sk∈St
i

[p(St+1
i |sk, Ot, At) · p(sk|Ot, At)]

≈
∑

sk∈St
i

[
p(Ot|sk, At) · p(At|sk) · p(sk)

p(Ot, At)
· p(St+1

i |sk)]

3.2 Predictive Decision-Making
The extended BKT model is used to decide which tutor-

ing action the robot should take next. At first, the skill to

Figure 1: Dynamic Bayesian Network for BKT: The
action node At predicts the observation Ot and influ-
ences the belief update of St for the next time step
t+ 1.

address with the next tutoring action is chosen. For this,
the Kullback-Leibler divergence (KLD) between the current
skill belief and the desired skill belief is used, the latter be-
ing a maximally certain belief in a maximally high skill of
the learner:

next skill = argmin
∀St

i∈S
[α(St

i ) ·KLD(p(St
i ), p(Sopt))]

S represents the set of all skills that can be addressed, which
consists of all words to be taught to the user. p(Sopt) is the
desired belief for each skill, which means 99.999% of prob-
ability mass in the last bin (100%). The factor α(St

i ) has
been added for each skill to regulate the skill occurrence fre-
quency. It is decreased each time the skill is addressed, and
it is increased if another skill is being practised. In this way,
the skill-selection algorithm takes care of the maximization
of each skill belief as well as the balancing of all skills.

After the skill has been chosen, the next step is to decide
with which tutoring action this should be done. Here, we
consider abstract tasks as tutoring actions. These tasks will
have to be mapped onto concrete exercises or pedagogical
acts at a later stage in the robot control architecture (see
Section 4). For simplicity, we distinguish between tutoring
actions according to the difficulty (easy, medium or hard)
of the task that addresses the corresponding skill. Finding
the best action al for a given skill St

i is thus a minimization
problem of the following form:

next action = argmin
∀al∈At

[α(al) ·KLD(p(St+1
i ), p(Sopt))]

where

p(St+1
i ) := p(St+1

i |al)
=

∑

sk∈St
i

∑

oj∈Ot

p(St+1
i |oj , sk, al) · p(oj , sk|al)

≈
∑

sk∈St
i

p(sk|al)
∑

oj∈Ot

p(St+1
i |sk) · p(oj |sk, al)

with

p(oj , sk|al) = p(oj |sk, al) · p(sk|al)

Here, p(St+1
i ) could be seen as predicting the effect of ap-

plying the current action al to the skill Si, where we again
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substitute the transition probability p(St+1
i |oj , sk, al) with

p(St+1
i |sk) regarding simplicity. In addition, here again the

skill belief is compared with p(Sopt) which represents the
desired tutor belief state for each skill. The factor α(al)
provides a more detailed selection of the “best” action. This
way, the model will select an easy task if the skill is believed
to be low, a hard task if it is high, and medium in-between.
The goal of this strategy is to create a feeling of flow which
can lead to better learning results [2, 7, 12]. Thus, it strives
not to overburden the learner with too difficult tasks nor to
bore him with too easy tasks, both of which may lead to
frustration and thus hamper the learning [9, 13].

4. ROBOT LANGUAGE TUTORING
The adaptive model as described in the previous section

has been brought to application in a child-robot second lan-
guage (L2) tutoring game on the basis of empirical data from
adult-child language tutoring interactions.

4.1 Empirical Basis
To design a tutoring interaction that matches children’s

needs, we decided to design the interaction on an empirical
basis of language tutoring data. We collected video record-
ings of language tutoring games as they take place in kinder-
gartens. Given that 1:1 interactions of educator and child
can hardly be realized in kindergartens, the games typically
involve one educator and a small group of children. Data of
four language tutoring games have been collected: reading
a picture book together with children in an interactive man-
ner; card game “I spy with my little eye”; card game “I’m
giving you a present”; and a rhyming game. The children
were between four and six years of age. The data collected
comprises round about 681 min of video data. These video
data have been transcribed and annotated with regard to
the following categories:

• Dialogue acts: Utterances are classified due to the
underlying intention based on the DAMSL annotation
scheme [6].

• Children’s mistakes: Types of language errors the
children made, e.g. wrong plural form, missing articles,
wrong syntax, etc.

• Educator’s speech repair: Pedagogical acts used to
correct the errors, e.g. reformulation, corrected repe-
tition, etc.

• Nonverbal behaviour: Nods, smiles, gestures etc.
used by the educators.

On the basis of these annotations, we identified some over-
all patterns to inform the detailed design of the robot’s be-
haviour. These fall basically into two categories, (i) overall
interaction structure and (ii) feedback behaviour by the ed-
ucators.

4.1.1 Overall Interaction Structure
A common pattern in all language tutoring games under

investigation was the following basic course of actions:

1. Opening: Marks the beginning of the interaction and
should mitigate the children’s timidity as well as it
should motivate the child.

2. Game Setup: This step is used to prepare the game
by explaining the task and clarify the necessary terms.

3. Test run: A test run of the game is conducted to test
whether the instructions have been understood and to
practice the game flow.

4. Game: Here, the main interaction game takes place.
Every move is accompanied by the educator’s feedback
and motivations to continue.

5. Closing: Marks the end of the learning interaction.
Additionally, it is used to ensure motivation for future
interactions by acknowledge the participation, joint
singing a goodbye song and an outlook on what’s going
to happen next time.

4.1.2 Educator’s Feedback Behaviour
In addition, we analysed the educators’ behaviour when

providing children with feedback. An important and com-
mon pattern is that language errors are almost never cor-
rected explicitly. Instead, feedback is always provided in a
positive way, falling into one of the following categories with
the percentage of their occurrence given in squared brack-
ets: (i) praising the child for a correct utterance whereby
praise is often combined with a repetition of the correct word
[13%] (ii) implicit correction in case of an error made by
the child: repetition of the word as if correct (e.g. correct
pronunciation, with article, plural form, etc.) [54%], (iii)
correct recasting of a sentence, e.g. after syntax errors
[32%], (iv) moving on to next task, e.g. when the child’s
message is unclear due to incomprehensible pronunciation
[1%]. All kinds of educators’ feedback behaviour is typically
accompanied by looking at the child, smiling and nodding.

4.2 Game Setup
We have chosen the game “I spy with my little eye...” as a

paradigm for our child-robot language tutoring game. The
robot – in the role of a tutor, assisting the child in learning
novel L2 vocabularies – is acting as ‘the spy’. The child-
robot setting is further enriched with a tablet PC on which
objects are displayed (see Figure 2). In addition, the tablet’s
touch-screen displays three buttons to enable further user
input in terms of ‘yes’ and ‘no’ answers as well as the option
to let the robot repeat its previous statement.

A basic move of the game is structured as follows: It starts
with a set of objects being displayed on the tablet screen and
the robot saying “I spy with my little eye, something that
is ...”, followed by a foreign language word that refers to a
property of one of the items on the screen. The child’s task
is now to respond by selecting the object referred to via
touch input on the tablet. The robot’s feedback behaviour
in response to a correct or false answer is realized on the
basis of our empirical data (see Section 4.1.2). That is, the
robot responds to correct answers by praising the learner
as well as repeating the L2 word and the corresponding L1
translation. In case of a false guess by the child, the robot
explains the correct meaning of the to-be-learned word one
more time. In addition, the wrongly chosen object as well as
the actually correct object are both displayed on the tablet
screen and the child is asked to select the correct object.
The overall game structure is framed by the other elements
making up typical language tutoring games in adult-child
interaction (see Section 4.1.1).
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Figure 2: Experimental setup (left) with a participant sitting in front of a tablet displaying the graphical
user interface (right). The robot Nao stands next to the tablet slightly rotated towards the user.

4.3 Technical Realization
We employed the Nao robot2 for our language tutoring

game. It is standing in a bit more than 90 degrees rotated,
to the right of the participant. In addition a Microsoft Sur-
face Pro 43 tablet PC is used to catch the user input and
to display the graphical user interface realized via a HTML
website. For the implementation of the interaction and di-
alogue structure, the state-chart based dialogue-manager
IrisTK has been used [28]. NAOqi4 has been applied as
middleware between the robot, the graphical user interface,
the dialogue manager, and our developed adaptive tutoring
model. NAOqi is shipped with each Nao robot and allows
to communicate via a simple event system between various
programming-languages (Python, Java, C++, JScript).

5. EVALUATION STUDY
To assess the effects of our adaptive model on L2 word

learning, we set up an evaluation study based on the lan-
guage tutoring game described in the previous section. The
major objective behind this study was to evaluate the effects
of the adaptive model on learners’ performance. We used the
Nao robot to deliver all task information and direct feedback
to the learner. This enables us to test the model within the
desired final setting, including the effects of a robot’s pres-
ence in the tutoring interaction. Given that children show a
high degree of inter-individual variation and might further
need child-specific adaptations of, for instance, synthesized
speech to enable them to understand what the robot says,
we decided to conduct this first study with adult learners.

We employed a between-subjects design with a manipu-
lation of training type: Participants learned L2 vocabulary
items either with the fully adaptive model, or in a random
control condition. In the adaptive condition, the skill to be
taught and the action to address the skill were chosen by
the model as described in Section 3. In our language tu-
toring game, skill relates to the foreign language words and
action refers to the specific task used in the game (target
word, objects displayed). The difficulty of the actions/tasks
in this study were implemented by using less or more dis-
tractor objects that were shown together with the correct

2https://www.ald.softbankrobotics.com/en/cool-
robots/nao
3https://www.microsoft.com/surface/en-
gb/devices/surface-pro-4
4http://doc.aldebaran.com/2-1/naoqi/

object on the screen. For instance, an easy task consisted
of two distractor objects, whereas a hard task had four dis-
tractors. Distractors were chosen with respect to the skill
beliefs of the user, with the set of objects mainly consisting
of items for which the L2 words were still/mostly unknown
by the learner.

As shown by Craig et al. [7], better learning performance
is to be expected when learners have to expend the right
amount of cognitive effort (i.e. not too hard or too easy
tasks). Accordingly, while learning with our model in the
adaptive condition, no hard tasks are shown until the system
believes the user to have basic knowledge on all skills. Then,
the system will increase task difficulty (as determined by
the adaptive tutoring model) by adding distractor objects.
Note, however, that at a certain point the user will know too
many skills/words so that finding a distractor set (i.e. task
difficulty) that cannot be sorted out by exclusion becomes
impossible. In the control condition, all skills are taught in
a random order and always with ‘medium’ task difficulty.

Participants’ performance was assessed with two measures:
(1) we tracked learners’ response behaviour over the course
of the training to investigate the progress of learning, (2) we
conducted a post-test on the taught vocabulary in the form
of both L1-to-L2 translations and L2-to-L1 translations to
assess participants’ state of knowledge subsequent to the in-
tervention.

5.1 Materials
The training materials for the study comprised German–

‘Vimmi’ word pairs. Vimmi is an artificial language created
for experimental purposes [23] that aims to avoid associa-
tions with other known words or languages. The Vimmi
items are created according to Italian phonotactic rules.
Ten items have been chosen: four colour terms, four shape-
encoding terms and two terms describing size (see Table 1).

5.2 Procedure
Upon entering the lab, participants were randomly as-

signed to one of the two experimental conditions. They
were informed that they take part in an experiment on for-
eign language learning and were asked to sign an informed
consent form. They also filled out a questionnaire that cov-
ered personal information like age and nationality as well as
a personal estimation of language learning skills in general
and memorization ability for L2 vocabulary.
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N German Vimmi English translation

1 blau bati blue

2 grün uteli green

3 gelb dirube yellow

4 rot fesuti red

5 rund beropuga round

6 dreieckig pewo triangular

7 quadratisch tanedila square

8 rechteckig paltra rectangular

9 klein kiale small

10 groß ilado big

Table 1: The 10 words from Vimmi to be learned in
the evaluation study with its corresponding transla-
tion in German as well as English for comprehension
purposes.

Next, a list of the to-be-learned Vimmi items were pre-
sented to the participants for 30 seconds. This was to en-
able participants to practice the items right from the first
game interaction on. Then, the learning interaction with
the Nao robot began. After introducing itself, the robot ex-
plained the “I spy with my little eye”-game and started a
test-run with the participants. Once this test run was fin-
ished and the participants agreed that (s)he understood the
game, the main interaction consisting of a total of 30 trials
(game moves) began. Each trial addressed one vocabulary
item as described in Section 4.2. That is, the robot asked for
one of the objects displayed on the tablet screen, whereby
the question was in L1 (German) for the most part, except
for the referring, to-be-learned word in L2 (Vimmi). After
30 trials, the game was finished, the Nao robot thanked the
participants and said goodbye.

Subsequent to the interaction with the robot, participants’
learning performance was assessed with a post-test. In an
interview with the experimenter, they had to translate the
ten to-be-learned vocabulary items from German to Vimmi
and likewise from Vimmi to German (both in randomized
order). The whole interaction and the vocabulary-post-test
at the end of the study were recorded with an external cam-
era. Also the system decisions taken during the interaction
and the probability distributions for each updated skill belief
were logged.

5.3 Participants
A total of 40 participants (20 per condition) with an av-

erage age of 24.13 (SD = 3.82) took part in this study (16
males and 24 females). All participants had very good com-
mand of the German language and normal or corrected sight.
All of them were paid or received credits for their participa-
tion.

5.4 Results

5.4.1 Learning Progress During Training
In order to assess the learners’ progress during training,

we compared the number of correct responses addressing
the initial quarter of the tutoring game (first seven items)
against the final quarter (last seven items). When an item
occurred repeatedly within the initial quarter, the first oc-
currence has been taken into account. When an item oc-

Adaptive (A) Control (C) A, C

M SD M SD M SD

F7 3.75 1.37 4.00 1.17 3.88 1.27

L7 6.90 0.31 5.15 1.69 6.03 1.49

F7, L7 5.33 0.69 4.58 1.12

Table 2: Means (M) and standard deviations (SD)
of correct answers for the initial quarter of the train-
ing interaction (first seven items – F7) and the final
quarter (last seven items – L7) in each condition, as
well as the inter-model (A, C) and intra-model (F7,
L7) means and standard deviations.
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Figure 3: Mean numbers of correct answers at the
beginning (first 7) and end (last 7) of the interaction
in the different conditions.

curred repeatedly within the final quarter, the last occur-
rence has been considered.

A mixed-design ANOVA with training phase (initial, fi-
nal) as a within-subjects factor and training type (adaptive-
model-based, control) as between-subjects factor has been
conducted. Results are summarized in Table 2 and Figure
3. Not surprisingly, there was a main effect of training phase
at a significant level (F (1, 38) = 66.85, p < .001, η2 = .64):
Learners’ performance was significantly better in the final
phase as compared to the initial phase. In the first quarter of
training, participants achieved a mean of 3.88 (SD = 1.27)
correct responses, whereas in the final quarter, a mean of
6.03 (SD = 1.49) items was selected correctly. More in-
terestingly, there was also a main effect of training type
(F (1, 38) = 6.52, p = .02, η2 = .15) such that participants
who learned in the adaptive condition had a higher score of
correct answers (M = 5.33, SD = .69) as compared to learn-
ers in the control condition with an average of M = 4.58
(SD = 1.12) correct answers. Finally, the interaction be-
tween training phase and training type was also significant
(F (1, 38) = 14.46, p = .001, η2 = .28) indicating that the
benefit of adaptive-model-based training develops over time
(see Figure 3). While participants’ response behaviour in
the first quarter of training was similar across conditions, a
benefit of training with the adaptive model became evident
in the final quarter. At this stage of training, participants in
the adaptive model condition achieved a mean of M = 6.9
(SD = .31) correct responses, whereas participants in the
control condition achieved a mean of M = 5.15 (SD = 1.69)
correct responses.
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Adaptive (A) Control (C)

M SD M SD

German-to-Vimmi 3.95 2.56 3.35 1.98

Vimmi-to-German 7.05 2.56 6.85 2.48

Table 3: Results of both post-tests (German-to-
Vimmi and Vimmi-to-German): Means (M) and
standard deviation (SD) of correct answers grouped
by the experimental conditions.
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Figure 4: Participant-wise amount of correct an-
swers grouped by the different conditions for the
German-to-Vimmi post-test.

5.4.2 Post-Test
Participants’ learning performance subsequent to the in-

tervention has been measured with two translation tests
(L2-to-L1 and L1-to-L2). Results are summarized in Ta-
ble 3. Paired-samples t-tests were conducted to compare
the number of correctly recalled words after training with
the adaptive model as compared to training in the control
condition. For the German-to-Vimmi translation, there was
no significant main effect (T (38) = .25, p = .80). Partici-
pants who trained with the adaptive-model recalled a mean
of 3.95 (SD = 2.56) out of ten words correctly, while partici-
pants in the control condition recalled a mean of 3.35 (SD =
1.98) words. Likewise, there was no significant main effect
(T (38) = .83, p = .41) for the Vimmi-to-German transla-
tion task. Participants’ performance after learning with the
adaptive model amounted to a mean of 7.05 (SD = 2.56)
correct items, participants’ performance in the control con-
dition to a mean of 6.85 (SD = 2.48) correct items.

Although no main effect of training type emerged in the
post-test, some details might nevertheless be worth men-
tioning. In the German-to-Vimmi post-test, a maximum
of ten correct responses was achieved by participants in
the adaptive-model condition, whereas the maximum on the
control condition were six correct answers. Moreover, there
were two participants in the control condition who did not
manage to perform any German-to-Vimmi translation cor-
rectly. In the adaptive-model condition, all participants
achieved at least one correct response (see Figure 4).

6. CONCLUSION
In this paper we have presented a novel approach to per-

sonalize language tutoring in human-robot interaction. This
adaptive tutoring is enabled through a model of how tutors

mentalize about learners – by keeping track of their knowl-
edge state and by selecting the next tutoring actions based
on their likely effects on the learner. This is realized via an
extended model that combines Bayesian Knowledge Tracing
(of the learned) with tutoring actions (of the tutor) in one
causal probabilistic model. This allows, for selecting skills
and actions based on notions of optimality – here the desired
learner’s knowledge state as well as optimal task difficulty –
to achieve this for a given skill. This model has been imple-
mented into a robot language tutoring game and tested in a
first evaluation study.

The analysis of participants’ response behaviour over the
course of training has clearly shown that participants learned
the L2 words during the human-robot interaction. Impor-
tantly, they learned more successfully with our adaptive
model as compared to a randomized training. That is, the
repeated trials addressing still unknown items as chosen by
the adaptive model (until the belief state about these words
equalled that of known items) outperformed the tutoring of
the same material (same number of trials and items) but in
randomized order. In the post-test, however, there was no
significant difference across experimental conditions, despite
a trend towards better performance in the adaptive model
conditions over the controls.

Different explanations may account for this inconsistent
finding. One potential explanation could be that the way
how responses were prompted was not identical in train-
ing sessions and post-test. In the training sessions, par-
ticipants saw pictures reflecting the meaning of the to-be-
learned words whereas in the post-test they just received
a linguistic cue in form of a word they had to translate.
It might be that repeated trials as they were particularly
supported for difficult-to-remember items by the adaptive
model, led to stronger associations between linguistic and
imagistic materials. This might have caused a stronger de-
cline of correct responses for participants who trained with
the adaptive model as opposed to those in the control con-
dition. An alternative explanation could be that test results
measured immediately after the training session are subject
to strong inter-individual differences among learners. This is
the reason why studies on vocabulary learning usually range
over repeated sessions spread over several days (cf. 1). A
typical pattern is that significant results emerge after two
or three sessions/days and/or in the long-term (measured
several weeks after training took place). So it might well be
that further training sessions or delayed tests might result
in a post-test performance that matches the picture of the
during-session performance.

One might argue that the performance of our adaptive
model is comparable to the vocabulary learning technique of
spaced repetition as implemented, for instance, in the Leitner
system [21]. In this system flashcards are sorted into groups
according to how well the learner knows each one. Learners
try to recall items written on a flashcard. If they succeed,
the card is sent to the next group. If they fail, the card is
sent back to the first group. Each succeeding group has a
longer period of time before the learner is required to revisit
the cards. This way all items, that are hard to remember for
the learner will be repeated more often. In contrast to such
spaced repetition systems, our model is more flexible as it
can vary the difficulty of the tasks by providing more or less
distractor items. In addition, we plan a more comprehensive
action space of the model to account for motivating actions
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where necessary or adaptations in the robot’s verbal or non-
verbal behaviour.

Overall, results from the evaluation study are, at least, in
parts very promising: learners’ performance during training
was significantly improved by personalized robot tutoring
based on the adaptive model. Nevertheless, the fact that
this positive effect did not hold in the post-test, inter alia,
marks a starting point for further refinements of the model:
Training stimuli should be designed such that they match
the way language learners need to apply them best possible.
That is, when the aim is to enable people to translate words
from one language to another, training stimuli should pro-
vide cues for this process of mapping linguistic materials on
each other. Moreover, a further study with more learning
sessions (e.g. over several days as common in many vocab-
ulary studies) should be conducted. Regarding the model
itself, we plan to incorporate skill-interdependencies as well
as to take the affective user state into account, too. Both
kind of extensions have been shown to improve learning [16,
29]. Additionally, the model can (and is meant to) provide
a basis for exploiting the full potential of an embodied tu-
toring agent. Regarding this, we plan to advance the model
such that the robot’s verbal and non-verbal communicative
behaviour is adapted to the learner’s state of knowledge and
progress. Specifically, we aim to enable dynamic adaption
of (i) embodied behaviour such as iconic gesture use to be
known to support vocabulary acquisition as a function of in-
dividual differences across children (cf. [26]); (ii) the robot’s
synthetic voice to enhance comprehensibility and prosodic
focusing of content when needed; and (iii) the robot’s socio-
emotional behaviour depending on the learners’ current level
of motivation or engagement. Further, as the long-term goal
of our work is to enable robot-supported language learning
for pre-school children, another important goal is to make
children-specific adaptations to the language game and test
it in child-robot interaction studies.
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Abstract—Social robots represent a fruitful enhancement of
intelligent tutoring systems that can be used for one-to-one
tutoring. The role of affective states during learning has so
far only scarcely been considered in such systems, because it
is unclear which cues should be tracked, how they should be
interpreted, and how the system should react to them. Therefore,
we conducted expert interviews with preschool teachers, and
based on these results suggest a conceptual model for tracing
and managing the affective state of preschool children during
robot-child tutoring.

I. INTRODUCTION

The use of robots for educational purposes has increasingly
moved into focus in recent years. One rationale is to enable
individually adapted one-to-one teaching for weaker students,
which can hardly be provided in regular classrooms. This
idea already underlay educational on-screen applications like
intelligent tutoring systems (ITSs). Physically present social
robots are expected to bring an additional quality to the
learning interactions, similar to co-present teacher-child or
child-child interaction, which can make the tutoring experience
more effective. Indeed, a recent study showed that students’
learning performance increases up to 50% if a social robot was
included compared to a classical on-screen media learning [1].

One of the main challenges for robot tutors is to identify
the learner’s internal states, e.g., whether she is following,
distracted, or losing motivation. Yet, recognizing and reacting
to these cognitive and affective states is vital to keep the
learner engaged and to foster learning. In previous work, we
developed an approach to dynamically adapt robot tutoring to
the changing pedagogical state of the learner [2]. There, the
skill mastery of the student is kept track of inferentially using
Bayesian Knowledge Tracing, which enables the robotic tutor
to choose the to-be-addressed skill and difficulty of the next
task accordingly. This way the model works to keep the child
in the “zone of proximal development” [3], which can lead to
a feeling of flow, motivation and better learning [4], [5].

However, this approach lacks ”emotional intelligence” [6].
Successful human teachers not only teach the curriculum
according to the learner’s knowledge state, but also manage the
affective states of children. Studies have shown that affective
states like curiosity, interest, flow, joy, boredom, frustration
and surprise can influence learner’s problem-solving abilities,
and affect task engagement and learning motivation [7]. Fur-
ther, such states are found to influence cognitive processes like

long-term memorizing, attention, understanding, remembering,
reasoning, decision-making and the application of knowledge
in task solving [4], [8]. It is thus not surprising that good
human tutors are sensitive to learners’ vocal (e.g., intonation)
or nonvocal behavior (e.g., facial expression, body language)
[9]. Technical systems are also increasingly able to recognize
most of these cues - albeit sometimes in a quite rudimentary
way. However, little attention has been paid to the question
how a robot should interpret and respond to the affective state
of a learner during tutoring with the needed flexibility and
adaptiveness [10], [11].

In this paper we present steps towards a model for tracing
and managing the affective state of preschool children in
second language tutoring interactions with a robot tutor. This
model is based on pedagogical knowledge about children’s
affective states during actual robot-child tutoring gathered
through expert interviews with preschool teachers. This knowl-
edge comprises information about which affective states are
relevant, from which features they can be tracked and, finally,
how to react to them appropriately as a tutor. It lends itself to
a decision-theoretic affective state tracing model that can be
combined with our previously developed adaptive knowledge
tracing approach. The following section discusses previous
work on affect detection and affective tutoring systems. After-
wards we present the procedure and results of the conducted
expert interviews. Finally, we discuss how these findings can
be incorporated into a conceptual model that enables the
recognition of and reaction to changes in children’s affective
states.

II. RELATED WORK

A. Affect Detection

A lot of work has been done on affect recognition based on
different modalities. One widely used approach is the analysis
of facial expressions to detect the affective state of a user [12].
Often, classifiers are trained on “very expressive and played”
emotions, making their applicability to real-world interactions
questionable. In fact, the accuracy of emotion detection based
on facial features is often low in real-world applications.
Furthermore, the recognition rate is strongly dependent on the
expressiveness of each target.

An alternative approach is the detection of affect from
the user’s voice [13]. Classifiers based on voice analysis are
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trained on datasets of spontaneous speech, so that they are
more suitable for real-world applications. With regard to robot-
child tutoring, affect detection through speech analysis is,
however, difficult because speech input is often not included
as speech recognition for children has a low accuracy [14].
Other attempts have been made to detect the affective state
through analyzing written text [15]. This approach includes,
for instance, analyzing the usage of adjectives and adverbs.
But in most natural interactions humans do not write text, and
preschool children are usually not able to read and write.

A broader approach for affective state detection is the
tracking of the whole body posture and movements by using a
body pressure mat laying on a seat [16], or using a Microsoft
Kinect [17]. A limitation is that the use of a body pressure
mat assumes that the user remains on a seat and cannot move
around. The Kinect, however, allows the user to move around,
but may have problems in detecting smaller events like small
postural shifts. Also, approaches based on human physiology
have been adopted. In this realm, measures such as ECG, EEG,
EMG [18], [19], and brain imaging [20] have been applied to
“read” the affective state from the user’s body. The results of
these methods are promising, however the applicability of such
obtrusive approaches (e.g., wires and patches on the body) in
tutoring interactions with children is clearly limited.

In sum, all of these approaches have their field of use, but
also their limitations. In contrast, multi-modal approaches have
been studied to overcome these limitations and to increase
accuracy of the detection. A lot of combinations exist, e.g.,
facial expressions and voice [21], facial expression, voice
and body posture [22], facial expressions, body postures and
context dependent activity logs [23], or speech and text [24].
Such systems demonstrated that a multi-modal approach to
detect affective states results in higher accuracy rates.

B. Affective Tutoring Systems (ATSs)

Since the technical progress yields new possibilities to make
use of the affective state in tutoring interactions, a lot of
systems have been extended with such a module. Shen et
al. [25], for instance, used physiological signals for affect
detection and then guided the learning interaction by different
affective strategies. Their results demonstrated the superiority
of an emotion-aware over a non-emotion-aware system with a
performance increase of 91% .

Alexander et al. [26] developed an affect-detecting ITS
including a virtual agent for primary school students. The
affective state is detected by analyzing the facial expressions
of the student and serves as the basis for a case-based selection
of the next tutoring actions. The case-based rules have been
informed by an observational study of human tutors. In a
study conducted in a primary school, where children had to
solve mathematical equations, the use of their affective system
showed a significant increase of the students’ performance as
compared to a control group without affective support.

The “Affective AutoTutor” system [27] can automatically
detect boredom, confusion, frustration and neutral affect by
monitoring conversational cues and discourse features along

with gross body language and facial features. Cues provided
by each channel are combined to select a single affective state,
based on which AutoTutor responds with empathic, motiva-
tional, or encouraging dialog-moves and emotional displays.
Evaluations showed that this systems is able to support learners
not only in acquiring knowledge, but also in using it in transfer
tasks later on. Recently, Goren et al. [28] incorporated affect
detection via facial expressions in robot-child tutoring. In a
study with preschool children they showed that their system
personalized its policy over the course of training, and that
children who interacted with the personalized robot showed
increased long-term positive valence as compared to a control
group without personalization.

Taken together, the findings from earlier approaches suggest
the inclusion of affect detection in robot-child tutoring. Most
affect detectors are trained on specifically annotated data to
identify the important cues for each affective state. For exam-
ple, the emotion classifier “Affectiva Affdex” [29] is trained on
more than 5 million human faces to classify facial expressions.
Strategies for how to respond to those states are usually based
on observational studies of the reactions of a human tutor
to the behavior of a student [30]. We adopt this approach
here, too, with the aim of building a model that enables a
robot to detect changes in children’s learning-relevant affective
states and to react to these changes appropriately. For this,
child-robot interaction specific knowledge is necessary that
could be best gathered from experts in reading and managing
the affective states of young children in tutoring interactions,
namely, preschool teachers.

III. EMPIRICAL BASIS

With the aim of answering the questions, which affective
states occur and are important during robot-child tutoring, and
how they can be detected based on the observation of a child,
a qualitative approach was chosen. We used video recordings
from a previous study in kindergarten and interviewed five
preschool teachers on their perception and interpretation of
the children’s behavior.

A. Participants

A total of five female preschool teachers were invited and
interviewed as experts. They were between 36 - 61 years old
(M = 48.6;SD = 8.16) and had a working experience from
16 to 42 years (M = 29;SD = 8.88).

B. Materials

With the objective of allowing the experts to observe
children during robot-child tutoring in a controlled manner,
video recordings from an interaction study were used. They
were presented and discussed during face-to-face interviews
with one interviewer. In total, video recordings of eight
different children (4 female, 4 male), which varied in their
level of activity and expressiveness when facing the robot,
were chosen. The decision was taken to ensure that individual
difference are considered in spite of the small samples. The
recordings were taken in the realm of a separate study in Dutch
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Fig. 1. Screenshot from one of the videos shown to the experts during the
interview. The learning interaction is displayed from two perspectives.

preschools were children were tutored to learn animal names
in a foreign language by means of a “I spy with my little
eye...” game with a Nao robot. Here, up to four images of
animals were displayed on a tablet screen, while the robot is
referring to one of them using a Dutch description and the
English name of the animal [31]. To choose the animal the
robot mentioned, the children had to tap on the picture on the
tablet. Two camera perspectives were recorded and presented
to the experts to allow a frontal view on the child, but also a
landscape view from the side on the whole experimental setup
which includes the robot, the tablet and the child (see Fig. 1).

C. Procedure

At the beginning of each interview session, the participants
were informed about the purpose and the procedure of the
interview and signed an informed consent that their voice
was recorded. They were instructed that they should judge
the behavior and related affective state of children, which are
presented in video recordings. First, a small example video
was presented, which had to be commented by the experts to
make sure the task was clear. Then, the interviewer started the
video on a laptop and asked the expert to comment on the
child’s behavior and state. After each video (one video relates
to one child) the interviewer asked how the experts would react
to negative changes in the child’s state, e.g., if they recognize a
lack of attention, and how this could be realized with a robot.
At each point in time, the interviewees were allowed to pause
the video and go back to review a scene. Each expert discussed
a total of four videos with the interviewer. Afterwards they
were thanked for their participation and dismissed.

D. Analyses and Results

The whole interview session were recorded by means of a
computer microphone, and a screen capture tool to synchronize
the comments with the video recording that was played
at the time. The recordings were afterwards transcribed to
enable detailed content analyses of the experts’ comments.
The transcripts were then analyzed regarding the following
research questions:

TABLE I
CHILDREN’S STATES AND RELATED CUES

Meta-level
State

State
Interpretation

Behavioral Cue n∗

Engagement Concentration/
Thinking

eye contact 5 (4)
sit still 2 (2)
hand to head 4 (3)

Involvement/
Activity

mimic robots gestures 2 (2)
answer verbally 1 (1)
nodding 1 (1)
head-shaking 1 (1)

Expressive/Proud
smiling 7 (4)
thumb up 1 (1)
raise fist 1 (1)

Disengagement Inattentiveness/
Distraction

rub eyes 2 (1)
grimace 4 (4)
gaze away 7 (4)
turn away (whole
body)

10(4)

move position (stand
up, lay down)

2 (2)

Boredom/
Impatience

support the head with
hand(s)

3 (2)

move the head from
left to right

2 (2)

undirected finger tap-
ping

4 (3)

gaze away 2 (1)
move position (stand
up, lay down)

6 (4)

Negative
Engagement

Skepticism tilt head 3 (3)
Disinterest frown 1 (1)
Averseness lower mouth corners 1 (1)

∗n is the frequency of reference to a cue; the amount of children for which the cue
was observed is noted in parentheses.

• RQ1: How do experts interpret the cognitive and emo-
tional state of children during the robot-child tutoring
lessons?

• RQ2: To which behavioral cues do they refer when they
remark changes (e.g., in the childs level of attention)?

• RQ3: How would the experts react to changes in the
children’s engagement from the perspective of the robot?

According to the experts descriptions of the children’s
states, categories of states were derived. As listed in Table I,
the childrens states can be classified into states of engagement,
disengagement, and negative engagement, on a meta level
(RQ1). Engagement is composed of concentration and think-
ing, activity and involvement, as well as expressiveness. If a
child kept eye contact with the robot and tablet, and sit still, the
experts interpreted their behavior as concentrated and engaged.
If they mimicked the gestures the robot made, or answered
verbally or nonverbally (e.g., nodding, head-shaking), they
were also described as involved and thus engaged in the inter-
action. Likewise, expressive behaviors as smiling, or showing
a thumb up were interpreted as a sign of engagement by the
experts. On the other hand, behaviors that were interpreted
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as signs of inattentiveness and distraction, or boredom, were
regarded as indicators of disengagement. For instance, rubbing
eyes, gazing away, or frequent changes of the seating position
were interpreted as inattentiveness. Additionally, supporting
ones head with the hands, undirected tapping with the fingers,
and gazing away, were (among others, cf. Table I) named as
remarkable behaviors that demonstrate boredom and disen-
gagement. Finally, the category negative engagement contains
negative states like skepticism and averseness. These states
were related to frowning, lowering mouth corners, and head-
tilt (RQ2).

Each interaction with the robot varied according to indi-
vidual differences of the children (e.g., age, self-confidence).
Hence, we counted for each behavioral cue, how many times
it was mentioned by different experts for different children. If
two experts observed a cue for one child as relevant it was
counted as two; but if one expert mentioned one cue for one
child several times it was counted as one. To reflect on the
occurrence of the cues over different children, it was further
listed for how many different children the cue was observed
(see Table I numbers in parentheses).

The results indicate that eye contact (n = 4 children),
smiling (n = 4), and self-touches to the head (n = 3)
were interpreted as a sign of engagement for multiple children
in the video recordings. Regarding disengagement, making
grimaces (n = 4), gazing away (n = 7), turning away
(n = 4), moving the position (n = 2), and finger tapping
(n = 3) were observed across several children. As a sign
of negative engagement, head tilt was for several children
(n = 3) interpreted as showing skepticism. Instead, giving
verbal answers, nodding, head-shake, eye rub, frowning, and
lowered mouth corners were only addressed for one child,
respectively, and appear hence less informative. Note that the
counts refer to the spontaneous mention of the cue per child
and that the cues were overall mentioned repeatedly over the
course of the interaction.

Furthermore, we asked the experts how they would inter-
vene to keep children engaged in the interaction from the
robots point of view (RQ3). Their suggestions were summa-
rized into categories of potential actions to re-engage children
in the tutoring with the robot (Table II).

Parts of the experts suggestions can be regarded as preven-
tive strategies that can be employed in the interaction from the
outset. These are general strategies to keep children engaged
in an interaction as allowing multi-modal interactions (here:
add speech) or more expressive robot behavior (e.g., gestures,
movements). Beyond that, actions were mentioned that can be
useful to re-engage children in an ongoing interaction after
their engagement was lowered (repair actions, see Table II).
The robot could for example suggest alternative activities to
get the child’s attention back (e.g., play a game). In some
cases, it will even be necessary to stop the tutoring for a break
according to the expert’s opinions. Moreover, it was suggested
that the difficulty of the task should be increased if signs of
disengagement are recognizable.

TABLE II
POSSIBLE ACTIONS MENTIONED BY THE EXPERTS

Preventive actions Paraphrases n∗

Include verbal input It would be more motivating for the child
if it should talk to the robot (expert 2,
video 2)

3

Heighten robot’s activ-
ity (e.g., move head)

The interaction would be more engaging
if the robot moves. (expert 2, video 2)

3

Repair actions
React to the child’s be-
havior/ give feedback

The robot should react to the behavior of
the child, e.g., tell him/her to sit down
again. (expert 5, video 1)

4

Change task difficulty The task should increase in difficulty to
get the childs attention back. (expert 1,
video 3)

1

Include alternative ac-
tivities (e.g., play a
game; stand up)

The robot could ask the child to stand
up and move around, so that he/she is
ready to listen again afterwards. (expert
3, video 2)

4

Allow a break A break or a continuation at another day
could be helpful to get the attention back
(expert 2, video 1)

2

∗n is the amount of experts out of the 5 experts that mentioned the strategy.

E. Discussion

In summary, the analyses of the expert interviews revealed
that preschool teachers agree on the interpretation of several
child behaviors as signs of (dis-)engagement. The behavioral
cues that were identified during robot-child tutoring were
changes in gaze direction (eye contact versus gaze away), body
posture (turn away, stand up, lay down), or facial expressions
(smiling). These cues that have been identified can be used to
narrow down the feature space in affective state recognition.
We note, though, that the small amount of video samples
restricts the significance of our findings. However, a frequent,
independent naming of the most relevant cues by different
experts for different children points to the importance of these
cues for detecting the affective state of children. Interestingly,
the majority of these cues can be recorded by means of non-
obtrusive technologies (e.g., video cameras, Microsoft Kinect)
and can be extracted using existing tools (e.g., Affdex, see
above). Building on this, the following section lays out a
conceptual approach to interpret and respond to changes in
the child’s state during robot-child tutoring interactions.

IV. AFFECTIVE STATE MANAGEMENT MODEL

A. Tracing the Affective State

The first step is to combine the different cues mentioned
in Section III into higher-level states and to trace them over
time. As a first approach, this can be achieved using a naive
Bayesian classifier that determines the hidden internal state E
that is assumed to independently cause cues C1, C2, ..., Cn.
Since cues need to be integrated into coherent belief up-
dates over time, the corresponding belief must be updated
every time step according to a dynamic Bayesian model
P (Et+1|Ct+1

i , Et).
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Fig. 2. Here the adaptive Bayesian Knowledge Tracing model is shown, consisting of the belief regarding the mastery of a skill St, the observation (response)
Ot to an action At, the affective state Et of the learner and the expected value Ut of a chosen chain of actions.

Variables E and Ci are directly based on the results of the
expert interviews. We focus on the most reliable and explicit
cues that can be tracked with current technology. Thus we
base the model on those cues that were frequently mentioned
for several children (cf. Table I). Since most cues from the
negative engagement group were only mentioned once, and
“head tilt” is difficult to track due to the danger of mixing
it up with moving the head from side to side (from the
disengagement group), we focus on signs of engagement and
disengagement in the first stage of the model’s development.
Engagement and disengagement can be regarded as opposing
poles on a continuum of engagement. Hence, we combine
them into the meta state variable Et that is called interaction
engagement. Cues that were identified as indicating engage-
ment will have a positive effect on this state, while all cues
related to disengagement will have a negative impact.

B. Managing the Affective State
After computing the belief update for interaction engage-

ment, the next step is to determine whether and how the robot
tutor should act. To this end, we include the belief variable
E into our previously developed approach based on Bayesian
Knowledge Tracing [2] (see Fig. 2). According to this model,
the belief over the learners mastery of a certain skill St

explains the observed answer Ot to a given teaching-task At

selected to address this skill St. We add the state variable Et

as well as an utility value Ut, which represents the expected
value of a chosen chain of pedagogical and affective actions.
Et is assumed to influence the students answer to a task, e.g.
if the student is disengaged there may be a higher probability
of observing a wrong answer as she may not have understood
the task description. This information will also affect the belief
update for the currently addressed skill, so that a wrong answer
will have a lower impact when the student is disengaged.

Although experts’ agreed on the identification of the behav-
ioral cues, the interpretation of these cues should be regarded
carefully since one behavior could have distinct meanings
depending on the situation and the specific child. For the

realization of a general model, the expert information is useful
to determine which cues are relevant to look at as a starting
point. A final system must, however, be able to adapt to
specific variations in the child and the situation.

Next, we need to extend the action space of At to actions
that manage the affective state, in addition to the already
present actions of addressing a certain skill with a particu-
lar task. This allows evaluating and weighing both options,
teaching a skill or managing the affective state of a student.
Still, the main goal is to find an action (or action sequence)
from which the child will learn the most. Since the model is a
Dynamic Bayesian Decision Network, this evaluation can be
carried out across several time steps, where each additional
time step lowers the utility gained on the basis of the increase
of the skill belief. Hence, the system can decide whether it
is more beneficial to first raise interaction engagement, before
teaching the next skill, or the other way around.

Again, we based our selection of actions to manage affective
state on the results of the expert interviews (cf. Table II). We
consider only the repair actions here, out of which the change
of task difficulty is already implemented in the model. Three
other actions remain, which could be useful to re-engage a
child in the interaction: First, directly addressing the child’s
behavior, e.g., urge to sit down again or ask for attention;
secondly, using alternative tasks or activities to provide a more
variable interaction, e.g., ask to move around or to play a
game; finally, if the interaction engagement drops significantly,
the robot can propose a break and the interaction can be
resumed later. All of these behaviors can be immediately
included in the model as well as the robot’s behavior reper-
toire. Note, however, that the conditional probabilities P (E|A)
ans P (O|A,E, S) need to be defined heuristically as long as
sufficient interaction data is not available.

V. SUMMARY

The present paper addressed the importance of coping
with a learner’s affective state during preschool child-robot
tutoring. While the automatic recognition of cues seems to
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be within reach with today’s technology, we are still lacking
a model of which affective states are most relevant in such
learning interactions, how they can be recognized, and how
they should be responded to by the robot tutor. To tackle
this problem, expert interviews with preschool teachers have
been conducted to identify children’s affective states that are
relevant during robot-child tutoring. The results suggest that
different categories of engagement states seem to be most
important, and that experts recognize and address those states
in interaction. The findings from the interviews are currently
used to inform the implementation of a computational model
for tracing and managing the affective and cognitive state of a
child learner with a robot tutor. To this end, we have laid out
how to extend a previously developed knowledge-tracing and
decision-making model based on a dynamic Bayesian Decision
Network. The combined model will allow for finding an action
policy that combines informative and affective actions of a
robot tutor to manage the internal states (both, cognitive and
affective) of a child learner more thoroughly, and to ensure an
optimal course of learning.
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emotions: Implementing and comparing selected methods for feature
extraction and classification,” in Proceedings of ICME 2005. IEEE,
2005, pp. 940–943.

[19] O. Villon and C. Lisetti, “A user-modeling approach to build user’s
psycho-physiological maps of emotions using bio-sensors,” in 15th IEEE
International Symposium on Robot and Human Interactive Communica-
tion (ROMAN). IEEE, 2006, pp. 269–276.

[20] M. H. Immordino-Yang and A. Damasio, “We feel, therefore we learn:
The relevance of affective and social neuroscience to education,” Mind,
brain, and education, vol. 1, no. 1, pp. 3–10, 2007.

[21] A. Esposito, “Affect in multimodal information,” in Affective Information
Processing. Springer, 2009, pp. 203–226.

[22] T. Bänziger, D. Grandjean, and K. R. Scherer, “Emotion recognition
from expressions in face, voice, and body: the multimodal emotion
recognition test (mert).” Emotion, vol. 9, no. 5, p. 691, 2009.

[23] A. Kapoor and R. W. Picard, “Multimodal affect recognition in learning
environments,” in Proceedings of MM 2005. ACM, 2005, pp. 677–682.

[24] I. Arroyo, D. G. Cooper, W. Burleson, B. P. Woolf, K. Muldner, and
R. Christopherson, “Emotion sensors go to school.” in Proceedings of
AIED 2009, vol. 200, 2009, pp. 17–24.

[25] L. Shen, M. Wang, and R. Shen, “Affective e-Learning: Using emotional
data to improve learning in pervasive learning environment related
work and the pervasive e-learning platform,” Educational Technology
& Society, vol. 12, pp. 176–189, 2009.

[26] S. Alexander, A. Sarrafzadeh, S. Hill et al., “Easy with eve: A functional
affective tutoring system,” in Workshop on Motivational and Affective
Issues in ITS. Citeseer, 2006, pp. 5–12.

[27] S. D’mello and A. Graesser, “Autotutor and affective autotutor: Learning
by talking with cognitively and emotionally intelligent computers that
talk back,” Interactive Intelligent Systems, vol. 2, no. 4, p. 23, 2012.

[28] G. Gordon, S. Spaulding, J. K. Westlund, J. J. Lee, L. Plummer,
M. Martinez, M. Das, and C. Breazeal, “Affective personalization of a
social robot tutor for children’s second language skills,” in Proceedings
of 30th AAAI Conference on Artificial Intelligence. AAAI Press, 2016,
pp. 3951–3957.

[29] D. McDuff, A. Mahmoud, M. Mavadati, M. Amr, J. Turcot, and R. e.
Kaliouby, “Affdex sdk: a cross-platform real-time multi-face expression
recognition toolkit,” in Proceedings of CHI 2016. ACM, 2016, pp.
3723–3726.

[30] S. Alexander, A. Sarrafzadeh, and S. Hill, “Foundation of an affective
tutoring system: Learning how human tutors adapt to student emotion,”
International journal of intelligent systems technologies and applica-
tions, vol. 4, no. 3-4, pp. 355–367, 2008.

[31] J. de Wit, T. Schodde, B. Willemsen, K. Bergmann, M. de Haas,
S. Kopp, E. Krahmer, and P. Vogt, “Exploring the Effect of Gestures and
Adaptive Tutoring on Childrens Comprehension of L2 Vocabularies,” in
Proceedings of the Workshop R4L at ACM/IEEE HRI 2017, 2017.

D5.1 Interaction management for the number domain

Date: 16/10/2017
Version: No 1.0

Page 44


	Executive Summary
	Principal Contributors
	Revision History
	Introduction
	Tasks of the Interaction Manager
	Input and Output Specification and Representation (T5.1)
	Overall Interfaces between Interaction Manager and the Other Modules
	Internal Architecture of the Interaction Manager

	Model of the Child Learner's States and Traits (T5.2)
	Basic Interaction Management (T5.3)
	Overall Interaction Structure
	Educator's Feedback Behaviour
	Conclusion

	Probabilistic State Estimation and Update (T5.4) & Decision-theoretic Dialogue Management (T5.5)
	Knowledge Tracing and Decision Making
	Evaluation with Adults
	Evaluation with Children

	Modeling Interaction Patterns (T5.6)
	Interaction Patterns gained through Empirical Studies
	Interaction Patterns gained through Pilots

	Motivational-relational Strategies (T5.7)
	Extracted Behavioral Cues
	Intervention Strategies


	Conclusion
	Interface Specification
	Output
	Input

	Clipping of the Storyboard for the First Session of the First Domain
	HRI 2017 Paper 
	ICCT 2017 Paper

