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Executive Summary

This deliverable is the final deliverable of WP4 (Multimodal input processing). It reports on the work
of the last 9 months and offers a perspective on the state-of-the-art in processing input in Child-Robot
Interaction. We look at the potential of Deep Learning for social signal processing, and looks at
how multi-modal perception in robots can be used to build more robust sensor interpretation and
consequently a more contingent interaction.
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1 Deliverable Outline

This deliverable briefly surveys the state-of-the-art, going over the various tasks in the WP and input
modalities needed for Human-Robot Interaction (HRI), and Child-Robot Interaction (CRI) in specific.
It looks at evolutions in technology and assesses whether in three years since the start of L2TOR
significant progress occurred in the field which are noteworthy for HRI and CRI.

1.1 Automated Speech Recognition (T4.1)

In the first year of the project, we noted during a rigorous evaluation study that both open and
commercial Automated Speech Recognition solutions performed sub-optimally for children’s speech.
Especially in the context of L2TOR, where we wished to recognise speech from young children (4 to 6
year’s old) all solutions showed nigh unusable recognition results [1]. This contrasted very much with
the communication by vendors of speech recognition and with earlier reports from research [2, 3, 4].

In recent years there has been increased attention for child speech recognition. Driven by edutain-
ment applications, such as interfaces for apps which do not rely on written language, there has been a
drive to improve speech recognition for young children. YouTube Kids is perhaps the leading product
on the market, but an informal evaluation showed that while the Google child speech recognition has
improved due to more data being available (collected through the YouTube Kids app), the performance
is still very much below what would be needed for successful HRI (see table 1).

Ground truth Transcription by YouTube Kids
“one” one
“two” (noisy) not recognised
“three” (noisy) not recognised
“the boy looking at the frog” a boy ok
“and he saw a grasshopper on top of it” installing a grass on top of it
“and a rat came euh popped out of the hole” and wet K-pop telkomsel

Table 1: YouTube Kids, with Google ASR, transcribing a selection of speech utterances spoken by
5-year old native English speaking children. In early 2019, the performance of the ASR remains
disappointing for utterances by young children.

Towards the end of 2018 a US start-up claimed to have robust child speech recognition. KidSense.ai
has an edge solution, where children’s utterances are transcribed on-board a device (as opposed to
Google’s cloud based solution). KidSense.ai has, despite advertising the availibility of a trial version of
the software, not made their ASR engine available for evaluation. In the light of further evidence, we
have to conclude that child speech recognition still is not sufficiently robust and cannot be used for
spoken interactions with young children. The interaction, as such, will still need to run predominantly
through the tablet interface.

1.2 Face detection and recognition (T4.2)

In recent years considerable progress has been made in the area of face detection and recognition,
mainly driven by the use of Convolutional Neural Networks. While earlier feature-based solutions for
face detection, such as the Viola-Jones face detection method [5], often under-performed on children
due to their different physiognomy and dynamic behaviour in front of the camera, the Deep Learning
based solutions do not seem to suffer from this. OpenCV, an open library for computer vision, starting
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from version 3.3, which was released in mid 2017 contains a Deep Neural Network implementation for
face detection which has proven to be effective for children.

In terms of face recognition, OpenFace, an open source implementation of FaceNet [6], implements
face recognition using DNNs, and while the performance of OpenFace is reported to between 95%
and 99% on benchmark databases, the performance in real world applications is much lower. A recent
evaluation by partner PLYM showed that in real-world interactions with robots, the face recognition
is very context-dependent suggesting that the high performance reported by FacedNet and similar
solutions is due to overspecification on the benchmarks.

However, the fact that the interaction between the user (in our case a young child) and the robot
is a multimodal interaction offers opportunities for more robust user identification. We studied how
input from other modalities can be combined using a Bayesian Network to arrive at a effective user
recognition [7]. The method uses information on the user’s perceived gender, height, time of day of the
interaction to improve user recognition. Our method increased the identification rate substantially up to
40% on open-set and closed-set scenarios.

1.3 Head pose, gaze tracking and gesture (T4.3)

Head pose and gesture tracking relied for a number of studies in L2TOR still on the Kinect SDK by
Microsoft, which takes a feed from a Microsoft Kinect RGDB camera. However, since 2018, OpenPose
has revolutionised the tracking of skeletal data (including head pose) through using a cascading DNN
to track a total of 135 keypoints on single images. While the data returned by OpenPose is still a 2D
coordinate, other solution exist to conver the 2D to a 3D data point. Given the robustness of OpenPose,
the ability to deal with occlusion and highly dynamic scenes, and the need for only a single camera, it
is expected that this approach, and similar ones, will substitute the use of RGBD cameras in HRI. This
was used in the analyses of the PinSoRo dataset [8], a dataset of recording of more than 45 hours of
interactions between children and children and robots, recorded and annotated by PLYM and made
public, which serves to machine learn the extraction of interaction parameters.

Tracking eye gaze has also become relatively robust, and eye gaze trackers based on DNNs exist.
One such eye tracker was developed and evaluated in the context of the FP7 DREAM project [9].

1.4 Emotion and affect recognition (T4.4)

Emotion recognition, while helped by recent evolutions in machine learning, still is rather primitive.
The main two obstacles are on the one hand the limited categorisation of emotion, with Ekman’s six
basic emotions still (erroneously) considered as the only emotions worth recognising [10]. On the other
hand, there is insufficient data which has been annotated with a richer coding scheme to train machine
learning approaches to recognise and classify a richer set of emotions and affect.

Relevant to robots for learning is the recognition of “engagement”, the rather difficult to define
notion of the learner being mindful about the tutorig or learning experience. In L2TOR we did not
use automated recognition of engagement, but instead relied on video coding by annotators to mark
whether or not a child was engaged during the interaction. A number of projects rely on proxies, such
as touch events or slowing down of the interaction, to gauge engagement [11].

In a recent study [12] we studied how internal states could be read from external signals, such as
skeletal dynamics. We relied on Conceptors, a novel approach to classification with DNNs which does
not only report classes, but which can arrive as a continuous assessment in between classes [13].
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1.5 Tablet input (T4.5)

As natural language interaction proved difficult to implement, we relied to a large extent on the
interaction with a touch screen tablet. This has proven to be reliable and accessible method of gathering
input for the robot, and one that comes naturally to young children. Children of 4 or over do not need
an introduction to the use of a tablet, with tapping and dragging well established when they first meet
the robot.

Our expectations are that a touch screen will be the interface of choice for robot tutors for now and
the foreseeable future.

1.6 Environment processing T(4.6)

Environment processing, the recognition of objects and events in the immediate vicinity of the child
and the robot, has been made considerably easier by concentrating the offer of educational content
on the tablet. An early study showed that there was no learning gain when objects were physically
presented to the children when learning L2 words [14] and a decision was made to have all educational
material displayed on the tablet. This not only made the identification and reading of the pose of objects
considerably easier, but also allowed for the presentation of animated sequences, for example to teach
the children verbs such as “running” and “climbing”.

Other elements relevant to environment processing include Voice Activity Detection, for which we
relied on OpenSmile [15], and simple visual perception, for example to detect whether something is
taking place in front of the robot.

2 Outlook

In terms of input processing for child-robot interaction, significant hurdles remain. While impressive
progress has been made on interpreting the visual modality, the lack of performance in transcribing
spoken language from young children forms a significant limitation for robots for language learning.
While these limitations can be circumvented by using a different interface, such as a touch screen tablet,
the initial promise of having a robot with which children could have a conversation remains unfulfilled
and is likely to remain so for the foreseeable future.
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A Annex Descriptions

A.1 Irfan et al. (2019) ulti-modal Incremental Bayesian Network with Online Learn-
ing for Open World User Identification

Bibliography - Irfan, B., Garcia Ortiz, M., Lyubova, N. and Belpaeme, T. (2019) Multi-modal
Incremental Bayesian Network with Online Learning for Open World User Identification. Submitted to
Frontiers in AI and Robotics.

Abstract - User identification is an important step in creating a personalised long-term interaction
with robots, such as in domestic applications, education, or rehabilitation. It requires learning the
users continuously and incrementally, possibly starting from a state without any known user. In this
paper, we describe a multi-modal incremental Bayesian network with online learning to be applied in
such scenarios. Face recognition is used as the primary biometric, and it is combined with ancillary
information, such as gender, age, height and time of interaction obtained from proprietary algorithms,
with a hybrid normalisation approach that combines the optimal normalisation method for each
parameter to improve the recognition. We introduce the long-term recognition performance loss that
weighs the importance of correct estimations of known users to the incorrect estimations of unknown
users for optimising the parameters of the network. We generated multi-modal datasets with 200 users
with random or periodic interaction times, that simulates an HRI scenario to evaluate our approach.
The results show that the proposed network decreases the loss compared to face recognition alone and
increases the identification rate substantially up to 40% in open-set and closed-set scenarios.

Relation to WP - This work contributes to Tasks T4.2 and T4.3.

A.2 Senft et al. (2019) Teaching robots social autonomy from in-situ human guidance

Bibliography - Senft, E., Lemaignan, S., Baxter, P., Bartlett, M. and Belpaeme, T. (2019) Teaching
robots social autonomy from in-situ human guidance. Submitted to Science Robotics.

Abstract - Striking the right balance between human control and robot autonomy is a core challenge
in social robotics, both in technical and ethical terms. On the one hand, extended robot autonomy offers
the potential for increased human productivity and the off-loading of physical and cognitive tasks;
on the other hand making the most of human technical and social expertise, as well as maintaining
accountability, is highly desirable. This issue is particularly sensitive in domains such as medical
therapy and education where social robots hold substantial promise, but where there is a high cost to
poorly performing autonomous systems, compounded with sensitive ethical concerns. We present an
ecologically valid study evaluating SPARC, a novel approach addressing this challenge whereby a
robot progressively learns appropriate autonomous behaviour from in-situ human demonstrations and
guidance. Using online machine learning techniques, we demonstrate that the robot can effectively
acquire legible and congruent social policies in a high-dimensional child tutoring situation, from
a limited number of demonstrations. By exploiting human expertise, our technique enables rapid
learning of efficient social and domain-specific policies in complex and non-deterministic environments.
Critically, we arguethat this evaluation demonstrates that SPARC is generic and can be successfully
applied to a broad range of difficult human-robot interaction scenarios.

Relation to WP - This work contributes to Tasks T4.5-T4.6.
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A.3 Bartlett et al. (2019) Recognizing Human Internal States: A Conceptor-Based
Approach

Bibliography - Bartlett, M., Hernández Garcı́a, D., Thill, S., and Belpaeme, T. (2019) Recognizing
Human Internal States: A Conceptor-Based Approach. Submitted to Social Robots in Therapy and
Care workshop at the IEEE/ACM International Conference on Human-Robot Interaction 2019, Daegu,
South Korea..

Abstract - The past few decades has seen increased interest in the application of social robots to
interventions for Autism Spectrum Disorder as behavioural coaches [16]. We consider that robots
embedded in therapies and interventions could also provide quantitative diagnostic information by
observing patient behaviours. The social nature of ASD symptoms means that, to achieve this, robots
need to be able to recognize the internal states their human interaction partners are experiencing, e.g.
states of confusion, engagement etc. Approaching this problem can be broken down into two questions:
(1) what information, accessible to robots, can be used to recognize internal states, and (2) how can a
system classify internal states such that it allows for sufficiently detailed diagnostic information? In
this paper we discuss these two questions in depth and propose a novel, conceptor-based classifier. We
report the initial results of this system in a proof-of-concept study and outline plans for future work.
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ABSTRACT3

Word Count: 1874

User identification is an important step in creating a personalised long-term interaction with5
robots, such as in domestic applications, education, or rehabilitation. It requires learning the6
users continuously and incrementally, and possibly starting from a state without any known user.7
In this paper, we describe a multi-modal incremental Bayesian network with online learning8
to be applied in such scenarios. Face recognition is used as the primary biometric, and it is9
combined with ancillary information, such as gender, age, height and time of interaction obtained10
from proprietary algorithms, with a hybrid normalisation approach that combines the optimal11
normalisation method for each parameter to improve the recognition. We introduce the long-term12
recognition performance loss that weighs the importance of correct estimations of known users13
to the incorrect estimations of unknown users for optimising the parameters of the network. We14
generated multi-modal datasets with 200 users with random or periodic interaction times, that15
simulates an HRI scenario to evaluate our approach. The results show that the proposed network16
decreases the loss compared to face recognition alone and increases the identification rate17
substantially up to 40% in open-set and closed-set scenarios.18

Keywords: Open world recognition; Bayesian network; soft biometrics; incremental learning; online learning; multi-modal dataset;19
long-term user recognition; Human-Robot Interaction20

1 INTRODUCTION

User identification is an important step towards achieving and maintaining a personalised long-term21
interaction with robots. For instance, a user would need to be identified for providing personalised22
assistance in rehabilitation therapy (Lara et al., 2017). When a robot is first deployed it will start from a23
“tabula rasa”, with no prior knowledge of users, and users will be encountered over a sometimes extended24
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Figure 1. Robots can make use of multi-modal information to recognise users more accurately in long-term
interactions

period of time. Hence, the system has to identify enrolled and “unknown” users, which is known as open-set25
identification. Open-set identification is a well-established (Scheirer et al., 2013; Jain et al., 2014; Scheirer26
et al., 2014), but in a real-world setting, these unknown users might need to be added into the system for27
future recognition. One solution is to re-train the entire system after introducing a novel user. However, this28
requires storing the previous samples, which could create a prohibitive computational burden in long-term29
deployments. Furthermore, it would require a significant amount of time to retrain with a growing number30
of users and samples (Bendale and Boult, 2015). Instead, the system should allow scaling and support the31
incremental learning of new classes, which is termed open world recognition (Bendale and Boult, 2015).32

Face recognition (FR) has been the most prominent technique in biometric identification due to its non-33
intrusive character. Even though most state-of-the-art methods use deep learning based approaches (Taigman34
et al., 2014; Sun et al., 2014; Parkhi et al., 2015; Schroff et al., 2015), only a few approaches exist for35
open-set recognition (Bendale and Boult, 2016; Ge et al., 2017). Most models are not suitable for open36
world recognition due to the catastrophic forgetting problem, which refers to the drastic loss of performance37
on the previously learned classes when a new class is introduced (McClelland et al., 1995; McCloskey and38
Cohen, 1989; Parisi et al., 2018). The existing approaches that could help to overcome this problem often39
require a part of the previous data for re-training, which might not be available.40

Incremental learning is not sufficient for adapting to the changes in the environment. For instance, an41
algorithm designed for open world recognition may not be able to recognise a person after a new haircut,42
because the model is not updated for known samples. Humans show a good model for recognition because43
they can continuously adapt to changing circumstances by updating their prior beliefs, known as online44
learning, and also use multi-modal information instead of a single biometric for estimation of an identity,45
such as recognising a person from the voice in a dark room. Most robots are also suitable for multi-modal46
recognition, as they have multiple sensors and perception algorithms (as shown in Fig. 1), which allow47
them to recognise users even when data are inaccurate or noisy, such as, a blurry image or illumination48

This is a provisional file, not the final typeset article 2



B. Irfan et al. Multi-modal Open World User Identification

changes (Wójcik et al., 2016). Moreover, the combination of multi-modal data can help to overcome issues49
related to similarities between users1, by differentiating on additional available information, for example,50
age and gender. Such ancillary physical or behavioural characteristics, called soft biometrics, can be used51
to improve the recognition performance (Jain et al., 2011; Dantcheva et al., 2016). Combining multi-modal52
recognition with online learning can improve the recognition further in time. For instance, a user can be53
initially mistaken for another in certain circumstances, but these variations can be learned over time and54
combined with other modalities to improve recognition where FR fails.55

In this paper, we extend our earlier work (Irfan et al., 2018) that proposed a multi-modal weighted56
Bayesian Network (BN) with online learning, combining soft biometrics (gender, age, height and time of57
interaction) with a primary biometric (face recognition) for open world user identification in human-robot58
interaction (HRI). Our main contribution is the extension of this method to take in multi-modal information,59
typically available in HRI, to markedly increase user identification and subsequently improve the user60
experience in long-term interactions for a large number of users. We make the following contributions61
(source code is available2):62

• introducing long-term recognition performance loss63

• formulating proposed online learning in terms of Expectation Maximization (EM) and Maximum64
Likelihood (ML)65

• combining optimal normalisation methods for each parameter in the BN in a hybrid approach66

• creating a multi-modal long-term user recognition dataset with 200 users of varying characteristics67
based on IMDB-WIKI dataset (Rothe et al., 2016) for evaluating the model with a large number of68
users69

Obtaining a dataset which encapsulates a diverse set of characteristics for a large number of users over70
long-term interactions is a laborious task in HRI. However, it is important to optimise the parameters of71
the model on a dataset with a large number of users for applicability to various situations and domains72
of application. Thus, we created a simulated dataset of 200 users using images selected from the IMDB73
dataset containing 20k users, allowing us to compare two types of application scenarios: (1) patterned74
interaction times in a week modeled through a Gaussian mixture model, where the user will be encountered75
certain times in specific days, which applies to HRI in rehabilitation and education areas, and (2) random76
interaction times represented by a uniform distribution, such as in domestic applications with companion77
robots, where the user can be seen at any time of the day in the week. The experiments are conducted by78
using the proprietary algorithms of the Pepper robot3 to obtain the multi-modal biometric information (face,79
gender and age), while the height and time of interaction are artificially generated to simulate a long-term80
HRI scenario.81

The rest of the paper is organised as follows: Section 2 gives a brief overview of the current practice82
of open-world recognition, online learning, multi-modal biometrics algorithms, and user recognition in83
human-robot interaction (HRI). Section 3 describes the methodology and the structure of the proposed84
Bayesian network. Section 4 explains the procedure of the creation of the multi-modal long-term user85
recognition dataset. Section 5 presents the empirical evaluation of the proposed methods on the multi-modal86
closed-set and open-set datasets. Section 6 concludes with a summary of the work.87

1 https://www.wired.com/story/10-year-old-face-id-unlocks-mothers-iphone-x/
2 Link will be available for the final version of this paper.
3 https://www.softbankrobotics.com/corp/robots/
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2 RELATED WORK

Our work lies at the intersection of open-world recognition, online learning, multi-modal biometrics, and88
HRI.89

2.1 Open World Recognition90

One of the first algorithms applied to open world recognition was the Nearest-Non Outlier91
(NNO) (Bendale and Boult, 2015), which modified Nearest Class Mean (NCM) (Mensink et al., 2013)92
for open-set classification and incremental learning. Another approach is the Extreme Value Machine93
(EVM) (Rudd et al., 2018) based on the Extreme Value Theory. However, both of these methods work with94
incrementally adding a batch of new classes (e.g. 100 at a time), as opposed to incremental learning of95
classes (one at a time). Similarly, the approach proposed in (Fei et al., 2016) is based on a center-based96
similarity space learning method and on the 1-vs-rest strategy of Support Vector Machines (SVM) for97
object classification.98

2.2 Online Learning99

Several Online Learning (OL) methods exist for various application areas (Gepperth and Hammer,100
2016). In video-based recognition, Lee and Kriegman (2005) proposed an online learning algorithm101
of probabilistic appearances, but a generic prior model is necessary for this approach. De Rosa et al.102
(2016) used online learning in open world recognition for incremental learning of classification metric,103
the threshold for novelty detection and describing the space of classes. The approach was applied to three104
existing algorithms, namely, NCM, NNO and Nearest Ball Classifier (NBC) (Rosa et al., 2015). Their105
results showed that online learning increases classification performance.106

2.3 Multi-Modal Biometrics107

In a multi-modal biometric system, information from different identifiers, such as face recognition or108
gender identification, is fused via prior or post classification (Jain et al., 2005). Prior classification requires109
access to the features or the sensor values of the identifiers, which are generally not available for proprietary110
algorithms. For post classification, two approaches exist: classification and combination of confidence111
scores. Classification methods, such as neural networks and SVM, combine non-homogeneous data from112
individual classifiers into a feature vector for further classification without the need for preprocessing.113
In the combination approach, the individual matching scores from the identifiers are combined into a114
scalar score in three steps: (1) normalisation of scores into a common domain, (2) combination of scores115
based on Bayes decision rule and posterior probabilities, e.g. sum or product rule, and (3) thresholding for116
classification. The performance of these approaches depends on the method and the threshold chosen.117

Bayesian approaches have been widely used for combining primary biometrics, such as face and speaker118
recognition (Bigün et al., 1997; Verlinde et al., 1999), as well as combining soft biometrics (Jain et al.,119
2004; Scheirer et al., 2011; Abreu and Fairhurst, 2011; Jain and Park, 2009; Zewail et al., 2004; Park and120
Jain, 2010). For instance, Jain et al. (2004) proposed a BN for combining fingerprints with soft biometric121
traits, namely, gender, ethnicity, and height. They used a fixed weighting scheme, where the biometrics122
with smaller variability and larger distinguishing capability were given more weight and achieved a slight123
improvement in recognition. Similarly, Scheirer et al. (2011) used a BN with Noisy-OR weighting that124
combines FR with ethnicity, hair colour and gender, and non-soft biometric contextual information, such as125
the occupation and the location of the person. Contrary to the work in (Jain et al., 2004) and our approach,126
they used the accuracy of the estimators to adjust the FR match score.127
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2.4 User Recognition in Human-Robot Interaction128

Similar to biometric recognition, the most common approach for user recognition in HRI is through129
FR (Aryananda, 2001, 2009; Hanheide et al., 2008; Cruz et al., 2008; Gaisser et al., 2013). However, robots130
have a great advantage for multi-modal recognition due to the variety of multiple sensors that they can131
integrate. Soft biometrics are especially important because they allow non-intrusive recognition. However,132
only a few studies actually use soft biometrics. Martinson et al. (2013) used the weighted summation of133
soft biometrics (clothing, complexion and height) to identify the users within a short-term interaction from134
a group of only three users. Boucenna et al. (2016) gathered extensive data (100 images per person) during135
an imitation game and later evaluated the recognition offline using a Hebbian rule-based neural network.136
Ouellet et al. (2014) combined face recognition, speaker identification, and human metrology through137
Hampel estimators in closed-set identification using a substantial time for training (3.5 minutes) and a138
small number of participants (pretraining on 22, test on 7). Al-Qaderi and Rad (2018) combined face, body139
and speech information using a spiking neural network in the closed-set identification and have evaluated140
on a simulated dataset. These approaches do not apply for open-world recognition, hence, their methods141
are not easily comparable to ours.142

Our previous work (Irfan et al., 2018) was the first approach in combining soft biometrics (gender, age,143
height and time of interaction) with a primary biometric (FR) to identify a user in real-time HRI. We144
introduced a multi-modal weighted BN that allows starting from a state of no known users to recognise145
unfamiliar users and incrementally learn them autonomously for open world recognition in HRI. Online146
learning was used for learning the likelihoods of the network from sequential data to improve the recognition147
over the long-term interactions. The weights of the network were optimised to minimise the number of148
incorrect recognitions. The quality of estimation measure was introduced to decrease the number of149
incorrect recognitions for unknown users. The results obtained in a user study with 14 participants over150
a four-week period showed a slight improvement in identification rate (up to 1.4% in open-set and 4.4%151
in closed-set recognition) compared to 90.3% of FR. The optimised weights suggested that age is the152
least effective soft biometric parameter, whereas height is the most effective one. Moreover, the BN153
performed worse with online learning. However, we concluded that the dataset might be biased towards154
the participants’ characteristics due to the low number of participants and restricted age range, and an155
evaluation with a bigger dataset is necessary to fully understand the capabilities of the system.156

This paper, thus, extends the work done in (Irfan et al., 2018), in evaluating the approach within a157
multi-modal long-term user recognition dataset, and optimising the weights of the BN through a long-term158
recognition performance loss criterion with a hybrid normalisation approach.159

3 MULTI-MODAL INCREMENTAL BAYESIAN NETWORK

A Bayesian network is a probabilistic graphical model which represents conditional dependencies of a160
set of variables through a directed acyclic graph. BNs are suitable for combining scores of identifiers161
with uncertainties when the knowledge of the world is incomplete (Scheirer et al., 2011). The naive162
Bayes classifier model assumes conditional independence between the predictors, which is a reasonable163
assumption for a multi-modal biometric identifier as the individual identifiers do not affect each other’s164
results.165

We developed a weighted multi-modal incremental BN (MMIBN) (see Fig. 2) based on our previous166
work reported in (Irfan et al., 2018), integrating multi-modal biometric information for reliable recognition167
in open-world identification through a naive Bayes model. The primary biometric in our system is face168
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Figure 2. The naive Bayesian network model with identity (I), face (F), gender (G), age (A), height (H),
and time of interaction (T) nodes.

recognition (F), which is fused with soft biometrics, namely, gender (G), age (A), and height (H) estimations169
and the time of interaction (T). We hypothesise that the integration of these soft biometrics will reduce the170
effects of noisy data as described in Section 1 and increase the identification rate. The pyAgrum (Gonzales171
et al., 2017) library is used for implementing the BN structure.172

3.1 Structure173

The number of states for each node depends on the modality: F and I nodes have ne+1 states, where ne is174
the number of enrolled (known) users. A and H nodes are restricted to the available range of the identifier,175
such as [0, 75] for A and [50, 240] for H; G has “female” and “male” states; T is defined by the day of the176
week and the time (the precise number of T states depends on the application as described later).177

When a user is encountered, the corresponding multi-modal biometric evidence is collected from the178
identifiers. The FR provides similarity scores, which give the percentage of similarity of the user to the179
known faces in the database. Age, height, and time are assumed to be discrete random variables with180
a discretised and normalised normal distribution of probabilities, N(µ, σ2), defined by (1), where V is181
the estimated value, Z is the standard score, and C is the confidence of the biometric indicator for the182
estimated value.183

µ = V, P (
−0.5
σ

< Z <
0.5

σ
) = C (1)

The time period (tp) and its standard deviation (σt) can be set depending on the precision required in the184
application. For example, if the users in the application scenario will change every 5 minutes, then tp = 5185
min and σt = 15 min would be reasonable. On the other hand, in an HRI scenario, tp = 30 min with σt = 60186
min can allow better identification, because it is less likely to encounter users at the exact same time every187
day. Hence, we use the latter in this paper.188

3.2 Weights of the Network189

Soft biometric traits are characteristics that are not suited to uniquely identify an individual. We can190
assume that the population will have similar characteristics, but the distribution is unknown. However,191
some soft biometric features may contain more information about an individual than others, e.g. age is192
often more informative than gender. This can be modelled by using different weights for the parameters in193
a BN.194
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Weights (wi) are used as the exponential to the likelihoods of the child nodes (Xi), similar to the work195
in (Zhou and Huang, 2006). The posterior probability P (Ij |X1, .., Xn) is approximated as shown in (2).196
Ij stands for the jth user (I = j), where I is the identity node.197

P (Ij |X1, .., Xn) ∝
P (Ij)

∏
i P (Xi|Ij)wi

P (X1, .., Xn)
(2)

As in (Jain et al., 2004), we assume that the identifiers perform equally well on all users. Therefore,198
the accuracy of an identifier is independent of the user, hence, equal priors are assumed for each of the199
identifiers. Therefore, the posterior probability simplifies to the equation shown in (3).200

P (Ij |X1, .., Xn) ∝ P (Ij)
∏

i

P (Xi|Ij)wi (3)

Because the distribution of users over time is not known, one approach for determining P (Ij) is to use201
adaptive priors using frequencies, as shown in (4), where noj is the number of times the user j is observed.202

P (Ij) =
noj∑
j noj

(4)

However, this can create a bias in the system towards the most frequently observed user as it affects203
directly the posterior probability, thus, may result in a decrease in the identification rate. Therefore, we204
assume that the probability of encountering the user j is equally likely as encountering the user m, hence,205
we assume equal priors for P (I).206

3.3 Quality of Estimation207

Algorithms for open-set problems generally use a threshold (e.g. over the highest probability/score) to208
determine if the user is already enrolled or “unknown”. However, the resulting posterior probabilities in a209
BN can be low due to the multiplication of the conditionally independent modalities and vary depending210
on the number of states. Hence, we use the two-step ad hoc mechanism introduced in (Irfan et al., 2018) to211
transform the BN to allow open-set recognition. (1) “Unknown” (U ) state is used in both F and I nodes.212
The similarity score in FR of U is set to the FR threshold (θFR), such that when normalised, the scores213
below/above the threshold will have lower/higher probabilities than U . This allows to maintain the threshold214
for the FR system in use. (2) We use the confidence measure called the quality of the estimation (Q). Given215
the evidence yt at time t, it compares the highest posterior probability (Pw) to the second highest (Ps),216
as shown in (5). The difference between the probabilities decreases, as the number of enrolled users (ne)217
increases since

∑
j P (I

j |yt) = 1.0. A similar method was used in (Filliat, 2007) for estimating the quality218
of localisation based on different images.219

Q = [Pw(I
j |yt)− Ps(Ij |yt)] ∗ ne (5)

If Q is less than the determined threshold (θQ), or U has the highest posterior probability, the identity is220
classified as unknown. Otherwise, the identity is estimated with a maximum a posteriori (MAP) estimation,221
given in (6).222
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j∗ =





U, if Q < θQ or
P (IU |yt) > P (Ij |yt) for all j

argmaxj P (I
j |yt), otherwise

(6)

3.4 Incremental Learning223

In HRI scenarios, it is desired to allow the user to enrol in the system, such that he/she can be recognised224
at the next encounter. For this, we use an online system, where a user is able to enrol by entering the225
name, gender, birth year, and height, and then a photo of the user is taken by the robot. This information is226
gathered to have the ground truth values for recognition, and for setting the initial likelihoods.227

Initially, the system starts as “tabula rasa”, where there are no known users. BN is formed when the first228
user is enrolled: one state for the new user and one for U for I node. The initial likelihood for F is set to be229
much higher for the true values as shown in (7), where wF is the weight of the face variable, and ne is the230
number of enrolled users. The value was found based on preliminary experiments.231

P (F k|Ij) =
{
0.9wF , if k = j

[0.1/(ne − 1)]wF , otherwise
(7)

The remaining likelihoods are set using the prior knowledge that the user entered in a similar structure to232
the evidence, i.e. for age, height and time variables with a discretised and normalised normal distribution,233
N(µ, σ2), where µ is the true value (e.g. age of the person), and σ is the standard deviation of the identifier.234
Gender is set at [0.99wG , 0.01wG ] ratio, which is experimentally found. For the unknown state, P (Xk

i |IU )235
is set to be uniformly distributed as an unknown user can be of any age, height and be recognised at any236
time of the day, except for the face node, which follows (7).237

When a new user is enrolled, the BN is expanded by adding a new state to the I and F nodes. P (F k|Ij)238
for each previous state in I (including U ) is updated by appending the value corresponding to k 6= j239
condition in (7), and then the probabilities are re-normalised. The likelihoods of G, A, H and T nodes240
for the previously enrolled users remain the same. This scalability feature removes the need to retrain the241
network when a new user is introduced, hence, the time complexity is decreased, which can be crucial if the242
new user is introduced at a later step (e.g. after 1000 users). More precisely, if each image corresponding to243
no average number of observations per user was to be recognised again after a new user is added to the244
face database, it would take a significant amount of time to expand the network compared to scaling, since245
ne ∗ no ∗ O(FR) � ne ∗ O(1) updates, where O(FR) is the time complexity of the FR algorithm. In246
order to allow the network to make meaningful estimations, in the first few recognitions (here, we chose 5247
recognitions), the identity is declared as unknown, regardless of the estimated identity.248

3.5 Online Learning of Likelihoods249

The BN parameters are generally determined by expert opinion or by learning from data (Koller and250
Friedman, 2009). The former can cause incorrect estimations if the set probabilities are not accurate enough.251
The latter, for which Maximum Likelihood (ML) estimation is commonly used, is not possible when the252
BN is constructed with incomplete data. One solution is to use offline batch learning, however, it requires253
storing data that can cause memory problems in long-term interactions. Another approach is to update the254
parameters as the data arrive, which is termed online learning. Variants of the Expectation Maximization255
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(EM) algorithm with a learning rate (EM(η)) (Bauer et al., 1997; Cohen et al., 2001; Lim and Cho, 2006;256
Liu and Liao, 2008) were proposed for online learning in BN.257

We use a BN where the likelihoods are updated through EM(η) with an adaptive η (learning rate) based258
on ML estimation, similar to Voting EM (Cohen et al., 2001). Adopting the notation in (Bauer et al., 1997),259
where θtijk represents P (Xi = xki |Ij) at time t, the formulation is given in (8). The difference between260
voting EM and our approach is that we work with continuous probabilities due to uncertainties in the261
identifiers. We will refer to the proposed BN with online learning as MMIBN-OL.262

θt+1
ijk =

{
ηjPθt(x

k
i |yt, Ij) + (1− ηj)θtijk, if P (Ij) = 1

θtijk, otherwise
(8)

Combining ML estimate to achieve an adaptive learning rate (given in (9)) allows the learning rate to263
depend on the observation of the user j (noj), which is more reliable than using a fixed rate for all users.264
Also, each observation of the user creates a progressively smaller update on the likelihoods, such that, the265
effect of a new observation decreases as the number of recognitions of the user increases.266

ηj =
1

noj + 1
(9)

Supervised learning is necessary to achieve accurate online learning, i.e. the identity of the user should267
be known for updating the corresponding likelihoods, which can be achieved in HRI by asking for a268
confirmation of the estimated identity.269

If the user j is not previously enrolled in the system, P (F k|IU ) is updated before updating P (F k|Ij) for270
each k. However, the likelihoods of gender, age, height, and time remain the same for U , to ensure uniform271
distribution.272

3.6 Long-Term Recognition Performance Loss273

Detection and Identification Rate (DIR) (fraction of correctly classified probes (samples) within the274
probes of the enrolled users (PE ), given in (10)) and False Alarm Rate (FAR) (fraction of incorrectly275
classified probes within the probes of the unknown users (PU ), given in (11)) are the standard metrics for276
open-set identification (Phillips et al., 2011).277

DIR =
|{argmaxj P (I

j |yt) = j|j, j ∈PE }|
|PE |

(10)

FAR =
|{argmaxj P (I

j |yt) = j|k, j ∈PE , k ∈PU }|
|PU |

(11)

In other words, DIR represents the “true positive” (TP) of enrolled users, in which the current probe278
(referring to the multi-modal biometric sample) belongs to a user that is previously enrolled and identified279
correctly, within the fraction of probes belonging to the enrolled users. FAR serves as a “false positive”280
(FP) for unknown users, that is, the probe belongs to an unknown user, but he/she is identified as an281
enrolled user. However, TP and FP are notions of verification problems, in which the probe is compared282
against a claimed identity, thus, measures for F1-score or accuracy are generally not applicable to open-set283
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identification. Instead, the trade-off between DIR and FAR that depends on the threshold of the identifier,284
is generally represented by a Receiver Operating Characteristic (ROC) curve. The standard practice in285
biometric identification is to determine the desired FAR, which would then set the threshold and henceforth286
the DIR.287

Depending on the biometric application, the cost of incorrectly identifying a user as known may be very288
different from the cost of incorrect identification of the enrolled user (Jain et al., 2011). For short-term289
interactions, in which a user will be encountered 1-2 times, FAR is as important or more important than290
DIR. However, for long-term interactions, the users will be encountered a greater number of times. Thus,291
correctly identifying a user (in a closed-set) becomes more important than correctly identifying that the292
user is unknown (open-set). Hence, we introduce the long-term recognition performance loss (L) that293
creates a balance between DIR and FAR based on the average number of observations per user (no), as294
presented in (12), where α is the ratio of importance of DIR compared to FAR.295

We optimise the weights of the BN through the loss function, for gender (wG), age (wA), height (wH)296
and time (wT ) in [0, 1] range, along with quality (Q) that can change within the [0, 0.5] range. Ideally297
L = 0, where all the unknown users are identified as such (FAR = 0.0) and the known users are correctly298
identified (DIR = 1.0).299

L = α ∗ (1−DIR) + (1− α) ∗ FAR

α = 1− 1

no

(12)

3.7 Normalisation Methods300

The scores from each modality must be normalised into a common range (e.g. [0, 1]) to ensure a301
meaningful combination. It is important to choose a method that is insensitive to outliers and provides a302
good estimate of the distribution (Jain et al., 2005), such as, minmax (MM ), tanh (Hampel et al., 1986)303
(TH), softmax (Bishop, 2006) (SM ), and norm-sum (dividing each value by the sum of values) (NS).304
We introduce hybrid normalisation (H) which combines the methods that achieve the lowest loss for each305
modality.306

3.8 Extendability307

The presented approach uses only one primary biometric, hence, in the absence of facial information, the308
image is discarded and the user is not recognized since soft biometric information would not be sufficient309
to estimate the identity. However, the system can be extended with other primary biometric traits, such as310
voice and fingerprint, and other soft biometrics, such as the location of interaction, eye colour and gait, to311
improve the recognition.312

The proposed approach does not require heavy-computing, therefore, it is suitable for use on commercially313
available robots. We use this system on Pepper and NAO4 robots for our experiments. These robots are314
operated by NAOqi5 software, which includes different modules that allowed us to extract face similarity315
scores, gender, height and age estimations from a single image. However, the network is applicable to any316
identifier software on any platform. The estimations from these modalities are fed into the network. The317
internal states of the proprietary algorithm are inaccessible, hence, we assume that the gender and age318

4 https://www.softbankrobotics.com/corp/robots/
5 http://doc.aldebaran.com/2-5
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estimations are not used to obtain the face similarity scores, and they are conditionally independent from319
the FR results, even though they are obtained from the 2D image through the same module within NAOqi.320
Height is obtained from another module using the 3D camera in Pepper.321

4 MULTI-MODAL LONG-TERM USER RECOGNITION DATASET

To the best of our knowledge, the only publicly available dataset that contains the soft biometrics used322
in our system (except for the time of interaction) with a dataset of faces is BioSoft (Sadhya et al., 2017).323
However, due to the low number of subjects (75), and the lack of numeric height values, we decided to324
create our own multi-modal long-term user recognition dataset.325

For images, we use the IMDB-WIKI dataset (Rothe et al., 2016) which contains more than 500k images326
of celebrities with gender and age labels. We randomly sampled 200 celebrities out of 20k celebrities,327
choosing only celebrities which have more than 10 images each corresponding to the same age. The328
resulting dataset contains 101 females, 98 males and one transgender. In the dataset, each image of the329
user was chosen from the same year in order to simulate an open-world HRI scenario, where the users will330
be met in consecutive days or weeks. The images that correspond to an age that is within the five most331
common ages in the set were randomly rejected during the selection. The resulting age range is 10-63, with332
the mean age of 33.04 (SD 9.28). We assume that the IMDB dataset offers a diverse set of characteristics.333

In the scope of this work, we use single-user recognition within the images, i.e. only one user is assumed334
to be present in each image. Hence, we use the cropped faces of the IMDB dataset, and we clean the dataset335
in three steps: we remove (1) images with a resolution lower than 150x150, (2) images without a face336
detected by NAOqi, (3) images that erroneously correspond to another person.337

We assume that the average number of times a user will be observed is no ≥ 10, which is a reasonable338
assumption for long-term HRI. Hence, we create two datasets: (1) DT, where each user is observed exactly339
ten times, e.g. ten return visits to a robot therapist, and (2) DA, in which each user is encountered a different340
amount of times (10 to 41 times).341

Pepper uses its 2D camera for face, gender and age recognition through NAOqi software, which can also342
work offline on images. In addition, the 3D camera is used for height estimation which requires a real343
person in front of the robot. Therefore, we had to artificially create height data, especially as (Irfan et al.,344
2018) found the height to be the most important soft biometric in determining the identity. To keep the data345
realistic, a Gaussian noise with σ = 6.3 cm found in (Irfan et al., 2018) was added to the true heights of the346
users obtained from the web.347

Two types of distribution are considered for the time of interaction: uniform (U) for random interaction348
times and Gaussian mixture model (G) with three curves for users seen at certain times of the day in a349
week, resulting in a total of four datasets (DTU, DTG, DAU, DAG). The clean datasets of images and the350
resulting datasets are available online6.351

The initial datasets are divided into training and closed-set test using 100 users with 80-20% ratio of the352
data: 800 samples in DT and 2308 in DA for training, and 200 samples in DT, 620 in DA for closed-set.353
The open-set test is created from the remaining 100 users (800 samples in DT for equal comparison, 2280354
in DA). The open-set evaluation is made by introducing these samples after the training dataset, i.e. the355
previous 100 users are enrolled in the system, and recognised multiple times before the introduction of356
the new users. However, the results for the open-set are evaluated only on the test set, not including the357

6 Link will be available for the final version of the paper.
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training results. Weights (wG, wA, wH , wT ) and quality of estimation (Q) are optimised using Bayesian358
optimisation7 for 303 iterations over 5-fold cross-validation on the training set for each dataset and for359
each of the normalisation methods.360

5 EVALUATION

In this section, we evaluate our proposed model based on the hypotheses presented in Section 5.1. Initially,361
the parameters of the multi-modal Bayesian network are optimised for open-world recognition in long-term362
interactions in Section 5.2. Using those parameters, the model is compared to face recognition and soft363
biometrics on the multi-modal long-term user recognition datasets for the training set, closed-set and364
open-set tests in Section 5.3.365

5.1 Hypotheses366

H1 Our proposed multi-modal BN will reduce the long-term recognition performance loss L and improve367
DIR compared to face recognition alone.368

H2 Online learning will reduce L and improve DIR.369

H3 Hybrid normalisation will outperform the individual normalisation methods.370

H4 When the time of interaction is uniformly distributed (in DTU and DAU datasets), the loss will be371
higher.372

H5 Optimised weight for the time in online learning will be low in uniformly distributed time datasets.373

5.2 Optimisation of Parameters374

In this section, we present our empirical evaluations to obtain the optimised parameters of our system on375
the described datasets: face recognition threshold (θFR), normalisation methods (Fig. 3), weights of the376
network and the quality of estimation (Fig. 4), and the performance loss according to FAR (Fig. 5).377

5.2.1 Face Recognition Threshold378

The loss parameter α in (12) should be set to find the optimum FR threshold (θFR) and optimise the379
parameters in our network. As α increases, the fraction of correct recognitions of enrolled users (DIR)380
increases, but the fraction of the incorrect recognitions of unknown users (FAR) will also increase. Based381
on our average number of observations assumption no = 10 for long-term interaction, α becomes 0.9. For382
applications with fewer observations per user, α can be set accordingly.383

If the highest similarity score is below the value of θFR, the identity is classified as unknown in FR.384
We examined how θFR influences the long-term recognition performance for the NAOqi FR, and noticed385
a decrease in performance for θFR > 0.4. Hence, we chose θFR = 0.4 for our network, such that, the386
similarity score of U will be as high as possible to decrease the FAR, in agreement with (Irfan et al., 2018).387

5.2.2 Normalisation Methods388

The long-term recognition performance loss of the normalisation methods in (Irfan et al., 2018), namely,389
minmax (MM ), tanh (TH), norm-sum (NS), and softmax (SM ), are compared with the introduced hybrid390
(H) normalisation (as shown in Fig. 3). Each normalisation method was evaluated using the datasets for391
each modality separately and the method that gave the lowest loss was used in the hybrid normalisation:392
norm-sum for face, gender, and height; tanh for age; softmax for time. The results in Fig. 3 show that hybrid393

7 https://thuijskens.github.io/2016/12/29/bayesian-optimisation/
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normalisation provides the lowest loss in all datasets, followed by hybrid with online learning (H −OL),394
providing support for H3. H4 also holds true, as the loss is higher in nearly all of the normalisation methods395
when the time of interaction is uniformly distributed.396

However, H2 is rejected for hybrid normalisation as the online learning increases the loss, as compared397
to the other normalisation methods for the Gaussian time datasets.398

Figure 3. Comparison of loss in the training sets for normalisation methods with optimised weights: MM
(minmax), TH (tanh), NS (norm-sum), SM (softmax), and H (hybrid). Lower loss is better. Standard
deviation values of 5-fold cross-validation are shown with error bars.

5.2.3 Weights and Quality of Estimation399

It seems to be self-evident that in the case of uniformly distributed time of interaction, online learning400
would provide worse results because the information provided by time will be unreliable. Hence, the401
optimisation should find a lower weight for the time parameter for MMIBN-OL (H5). The parameters402
corresponding to the optimum loss, presented in Fig. 4, show otherwise. wT for the uniform time is higher403
than that of the Gaussian for online learning in both datasets.404

In general, based on the relatively high weights, age seems to be the most important parameter, and height405
the least. This is in contrast with the findings in (Irfan et al., 2018). Since we are using a bigger dataset with406
varying characteristics, we can conclude that our results are more applicable to real-world deployments.407
However, it is important to note that the presented results are dependent on the defined loss function, the408
noise level of the identifiers and α. Hence, by adjusting α, setting a FAR, or using other algorithms for the409
identifiers, a different set of weights can be achieved with lower/higher FAR and consequently lower/higher410
DIR, as in Fig. 5 for DAG.411

The optimised quality of estimation (Q) was found to be less than 0.1 in each condition. The underlying412
reason is the disagreement of the modalities, which can decrease the differences in posterior probabilities413
because the results are combined through the product rule in the BN. When the modalities agree with high414
confidences (probabilities), the quality can be very high (e.g. see Figure 7 in Section 5.3) with Q = 7.44 for415
the probe of the second user.416
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Figure 4. Optimised weights for gender (wG), age (wA), height (wH), and time of interaction (wT ) and
quality of estimation (Q) for hybrid normalisation for ten samples (DT) and all samples (DA) datasets with
Gaussian (G) and uniform (U) times.

Figure 5. ROC curve for MMIBN-hybrid (BN) in the all samples dataset with Gaussian times (DAG),
with long-term recognition performance loss and DIR for varying FAR, for the Bayesian optimisation of
weights and quality of estimation for 303 iterations over 5-fold cross-validation. Face recognition (FR)
values are given for comparison. As DIR increases, loss decreases, but FAR increases. The loss parameter
(α) can be adjusted or a FAR can be set to obtain a different set of weights.

5.3 Recognition Results417

Lastly, we present the results of the training, closed-set and open-set datasets for our proposed BN, face418
recognition (FR) and soft biometrics (SB), in Fig. 6.419

The results show that H1 is supported for all datasets, i.e. the proposed approach decreases the long-term420
recognition performance loss to a large extent compared to FR. The increase in DIR is drastic, from 22 to421
40%, doubling the DIR of FR. This is a striking result, compared to the results in (Irfan et al., 2018) that422
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Figure 6. Comparison of loss (L), FAR and DIR for the proposed Bayesian network (BN), face recognition
(FR), and soft biometrics (SB) on the presented datasets for training (100 users), closed-set test (100 users)
and open-set tests (200 users) for ten samples (DT) and all samples (DA) datasets with Gaussian (G)
and uniform (U) times: (A) DTG, (B) DTU, (C) DAG, (D) DAU. Standard deviation values of 5-fold
cross-validation are shown with error bars.

showed an increase by only 1− 4%. However, the higher number of users (100-200 users compared to 14)423
lowered face recognition DIR to a large extent from 90.3% to 30%, which could be one of the reasons of424
the substantial increase in DIR.425

It should be noted that the increase in DIR provided by our network (27− 37%) is higher than the DIR of426
the soft biometrics (19 − 22%). This shows that the soft biometric data are not sufficient to identify an427
individual, yet when combined with the primary biometric, they improve the identification rate considerably.428
This conclusion is supported by the datasets where the time of interaction is uniformly distributed. Due429
to the high variability of the time, the identification rate of SB is close to zero. However, in addition to430
FR, they improve the recognition by 22% in DT, and 35% in DA. This result along with the non-zero431
optimised weights support that the inclusion of age, gender and height modalities increases the recognition432
rates, suggesting that the visual modalities contain additional information to the FR, and confirming our433
initial assumption of conditional independence. Figure 7 shows examples from DAG where the FR fails to434
recognise the user due to the low similarity score (< θFR = 0.4), whereas, our proposed model identifies435
the user correctly based on the soft biometric information. The quality of estimation (Q) varies depending436
on the highest FR similarity score, as well as the disagreement between modalities. For example, for437
the third user (Sandra Oh), the highest FR similarity score (rank 1) is very low, corresponding to David438
Schwimmer who is 28 years old in the dataset, has a height of 185 with the enrollment time of interaction439
on Tuesday at 18:16. The age did not provide information to differentiate the user from the incorrect440
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estimation, whereas, the height and time of interaction increased the probability that the user is Sandra441
Oh, resulting in a correct estimation, but with a low quality score (0.35 > θQ = 0.013). On the other hand,442
the second user (Gary Coleman) was identified correctly by FR with the highest similarity score close to,443
but slightly lower than θFR. This was enforced by the age estimation, and the time of interaction, which444
compensated for the incorrect recognitions of gender and height, to get a high quality score (7.44).445

Figure 7. Examples of true values and estimated values of modalities from our multi-modal long-term
user recognition dataset with Gaussian times (confidence values are given in brackets) using MMIBN
hybrid. The highlights in red show the incorrect detection values. Face recognition (FR) was unable to
recognise the users (0 represents unknown user) because the similarity scores were below the threshold
value of 40%. Our proposed multi-modal Bayesian Network (BN) was successful (highlighted in green) in
correctly identifying the users with varying quality of estimations (shown in brackets underneath the ID) as
a result of the information gathered from the soft biometrics highlighted in blue. 8% confidence value of
height corresponds to the σ = 6.3 cm in NAOqi. Images are taken from the IMDB-WIKI dataset (Rothe
et al., 2016).

The open-set test results are comparable to the training set even though the number of users is dealing446
with has doubled in size, suggesting that the proposed approach and the optimised weights can generalise.447
The closed-set identification loss is considerably less than that of the training or open-set tests, due to the448
lack of unknown users (FAR = 0), and DIR is higher because the performance of the BN improves with449
time.450
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Face recognition alone, on larger datasets, typically has very poor recognition performance. In comparison,451
the proposed network has considerably higher FAR. However, as noted before, this is a result of the trade-off452
between recognition and spotting unknown people, which is visible in Fig. 5. Depending on the value of α453
in the loss function to ensure a higher number of correct recognitions in a long-term interaction.454

Online learning provides comparable results for the DT datasets, but the loss is higher for DA. The455
underlying reason might be the accumulating noise in the identifiers. Therefore, for online learning, either456
identifiers with lower noise should be used or similar to the work (Cohen et al., 2001; Liu and Liao, 2008),457
the adaptive learning rate can decrease depending on the expectation and variance of the θijk. Moreover, the458
confidence value of the identifiers or the quality of estimation can be used to determine if the likelihoods459
should be updated at each iteration, to avoid updating when the noise is high. The execution times per460
recognition (on a single CPU of Pepper robot) for online learning are considerably higher (mean (M) =461
0.19 second, standard deviation (SD) = 0.0052) than the network without online learning (M = 0.04 s, SD462
= 0.0005). In addition, the average learned likelihoods (for 200 users) in online learning showed that the463
initial assumptions in (7) hold valid. The mean for face node was 0.913 (compared to the initial assumption464
of 0.9), with SD = 0.126. For the gender likelihood, M = 0.978 (the initial assumption was 0.99), SD =465
0.058. Hence, it is sufficient and preferable to use the proposed approach without always updating the466
model whenever a user crosses the robot.467

In general, it can be observed that FAR and DIR is higher in DA than in DT. The increase in DIR can be468
explained by the higher number of recognitions, which increases the performance over time. On the other469
hand, the increase in FAR can be due to the different optimised weights for each dataset (see Fig. 4). Since470
it is more likely that each user will appear a random number of times, we suggest to use the weights for the471
DA datasets; if the application is based on the users to come at specified times during a week (e.g. in a472
hospital), the optimised parameters for DAG should be used, otherwise, it is better to use that of DAU (e.g.473
for companion robots).474

6 CONCLUSION

In this work, we wanted to use the different sensors a robot has to improve user identification and presented475
a multi-modal incremental Bayesian network with online learning and hybrid normalisation. We introduced476
a long-term recognition performance loss for optimising the parameters of the network that considers477
correctly identifying the enrolled users as more important than detecting unknown users. We have created a478
multi-modal dataset to simulate an HRI scenario, allowing us to evaluate the approach on a large number of479
users with varying characteristics. This dataset provides a proof of concept through which the parameters of480
the system can be optimised against. The results were generated by feeding simulated users to the Pepper481
robot’s proprietary algorithms, thereby, providing real signals to our Bayesian Network.482

The results show that the presented approach improves the identification rate substantially, and decreases483
the loss compared to face recognition alone. Furthermore, the introduced hybrid normalisation method484
outperforms the normalisation methods in (Irfan et al., 2018). However, contrary to our initial hypothesis,485
online learning decreases recognition performance and reduces the ability to spot unknown users, which486
could be due to the accumulating noise in the network. The optimised weights suggest that age is the most487
important identifier in soft biometric information, whereas, height is the least important. However, this488
result depends on the population characteristics and the performance of the face recognition and other489
artificial perception software.490
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It should be pointed out that the training set was used to optimise the parameters of the system, and the491
open-set evaluations showed that these parameters are valid and generalisable to other datasets. Closed-set492
evaluations showed that the system improves over time, however, the already high identification rates in the493
training sets prove that the proposed system works sufficiently well in open world recognition starting from494
a state of zero known users. The achieved low identification rates (70% in closed-set and 60% in open-set)495
arise from the notably low face recognition rates (30%), and thus, are not comparable to the results of496
the state-of-the-art closed-set face recognition approaches (∼ 90%). However, this paper aims to show497
that the identification rate can be greatly improved by combining other available information (gender, age,498
height and time of interaction) without increasing the complexity of the system on a commercial robot with499
low-computational power. In addition, the closed-set approaches are not applicable to incremental learning,500
which is vital for HRI. Moreover, our model allows using better quality components (e.g. for face or age)501
to increase the recognition results, and it can be applied on any robot. Thus, it is suitable to be applied on502
robots in the wild and in the long-term HRI studies as an initial step towards personalising the interaction.503
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Striking the right balance between human control and robot autonomy is a

core challenge in social robotics, both in technical and ethical terms. On the

one hand, extended robot autonomy offers the potential for increased human

productivity and the off-loading of physical and cognitive tasks; on the other

hand making the most of human technical and social expertise, as well as main-

taining accountability, is highly desirable. This issue is particularly sensitive

in domains such as medical therapy and education where social robots hold

substantial promise, but where there is a high cost to poorly performing au-

tonomous systems, compounded with sensitive ethical concerns. We present

an ecologically valid study evaluating SPARC, a novel approach addressing

this challenge whereby a robot progressively learns appropriate autonomous

behaviour from in-situ human demonstrations and guidance. Using online

machine learning techniques, we demonstrate that the robot can effectively

1



acquire legible and congruent social policies in a high-dimensional child tutor-

ing situation, from a limited number of demonstrations. By exploiting human

expertise, our technique enables rapid learning of efficient social and domain-

specific policies in complex and non-deterministic environments. Critically,

we argue that this evaluation demonstrates that SPARC is generic and can

be successfully applied to a broad range of difficult human-robot interaction

scenarios.

Introduction

intro part 1: ’learn autonomy instead of program autonomy’ – example of predictive typingSL

intro part 2: a very difficult special case: educationSL

Tony to add a description of the education domain and how robots need autonomy, and how

this approach might be a good way forwardTB

In sensitive domains where social robots are expected to play a key role, such as education

and therapy, the question of empowering the human user by allowing them to supervise and

retain fully transparent control over the robots has to be constantly balanced with the contradic-

tory expectation of an advanced level of robot autonomy. Additionally, the growing expectation

is that robots should behave autonomously not only at a technical, task-specific level, but also

at in terms of social interactions.

In this article, we look at one specific, yet difficult, instance of this problem: how domain

experts (called hereafter human teachers) can transfer both technical and social skills to en-

able robots to successfully and autonomously interact with children in an educational task. The

expectation is that a robot could gradually learn an adequate social behaviour by observing

the human teacher, and would become increasingly autonomous in both task-level skills and

social interactions. As the teacher starts to trust the robot’s behaviour, she or he would pro-

2



gressively shift their workload to the robot. In such a scenario, the robot’s technical and social

policies would be co-constructed by the teacher during the learning phase, and the resulting

(autonomous) robot behaviour would thus remain essentially transparent, thus predictable and

trustworthy to the human teacher (1). Educational social robotics is a prototypical application

domain in this regard: to be an effective support, the robot needs to exhibit satisfactory technical

(didactic, i.e., subject knowledge) and social (pedagogic behaviour) skills, all while preserving

the ability for a school teacher to oversee and, if needed, override the robot’s behaviour.

justification for the learning of behaviours?ES

Learning Autonomy Instead of Programming Autonomy Learning social policies for inter-

actions with humans brings specific requirements, not usually considered in machine learning:

R1 The robot has to exhibit, at all times, an acceptable (socially and physically safe) – if not

perfectly appropriate – social and task-related behaviour. This starting from the onset of

the learning/interaction.

R2 The robot needs to learn quickly, as gathering data points with humans is a slow and

costly process.

R3 To be effective in real world scenarios (where the human experts teaching the robot are

not the roboticists), the learning process must be practical, integrate well with the natural

human routines and require limited engineering expertise.

Classically, two main methods exist for teaching robots, Reinforcement Learning (RL) (2)

and Learning from Demonstrations (3, 4). One of the core mechanisms of RL is the combina-

tion of exploration and learning from errors. To be effective, this requires both exploration and

error recovery to be cheap, thus RL approaches typically rely on simulators to quickly train the

agent. Simulation is, however, often not an option for human-robot interaction, as no simulator
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to date is able to reproduce at meaningful levels the complexity and unpredictability of human

behaviours ref?ES. This effectively means that the robots have to be trained in the real world by

interacting with humans. Exploring and recovering from errors in the real world, however, is

expensive, and sometimes not possible at all. Not being able to fully recover from errors in HRI

is the norm rather than the exception: when one observes that human-robot interactions almost

always requires a level of trust, it becomes clear that if the human loses their trust in the robot

due to a poor behaviour choice, resuming the interaction to its fullest might prove impossible.

Such failure modes are called catastrophic failures, and limit the general applicability of clas-

sical RL to HRI (as this violates (R1)). Additionally, learning with RL is often a slow process

requiring millions of step, thus violating (R2).

To palliate these limitations, robots can also learn from humans, which ensures that the

robot’s policy is appropriate to the current application during the learning process. Learning

from Demonstration (3,4) is one classical approach that enables humans to teach skills to robots.

However, it typically looks at kinaesthetic demonstrations in deterministic environments, where

the human teacher usually relinquishes control and supervision of the robot once the physical

skill is deemed to have been acquired by the robot. Learning by Demonstration is commonly

found in the context of manufacturing, industrial robotics or cobotics. It has also been applied,

in a few instances, to the learning of social, interactive behaviours (5–7). These approaches

might lead to positive results in an autonomous phase, however, significant engineering work

was required after gathering the demonstrations to transform them into a policy a robot could

apply to interact autonomously. This additional step implies that technical experts are required

to be present throughout the learning process to interpret demonstration data and create learning

algorithms adapted to each environment. This constant requirement of experts violates (R3),

thus limiting the usability of such an approach by members of the general population. In the

ideal case, the robot would learn from the supervision online, and would be ready to interact
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autonomously immediately after, without this additional engineering step.

One way to combine advantages from both online learning and supervised learning is In-

teractive Machine Learning (IML) (8, 9). IML involves the end-user in the learning loop and

has the agent learn an appropriate behaviour online through a series of small improvements.

For example, people can provide rewards on the robot’s actions, similarly to classic RL (10).

Involving the user in the learning process allows them to provide additional information to the

learner, making use of human teaching expertise to speed up the learning and allow the robot

to learn behaviours specially adapted to the user’s desires. Additionally, keeping the user in the

loop and actively involved in the teaching process allows the user to create a mental model of

the robot, increasing the transparency of the robot behaviour and the trust the user has in the

machine (11,12). However, teachers could also be given more control over the robot by dynam-

ically providing demonstrations, correction or additional information to the algorithm to speed

up the learning further (13, 14). Furthermore, with this human control, the teacher can correct

errors made by the algorithm before they impact the real world, providing safety to the learning

process. However, while holding promise, there are very few demonstrations of IML applied to

learning for social interactions with humans, robots learning online in HRI generally only adapt

within predefined boundaries (15, 16). IML, and Interactive reinforcement learning in partic-

ular, has had limited success so far, and mostly in simple, low-dimensional and deterministic

interaction domains (11, 17).

Our approach (called SPARC: Supervised Progressively Autonomous Robot Competen-

cies (18)), unlike the methods discussed thus far, addresses the three requirements stated previ-

ously by defining a new interaction paradigm: the robot interacts directly with the environment

under the supervision of a human teacher who has total control over the robot’s behaviour.

Initially, the robot is fully teleoperated by the human teacher in a Wizard-of-Oz fashion: the

teacher can select actions for the robot to execute. The robot learns a policy from these expert
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operations, and immediately starts to suggest actions to the teacher based on the policy it has

learned up to that point. The teacher can confirm or override the robot’s suggestions, and this

feedback is fed to the learning algorithm to progressively refine the policy. In order to reduce

the teacher’s workload, actions proposed by the robot and not cancelled by the teacher are as-

sumed to be acceptable, and executed after a short delay. This mechanism aims to limit the

requirement for human intervention. The teacher only has to demonstrate actions and prevent

incorrect actions from being executed. Thus, as the robot’s behaviour improves, the robot pro-

poses correct actions more often, reducing the need for demonstrations and corrections, and

thereby the amount of input required from the teacher to achieve an efficient behaviour.

When applied to HRI, for example in the context of education, this translates into trans-

forming a dyadic interaction {human teacher; learning child} into a triadic interaction {human

teacher; robot; child}, where the teacher teaches the robot how to support the child’s learn-

ing on-the-go, such that the robot can autonomously make appropriate use of a combination of

didactic and pedagogic actions (Figure 1).

This approach shares similarities with predictive texting: the predictive texting engine makes

right away suggestions based on a database of common words, and progressively adapts to its

user, learning from their decisions, and proposing more appropriate actions. It is a case of a

machine learning to better help the user, while keeping him or her in full control of the exact

output. Similarly, SPARC allows humans to teach robots an interaction policy while keeping

them in control but with a gradually diminishing workload until reaching a point where the

agent is trusted enough to interact autonomously.

The conceptual simplicity of the paradigm makes it widely applicable to a range of social

human-robot interactions beyond the specific educational scenario that we use as support in this

article and to other fields such as classic machine learning for robotics or other application.
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Control over action
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Figure 1: Diagram of the application of SPARC to HRI: a human teacher supervises a robot
learning to interact with a second human partner, the target of the application. In the context of
education, this application target would be a child learning new concepts.

Case study: Robots as Tutors for Children Social robots in educations have been explored

in the last decade. Due to increased diversity in the classroom and budget constraints, teacher

are no longer able to give personalized attention to pupils. One solution is to use a robot that

takes the role of a tutor or teacher and offers personalized lesson or tutoring sessions. Recent

studies have shown that social robots quite often are more effective than alternative technolo-

gies, such as tutoring software presented on a tablet or computer. The physical presence of the

robots together with its social appearance promotes behaviours in the learner, such as increased

attention and compliance, which are conducive to learning (19). However, robots for learning

are often programmed with a limited repertoire of behaviors and they do not adapt to the specific

learner or learning environment. Having a robot which can be operated initially by the teacher

but then gradually takes over control, would offer a tutoring experience which is better tailored

to the particular learner or learning task.
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Study Introduction This paper’s contribution is a study evaluating SPARC in a high-dimensional

social task where 8 to 10 year old children learned about food webs through playing a game

(Figure 2). In this game, 10 animals can be moved around in a touchscreen-based game envi-

ronment; animals have energy and have to eat plant or other animals to stay alive and the child

has to learn to balance animals diets to keep the ecosystem viable as long as possible. The

role of the robot tutor is to guide the child using advice (such as keeping track of the animals’

energy or indicating what animals eat) and social prompts (e.g. encouraging the child). The

game logic and the tutoring interaction are jointly modelled as an optimisation problem with

210 continuous input values (last actions, distances between animals, etc.) and 655 potential

output actions (motions, gestures, verbal encouragements, etc.).

Figure 2: The setup used in the study: a child interacts with the robot tutor, with a large touch-
screen sitting between them, displaying the learning activity; a human teacher provides guid-
ance to the robot through a tablet and monitors the robots learning.

The interaction consists on four consecutive and independent game rounds, and knowledge

tests before the first game, between the second and the third and after the fourth.

Our protocol includes three conditions, designed to assess the impact of applying the pro-
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posed approach (SPARC) to this task. The control condition (Passive condition) uses a passive

robot that only provides initial instructions and guidelines, but does not offer support during the

learning game. The second, the Supervised condition, involves a robot which gradually learns

from human demonstration how to provide support during the game by using SPARC. The

third, the Autonomous condition, uses an autonomous robot which executes the policy learnt

in the supervised condition, but without ongoing supervision. A range of metrics are used to

evaluate performance in each condition, including the children’s learning gain (using pre- and

post-tests), within-interaction behaviour (e.g. robot’s selected actions or child’s behaviours) and

the behaviour of the human teacher in interacting with the robot in a supervisor capacity.

Hypotheses Four hypotheses have been explored in this research:

H1 In the supervised condition, the teacher will be able to ensure an appropriate robot be-

haviour whilst teaching. We predict that the teacher will be able to use the interface to

have the robot executing only desired actions in the supervised condition, thus leading to

improvements in the children’s behaviours.

H2 The autonomous robot will be able to interact efficiently during the game while exhibiting

a social behaviour, and maintain the child’s engagement during the learning task. We pre-

dict that the autonomous robot will reach a tutoring performance similar to the supervised

robot and better than the passive robot.

H3 An active robot (supervised or autonomous) supports child learning: the learning gain in

the passive condition will be inferior to the learning gain in the autonomous condition,

which will be inferior to the learning gain in the supervised condition.

H4 Using SPARC, the supervisor’s workload decreases over time: the number of corrected

actions and the number of actions selected by the teacher decrease with practice, while
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the number of accepted proposed actions increases.

H3 is motivated by the idea that the humans possess knowledge which should help the child

to learn more from the game. By learning this knowledge, the autonomous robot should be

able to partially replicate this effect, but without being able to match it, due to the limits of the

algorithm, the interface and the limited time spent teaching.

Results

Example of a Session Table 1 presents an example of the first minute of a round. Propositions

from the robot are in blue, and actions from the teacher in orange. For example, at t=16.9,

the teacher accepted the proposition from the robot. Alternatively, in some cases, such as the

suggestion at t=20.6, the teacher did not evaluate the action proposed by the robot, but simply

selected another action. In that case, the action proposed is not evaluated and only the selected

action is executed and used for learning. In other cases, such as at t=6.6, the algorithm suggested

an action, the teacher decided to refuse it (by ‘waiting’), before selecting it again after a short

delay. Finally, at t=44.4 seconds, the teacher selected the action to move the mouse closer to

the wheat, and after the robot moved the mouse, the child tried other animals and then fed

the mouse with the wheat, this demonstrates how the actions from the robot could help the

children to discover new connections between animals. This partially supports H1 (‘In the

supervised condition, the teacher will be able to ensure an appropriate robot behaviour whilst

teaching’) as we can see the teacher using the robot’s propositions and selecting actions she

deemed appropriate to the current situation.

Policy Comparison Figure 3 presents the number of actions of each type executed by the

teacher (in the supervised condition) and by the autonomous robot. Both policies presented

similarities: the action ‘Move away’ was almost never used, ‘Move to’ was never used, and
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the supportive feedback (‘Congratulation’ and ‘Encouragement’) were used more often than

‘Remind rules’ or ‘Drawing attention’. However, some dissimilarities were also present, for in-

stance, the autonomous robot used more encouragements than congratulations while the teacher

did the opposite. The autonomous robot also reminded the child of the rules more often and

used the ‘Move close’ action less than the supervisor. These differences of actions are probably

linked to the type of machine learning used; with instance-based learning, some data points will

be used in the action selection much more often than others, which might explain these biases.

Nevertheless, these results show that the autonomous robot based its actions on the one used in

the supervised condition. The robot managed to learn a social and technical policy presenting

similarities with the one displayed by the teacher, providing partial support for H2. The THRI

paper already presented and discussed this part of the results, so it reduces the novelty of that

partES
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Figure 3: Comparison of the number of actions of each type executed by the robot in the au-
tonomous and supervised conditions. While demonstrating differences, these two distributions
show that the autonomous robot informed its choices of actions only from the demonstrations
of the teacher.

Learning gains On average, children learned in all conditions, reaching a learning gain of

13% (passive: M=0.12 (SD=0.14), supervised: M=0.11 (SD=0.13), autonomous M=0.14 (SD=0.12)).
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However, the robot’s behaviour during the game did not have a meaningful impact on the chil-

dren’s learning gain (Bayesian ANOVA: F (2, 72) = 0.337, η2 = 0.01, p = .72, B10 = 0.15)

failing to support H3.

Game Metrics Multiple game metrics have been collected in the rounds of the game played

by the children and can inform us on the effect of the robot’s behaviour on the children during

the game sessions.

Figure 4 and Table S1 show the evolution of the total number of different learning items

encountered by the children across the four game rounds (corresponding to the number of

different eating interactions created by the children). A Bayesian mixed-ANOVA showed

an impact of the repetition (i.e. progress in the rounds of the game) and the condition on

the number of different eating interactions produced by the children in the game (Bayesian

mixed-ANOVA: repetition: F (3, 216) = 6.75, η2 = 0.08, p < .001, B10 = 78.8, condi-

tion: F (2, 72) = 5.2, η2 = .13, p < .01, B10 = 5.7). With additional rounds of the games,

the children connected successfully more animal together. Post-hoc tests showed no signif-

icant difference between the supervised and the autonomous conditions (Bayesian Repeated-

Measure ANOVA: B10 = 0.154), whilst differences were observed between the supervised and

the passive conditions (B10 = 512) and between the autonomous and the passive conditions

(B10 = 246). This indicates that, compared to the passive robot, the supervised robot provided

additional knowledge to the children during the game, allowing them to create more useful

interactions between animals and their food, receiving more information from the game, thus

potentially helping them to get knowledge about what animals eat. Importantly, the autonomous

robot managed to recreate this effect without the presence of a human in the action selection

loop.

Figure 5 and Table S2 show the evolution of game duration across the four game rounds.
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Figure 4: Number of different eating interactions produced by the children (corresponding to
the exposure to learning items) for the four rounds of the game for the three conditions.

A Bayesian mixed-ANOVA showed inconclusive results on the impact of condition on game

duration (Bayesian mixed-ANOVA: F (2, 72) = 2.6, η2 = 0.07, p = 0.08, B10 = 0.82). Post-

hoc tests showed no significant difference between the supervised and autonomous conditions

(Bayesian Repeated-Measure ANOVA:B10 = 0.287), while differences were observed between

the supervised and passive conditions (B10 = 118) and a trend towards a difference between

the autonomous and passive conditions (B10 = 2.9). This indicates that children were better

at the game in the supervised condition whereby animals were alive longer than in the passive

condition. The autonomous robot learned and applied a policy tending to replicate this effect

and without exhibiting differences with the supervised one.

However, the analysis showed no effect of the repetitions on game duration (Bayesian

mixed-ANOVA with Huynh-Feldt correction: F (2.4, 174.9) = 0.31, η2 = 0.004, p = .82, B10 =

0.022); the children did not manage to keep the animals alive longer with more practice at the

game. One of the reasons was a partial ceiling effect at 2.25 minutes (see the red line on Fig-

ure 5). When not fed, animals would run out of energy in 2.25 minutes, so if children did not

manage to feed at least 7 of the animals at least once before that time, the game would stop. As

this might prove difficult to identify and achieve, many children did not manage to cross this
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Figure 5: Interaction time for the four rounds of the game for the three conditions. The dashed
red line represents 2.25 minutes, the time at which unfed animals died without intervention,
leading to an end of the game if the child did not feed animals enough.

These game metrics suggest that the policy executed by the autonomous robot allowed chil-

dren to achieve results in the game similar to those achieved when interacting with the super-

vised robot, and better results than with the passive robot. This provides support for H1 because,

when teaching the robot to interact, the teacher managed to have a positive impact on the child

from the onset. These results also support H2 because the autonomous robot tended to replicate

this effect and provided an advantage to the children, unlike the passive robot.

Teaching the Robot Figure 6 presents the teacher’s reactions to the robot’s suggestions across

all the supervised interactions. Contrary to our expectations, the number of accepted and refused

suggestions, as well as teacher selections, stayed roughly constant throughout the interactions

with the children. As the teacher aspect was a case study with a low number of data points and

high variation between children, inferential statistical analysis, such as regression, would not

be appropriate. On average, among the 4 rounds of an interaction, the teacher accepted 17.2

(SD=4.0) actions proposed by the robot (which represented 29.2% of the evaluated actions) and
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41.7 (SD=11.1) were refused by the teacher per interaction. The teacher manually selected 25.8

(SD=5.8) actions per interaction. We would have expected these results to be different: with the

learning, the number of accepted propositions should have increased and both the number of

refused propositions and teacher selections should have decreased. It should, however, be noted

that, due to this aspect being a case study, these results might not be replicated with another

teacher. Should we add something about the teacher being naive about the hypothese, and just

behaving as she preferred?ES
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Figure 6: Summary of the action selection process in the supervised condition. The ‘teacher
selection’ label represents each time the teacher manually selected an action not proposed by
the robot.

In post-hoc discussion, the teacher reported three phases in her teaching (session numbers

are indicative, the boundaries were not clear):

• First phase (sessions 1 to 5): she was not paying much attention to the suggestions, mostly

focusing on having the robot executing a correct policy.

• Second phase (sessions 6 to 16): she was paying more attention to the suggestions but

without giving them much credit.

• Third phase (sessions 17 to 25): she started to trust the robot more but without ever
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trusting it totally.

More specifically, in a written diary she completed throughout the study, the teacher noted

that she was “playing safe” in the very beginning, choosing to reject even valid robot sugges-

tions, and sometimes finding the robot “overwhelming”. The teacher’s report suggested that

this was due to the initially steep learning curve associated with supervising the robot; she felt

she needed to get used to the supervision set-up before she could pay attention to the robot’s

suggestions. Interestingly, while the teacher’s reports indicate that she felt she was trusting the

robot more and allowing it to perform more of its suggested actions, this was not reflected in

the actual frequency of accepted robot propositions.

The teacher did report a decrease of workload as she she progressed in the sessions number.

This was supported by behaviours such as typing her observations on a laptop, while gazing at

the interface in multiple interactions (especially at the start of a round). However, this decrease

of workload seemed to be due mostly to the teacher getting used to the interaction, and not to

the online learning and the improvement of the suggested propositions, invalidating H4.

Discussion

This study demonstrated that the robot successfully learned a behaviour providing support to

children in the educational activity. This learning happened online, using as teacher a psychol-

ogy student with no knowledge about the algorithm implementation. We showed that in little

over three hours, a human could teach a robot a behaviour leading to 10 to 30% improvement

in children’s performance in the activity (number of learning items and length of interaction).

While not showing a difference of learning gain or a reduction of workload over time. This study

demonstrates that the principles behind SPARC allow an efficient teaching of social autonomy

that can be done in the real world, at a human timescale and while maintaining an appropriate

robot behaviour throughout the teaching and beyond, when the robot interacts autonomously.
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We discuss hereafter the three main facets of our methodology: in situ learning; learning in

real-world environments; and learning social interactions.

Learning in situ Similarly to other Interactive Machine Learning methods, SPARC learns

online. This has associated advantages compared to offline learning such as classical Learning

from Demonstration (LfD) or supervised learning.

First, online learning increases the usability by non-experts in computing: a robot learning

online would only require one technical step, before the deployment. Once the robot is deployed

and learning, it can be taught by anyone and then when an appropriate behaviour is reached, the

robot can be deployed easily to interact autonomously. On the other hand, LfD methods applied

to social HRI require significant engineering work before deploying the robot, but also once the

demonstrations have been gathered to design a policy from them (6, 7). This additional step

requiring technical expertise implies that these robots cannot be fully usable by non- experts in

ML.

Second, learning in situ offers more flexibility in the range of possible applications. Given a

general enough representation of the state and action spaces, an efficient algorithm and a clear

interface, a single setup could result in a large spread of final behaviours without requiring a

technical expert to step in at any time. For example, in this study, the same learning algorithm

and world representations could be used to teach the robot a behaviour for typical children and

a different behaviour for children with special needs. Thus online learning can allow each user

to start with the same robot and controller, and define a policy suiting their specific needs. This

online learning could also be used to refine seamlessly an already correct but imperfect policy.

Learning in situ allows end-users to design their own robotic controller without the require-

ment of any technical expertise. This might reduce the needs of engineering robots, thus making

the process of designing a policy easier and more adaptive, potentially helping to democratise
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the use of robots.

Learning in real-world & sensitive environments While the advantages of learning in situ

apply to any IML methods, most of them provide only limited control to the teacher over the

behaviour executed by the robot. This lack of control cannot ensure that the robot’s behaviour

will be safe for the interaction partners, the robot itself or its environment, thus reducing the

applicability of such methods (17). However, by ensuring that the teacher vets each action

executed by the robot, SPARC increases the range of application of IML to real sensitive en-

vironments. Furthermore, by having control over the behaviour, the teacher can speed up the

learning, allowing robot to learn a useful behaviour in complex and stochastic environments in

a reasonable amount of time.

In this study, the robot learned an efficient policy, comparable to the teacher’s one in an

ecologically valid (complex, under-specified, stochastic real-world interaction) and sensitive

(education) environment. The environment had an input space of 210 dimensions and output

action space of 655 actions. The interaction happened in the wild, in the school children are

going to and the children displayed a number of unexpected behaviour the robot had to adapt to

(such as intentional waiting, hectic play style...). The environment was also sensitive, incorrect

hints or feedback from the robot could have caused distress or annoyance for the children. Thus,

this learning situation was more challenging than many others where IML has been evaluated

(often deterministic environment, with limited risks for failures... (10,11)) or classical adaptive

scenario for educational HRI (15, 20). But despite this, SPARC was successful both in the

teaching phase (ensuring that the robot’s behaviour was safe and useful from the onset) and

in the autonomous phase (by demonstrating a behaviour comparable the teacher’s policy and

which had similar impacts on children).
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Learning to be social By using robots learning from their users as they interact while keeping

the users in control of the robot behaviour, SPARC has the potential to ease the use of learn-

ing robot, making them available to more situations and empowering a larger range of users.

One of the specific situation addressed by this study by demonstrating its application to social

environments.

Behaving socially is a challenge, there is no explicit set of rule defining a perfect behaviour,

the interactants can behave in ways hard to anticipate and the recovery from errors can be

costly if not impossible. SPARC has been specially designed to tackle these challenges: by

learning online, the robot can progressively acquire a policy suited to the real interaction and this

continuous supervision allows to cover cases not anticipated. Additionally the control provided

to the teacher allows to maintain a social robot behaviour even in the early stages of the learning.

As demonstrated in this study, SPARC leads to promising results when applied to such a

situation. When behaving in the autonomous condition, the robot allowed children to be better

at the game (lasting longer) and to encounter more learning items compared to a passive robot.

These results are similar to the ones observed when the teacher was controlling the robot. This

indicates that the robot manage to re-enact a social policy similar to the one the teacher used,

thus paving the way to robots learning to interact socially with humans.

Outlook Our results show that SPARC allows users non-experts in ML to teach a robot a

social behaviour in situ, while interacting with children. This interaction framework is suitable

for sensitive complex environment, allowing a safe teaching and the learning of an efficient

robot behaviour.

Although our results demonstrated the opportunities provided by SPARC and other IML

methods providing teachers with control, some limitations remains and motivate future work.

This study did not show a decrease of the teacher’s workload overtime. One of the main reason
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was that the robot proposed actions too often, overloading the teacher and preventing her to

take time to correctly evaluate each suggestion. Future work could explore ways to provide

the teacher with more control not only on the overt robot behaviour (the one displayed in the

application) but also in the teaching interaction (such as being able to control the time until

autoexecution, waiting time between propositions or some meta parameter of the learning algo-

rithm). Additionally, the children did not show difference of learning between the conditions.

This can be explained by the fact that this task (game and test) was not validated before so there

was no guarantee that learning gains from the test exactly represent the difference of knowledge

accumulated by the children. This motivates the need of benchmark task for HRI that researcher

can use to evaluate AI systems and more generally robot controllers. Further work could also

explore way for the robot to go beyond the demonstrations, using the teacher to have a safe

baseline but also fine tuning the behaviour with autonomous learning to reach super-human

capabilities.

Conclusion This paper demonstrated the potential for SPARC to enable robots to learn from

humans. This capability is especially useful in HRI as often, the knowledge of the robot be-

haviour lies in the hand of domain experts such as therapists or teacher. The classical way to

design robotic controller requires multiple rounds of discussion between the engineers coding

the behaviour and the domain expert. Robot learning from end-users (e.g. by using SPARC)

would bypass these costly loops, allowing end-users to directly specify in an intuitive way an

efficient controller adapted to their specific needs. Additionally, the control provided to the

teachers makes this teaching safer, easier to use and more pleasant for the users.

The implications of this study are two-fold: first, we have demonstrated that, with an appro-

priate methodology, interactive machine learning can be successfully applied to transfer human

expertise to an autonomous robot, in a short period of time, and in a high-dimensional and eco-
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logically valid task. Second, for the first time, we have shown that not only domain-specific

technical expertise, but also elements of social behaviours can be taught that way. not sure this

is supported by the data??ES

Those two results are significant. The dynamic and stochastic nature of social interactions

makes learning appropriate and contingent social behaviours a challenge for which classical

machine learning approaches are ill-suited. We have shown here a path forward, and our ap-

proach makes it possible for autonomous social behaviours to be learnt in an online manner,

gradually taking over the social interaction from the human operator.

Because the process fundamentally relies on having the human in the loop, it also holds

considerable potential for sensitive applications of social robots, such as in e-health, assistive

robotics or education.

Materials and Methods

Objective and Design We designed a study to test if SPARC could be used to teach a robot

to interact in a complex, non-deterministic and real environment. In this study, a NAO robot 1

guided a child through a gamified tutoring session where the child had to interact with animals

on a touchscreen to learn about food-webs. This study compared three conditions where the

robot could be either passive (not providing any feedback or information to the child during

the game), supervised (an adult, the teacher, was teaching the robot how to the support the

child during the game) or autonomous (the robot interacted without supervision and executed

autonomously the policy learned in the supervised condition).

Apparatus This study is based on the Sandtray paradigm (21): a child interacts with a robot

via a large touchscreen located between them. By interacting with the touchscreen and the

1https://www.ald.softbankrobotics.com/en/robots/nao
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robot, the child is expected to gain knowledge or improve some skills. Additionally, a teacher

can control and teach the robot in the ‘supervised’ condition using a tablet. This results in a

triadic interaction: a human, the teacher, knows how the robot should behave, can control it to

execute an efficient behaviour and teach it how to interact with another human in situ by using

SPARC (as shown in Figure 2).

Participants Children from five classrooms across two different primary schools in Plymouth

(UK) were recruited to take part in the study. As both schools had an identical OFSTED eval-

uation (indicating that they provide similar educational environments), all the children were

combined into a single pool of participants. Full permission to take part in the study and be

recorded on video was acquired for all the participants via informed consent from parents. In

total, 75 children were included in the final analysis, with 25 participants per condition (N=75;

age: M=9.4, SD=0.72; 37 Female).

In the supervised condition, the robot’s teacher was a psychology PhD student from the

University of Plymouth, with limited knowledge of machine learning but with an understanding

of human cognition. This teacher is now part of the authors, but at the time of the study the

authorship was not considered and she was not involved in the study design. Consequently,

while being knowledgeable about the protocol, she was unaware of the hypotheses tested and the

implementation and had no incentive to bias the results to fit them. The teacher was instructed

on how to control the robot using a Graphical User Interface on the tablet and the effects of each

button. She experimented controlling the robot in two interactions (not included in the results

analysis) to get used to the interface and controlling the robot. After these interactions, the

algorithm was reset and the teacher started to supervise the robot for the supervised condition.

No information about the learning algorithm or the representation of the state and no feedback

about the optimal way of interacting or on her policy was provided before or during the study.
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As such, this study involved, as teacher, a naive user not expert in ML and more similar to the

general population of expected robot users than an expert in computing.

Protocol At the start of the interaction, a child was first introduced to the robot and told that

they would play a game about food chains with the robot (cf. Figures S3.a). Then, they com-

pleted a quick demographic questionnaire and a first pre-test to evaluate their baseline knowl-

edge (cf. Figures S3.b-e). After this test, and before starting the teaching game, the child had to

complete a tutorial where they were introduced to the mechanics of the game: animals have life

and have to eat to survive and the child can move animals to make them interact with other an-

imals or plants and replenish their energy (cf. Figures S3.f,g). The teacher was sitting with the

child through these steps to provide clarification if needed. After this short tutorial, the teacher

sat away from the child to supervise the robot if required while the child completed two rounds

of the game where the robot could provide feedback and advices depending on the condition

they were in (cf. Figure S3.h-k). Following these initial rounds of the game, the child com-

pleted a mid-test before playing another two rounds of the game and completing a last post-test

to conclude the study. Figure S3 presents examples of screenshot of the Sandtray throughout the

interaction. In all condition, the robot verbally guided the child through the study by explaining

them what they were expected to do in the different phases. The differences of behaviour be-

tween conditions happened only during the game, where the robot could be passive, supervised

or autonomous.

Implementation The robot is controlled using the architecture presented in Figure 7 with all

the nodes communicating together using the Robot Operating System (ROS) (22). The teacher

interface runs on a separate tablet and is used only for the supervised condition. All the other

nodes run on the large touchscreen computer displaying the game interface which is used to

guide the child through the study and presents the game rounds and the tests. The default robot
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behaviour is simply reading the instruction on the screen, following the child’s face and swaying

lightly.
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Figure 7: Simplified schematics of the architecture used to control the robot, the different nodes
communicate using ROS. A game (1) runs on a touchscreen between the child and the robot.
(2) analyses the state of the game using inputs from the game and the camera. (3) is an interface
running on a tablet and used by the teacher to control and teach the robot. (4) communicates
actions between the interface (3) and the learner (7). (5) translates teacher’s actions into robotic
commands used by (6) and (8) and executed by the robot (9). Finally, (7) is the learning algo-
rithm which defines a policy based on the state perceived and the previous actions selected by
the teacher, their substates and their feedback on propositions.

To support the children during the game rounds, the robot has access to 655 actions consist-

ing on moving animals in relation to others on the screen (by pointing to an object and moving

it on the screen), asking the child to focus on some items of the game (by pointing to them and

uttering a predefined sentence) and providing social prompts and feedback such as reminding

the rules and providing encouragements or congratulations. The robot’s policy in the game
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consists in a mapping between these actions and a representation of the state defined in a 210

dimensions vector with values ranging from 0 to 1 and corresponding features describing the

state of the game (animal’s energy, distance between items) and of the interaction (how long it

has been since the child or the robot touched items, when was the last action executed by the

robot...).

In the supervised condition, the teacher uses an interface running on a tablet and replicating

the graphics of the game (with the position of the animals), but with additional buttons to select

actions for the robot to execute. Our algorithm, adapted from (14), maps actions selected by

the teacher to a substate (s′), a sliced version of the 210-dimension state using a variation of the

Nearest Neighbours approach. In this new algorithms, instances in memory are only defined on

a substate instead of the full state (n′ dimensions of the state have a value, while the others, not

relevant to the current action, are left as ‘wild cards’). These substates are defined on S ′ state

subspaces, corresponding to sliced versions of the state space (with S ′ ⊂ S). This slicing is

carried out by keeping only the dimensions relevant to a set of features defined by the teacher

(i.e. selected on the tablet). This allows the algorithm to consider only the dimensions of the

state relevant to each action when computing the distance between instances and the current

state. Consequently, this algorithm can profit from having access to a large number of state

dimensions without suffering from the ‘Curse of dimensionality’ (23), thus potentially learning

quickly complex behaviours. Additionally, each instance in memory possesses a reward value

(r) which allows the algorithm to avoid undesired actions (the ones with a negative reward). In

summary, instances are defined as tuples: action - substate - reward (a, s′, r).

This learning algorithm can propose actions to the teacher that are executed after a short

delay if the teacher does not cancel them. Using the interface the teacher can accept (rewarding

positively and executing) proposed actions or refuse them (pre-empting the execution of an

action and assigning it a negative reward). Additionally, they can select actions for the robot to
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execute. Figure 8 shows the flowchart of the action selection process allowing mixed initiative

between the teacher and the robot.

Update policy: 
add new (â, s', r);
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2 Hz
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Figure 8: Flowchart of the action selection. Mixed-initiative control is achieved via a combi-
nation of actions selected by the teacher, propositions from the robot and corrections of propo-
sitions by the teacher. The algorithm uses instances x, corresponding to a tuple: action a ,
substate s′ and reward r. s′ is defined on S ′ with S ′ ⊂ S and N the set of the indexes of the n′

selected dimensions of s′.

The algorithm itself does not take time into account. However, as dimensions of the state

are time dependant (using exponential decreases since events), temporal effects can be captured

by the learning algorithm.

In the autonomous condition, the interface used by the teacher is simply replaced by a node

automatically accepting propositions after a short delay, thus applying the policy learnt in the

supervised condition.

Metrics To address the hypotheses, we collected multiple metrics on both interactions (teacher-

robot and robot-child). First, we recorded the actions executed by the robot in the supervised

and autonomous conditions to characterise the two policies. Second, we collected two groups

of metrics to evaluate the application interaction: the learning metrics (corresponding to the

child’s performance during the tests) and the game metrics (corresponding to the child’s be-

haviour within the game rounds). And finally, in the supervised condition, we recorded the
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origin of the actions executed by the robot (teacher vs algorithm) and the outcome of the pro-

posed actions (executed vs refused).

During the game, the robot had access to 655 actions, which can be divided into seven

categories: drawing attention, moving close, moving away, moving to, congratulation, encour-

agement and reminding rules. Due to this high number of actions, the breadth of the state

space (210 dimension) and the complex interdependence between actions and states, precisely

characterising a whole policy is non-tractable. Consequently, we used the number of actions ex-

ecuted for each category per child to characterise the policy executed by the robot in the active

conditions (supervised and autonomous). While not perfectly representing the policy of each

condition (e.g. the timing of actions is missing), this metric offers a proxy to compare these

policies.

The children’s knowledge about the food web was evaluated through a graph where children

had to connect animals to their food. There was 25 correct connections and 95 incorrect ones.

As the child could create as many connections as desired, the performance was defined as the

number of correct connections above chance (for the total number of connection made during

the test) divided by the maximum achievable performance. This resulted in a score bounded

between -1 and 1.

For example, if a child made 5 good connections and 3 bad, their performance would be:

P =
#good− (#good+#bad) · totalgood

total

totalgood− totalgood · totalgood
total

=
5− (5 + 3) · 25

25+95

25− 25 · 25
25+95

= 0.168 (1)

The three tests (pre, mid and post interaction) resulted in three performance measures.

To account for initial differences in knowledge and the progressive difficulty to gain addi-

tional knowledge, we computed the learning gain as the difference between the final and initial

knowledge divided by the ‘progression margin’: the difference between the maximum achiev-

able performance and the initial performance (Learning gain =
Pfinal−Pinitial

1−Pinitial
). This learning
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gain indicates how much of the missing knowledge the child managed to gain from the game.

Add ref, but I did not find a good one, could you direct me to a paper Tony or Paul please?ES

Additionally, different metrics were also gathered during the rounds of the game to charac-

terise the children’s behaviours:

• Number of different eating interactions: number of unique eating interactions between

two items ([0,25]).

• Interaction time: Duration of game rounds, how long a round lasted until three animals

ran out of energy (typical range 0.5 to 3 minutes).

As mentioned in the previous section, the children had to explore a food net with 25 good

connections and 95 incorrect connections. Due to the imbalance between these numbers, more

knowledge is acquired by discovering one of these 25 good connections rather than disproving

one of the 95 incorrect ones. As such, we defined our first game metric as the number of differ-

ent eating interactions children encountered during each game. An eating interaction happens

when the child moves an animal to its food (or to a predator); and the number of different eating

interactions represents how many different unique correct connections the child has discovered

to during the game (multiple eating actions between the same animals would count only once).

A game with a high number of different eating interactions represents a game where the child

had the opportunity to learn many correct connections between animals. Consequently, by in-

creasing this number, the children would be exposed to more learning items which should help

them perform better on the tests. For simplicity, we termed this metric ‘exposure to learning

items’ as it encompasses how much knowledge a child has been exposed to in one round of

the game. We would expect that an active robot would be able to guide the child towards these

correct connections, allowing the child to reach a higher exposure, which would lead to more

gain from the game and better overall learning.
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On the other hand, the interaction time reached in the game provide information about the

children’s performance in the task (keeping the animals alive as long as possible) and their

engagement. A child disengaged with the game would not play seriously and would finish the

interaction earlier. We expect that an active robot would encourage and support the child in

the learning game and allow them to reach better scores in these engagement and performance

metrics.

Statistical Analysis To demonstrate the presence or the absence of effects, we used bayesian

statistics on the data. As such the Bayes factor B10 is reported and represents how much of the

variance on the metric is explained by a parameter (if B10 < 1/3 there is no impact, if B10 > 3

the impact is strong, and if 1/3 < B10 < 3 the results are inconclusive (24, 25)). We analysed

the results using the JASP software (26). We used a Bayesian mixed ANOVA as an omnibus

test to explore the impact of the condition and the repetition on the metrics. Additional post-

hoc tests used a Bayesian Repeated-Measure ANOVA comparing the conditions one by one and

fixing the prior probability to 0.5 to correct for multiple testing. The left graphs are violin plots

featuring the kernel density estimation of the distribution and right graphs present the mean and

the 95% Confidence Intervals.
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Table 1: Example of events during the first minute of the first round of the interaction with the
23rd child in the supervised condition. Lines in blue represent propositions from and the robot
and orange the reaction from the teacher. (‘mvc’ is the abbreviation of the move close action)

Time Event Time Event

4.1 childtouch frog 34.4 childtouch wolf
4.3 failinteraction frog wheat-3 34.7 robot proposes remind rules
4.9 animaleats frog fly 35.0 animaleats wolf mouse
5.8 childrelease frog 36.0 teacher selects wait
6.6 robot proposes congrats 36.0 animaleats wolf mouse
7.6 childtouch fly 37.2 childrelease wolf
7.6 teacher selects wait 37.7 childtouch grasshopper
8.0 animaleats fly apple-4 38.3 robot proposes congrats
8.3 childrelease fly 41.8 reset
9.1 teacher selects congrats 42.1 failinteraction grasshopper apple-1
9.1 childtouch frog 42.7 childrelease grasshopper
10.3 childrelease frog 42.7 failinteraction grasshopper apple-1
10.8 childtouch frog 44.4 teacher selects mvc mouse wheat-1
11.2 animaleats frog fly 44.6 robottouch mouse
12.4 failinteraction frog apple-2 44.7 childtouch butterfly
12.5 animaleats frog fly 45.1 failinteraction butterfly wheat-2
13.2 childrelease frog 45.6 childrelease wheat-1
14.2 childtouch fly 45.6 robotrelease mouse
14.5 animaleats fly apple-2 45.7 robottouch mouse
14.6 robot proposes encouragement 48.9 robotrelease mouse
15.0 childrelease fly 49.3 childtouch butterfly
15.4 animaleats fly apple-3 49.3 failinteraction butterfly wheat-1
16.9 teacher selects encouragement 49.6 childrelease butterfly
18.2 childtouch snake 50.0 childtouch mouse
18.4 failinteraction snake wheat-3 50.3 animaleats mouse wheat-1
18.7 animaleats snake bird 51.0 childrelease mouse
19.6 animaleats snake bird 51.1 animaleats mouse wheat-2
20.5 childrelease snake 51.4 robot proposes congrats
20.6 failinteraction snake wheat-4 52.3 teacher selects congrats
20.6 robot proposes congrats 52.9 childtouch snake
20.9 childtouch eagle 52.9 failinteraction snake wheat-3
21.1 animaleats eagle bird 53.2 childrelease snake
22.0 animaleats eagle bird 53.5 childtouch mouse
22.4 childrelease eagle 53.6 animaleats mouse wheat-3
23.3 animaldead bird 54.4 robot proposes congrats
23.4 teacher selects mvc dragonfly fly 54.5 animaleats mouse wheat-4
23.6 robottouch dragonfly 55.0 childrelease mouse
26.9 robotrelease dragonfly 55.6 childtouch dragonfly
27.7 childtouch fly 56.1 teacher selects wait
28.0 childrelease fly 56.8 failinteraction dragonfly apple-1
28.4 childtouch dragonfly 57.3 childrelease dragonfly
28.6 failinteraction dragonfly apple-1 57.5 failinteraction dragonfly apple-1
29.1 childrelease dragonfly 58.6 childtouch grasshopper
29.4 failinteraction dragonfly apple-1 58.6 failinteraction grasshopper apple-1
30.3 childtouch dragonfly 58.8 childrelease undefined
30.3 failinteraction dragonfly apple-1 59.1 childtouch dragonfly
30.7 robot proposes encouragement 59.1 failinteraction dragonfly apple-1
31.0 failinteraction dragonfly apple-1 59.2 failinteraction grasshopper apple-1
31.8 teacher selects wait 59.9 failinteraction dragonfly apple-1
32.5 childrelease dragonfly 60.3 childrelease dragonfly

33



Recognizing Human Internal States: A
Conceptor-Based Approach

Abstract—The past few decades has seen increased interest
in the application of social robots to interventions for Autism
Spectrum Disorder as behavioural coaches [4]. We consider
that robots embedded in therapies and interventions could also
provide quantitative diagnostic information by observing patient
behaviours. The social nature of ASD symptoms means that, to
achieve this, robots need to be able to recognize the internal
states their human interaction partners are experiencing, e.g.
states of confusion, engagement etc. Approaching this problem
can be broken down into two questions: (1) what information,
accessible to robots, can be used to recognize internal states, and
(2) how can a system classify internal states such that it allows
for sufficiently detailed diagnostic information? In this paper
we discuss these two questions in depth and propose a novel,
conceptor-based classifier. We report the initial results of this
system in a proof-of-concept study and outline plans for future
work.

Index Terms—Internal States, Engagement, Conceptors, So-
cially Interactive Robots, Recognition

I. INTRODUCTION

The development of socially interactive robots has inspired
research into various applications for these tools. One appli-
cation is in therapy and care, where robots can be used to
provide daily support to patients, and as tools to augment
interventions and provide quantitative data for clinicians [1].
We specifically consider the use of robots in interventions
for children with Autism Spectrum Disorder (ASD). The
Diagnostic and Statistical Manual of Mental Disorders (DSM-
V) defines ASD as a neuro-developmental disorder charac-
terized by persistent deficits in social communication and
interaction, and restricted or repetitive behaviours and interests
[2]. Diagnosing ASD involves the subjective interpretations
by experts of observations of a child’s behaviour made by
clinicians and caregivers [3]. This subjectivity, and the clinical
heterogeneity which is typical between ASD cases [4], means
that the diagnostic process could be improved through the use
of more quantitative, objective measures of child behaviour.
This can be achieved using behaviour classification systems.

Developing an artificial system to recognize ASD symptoms
is not a straight-forward task due to the social nature of
ASD. This is because correct classification of social and
interaction behaviour often requires the ability to infer the
internal-states (e.g. intentions, emotions) of the observed in-
dividual. For example, identifying when a child fails to ask
for comfort when needed (a symptom of ASD [2]) requires
that the observer recognize that the child is experiencing a
negative internal state. However, endowing robots with this
skill would provide numerous benefits for ASD interventions.
For instance, if an intervention involves regular interaction

with a social robot, it would be useful to have the robot able
to report quantitative diagnostic information. Firstly, clinicians
could use this information to track their patient’s progress
through the intervention, or to support their initial diagnostic
decision. Secondly, the robot itself could use internal-state and
diagnostic information to autonomously decide on appropriate
behaviours to perform.

In approaching the problem of developing artificial systems
able to recognize human internal states, there are two key
questions which must be addressed: (1) what internal state
information is available in behaviours which can be assessed
and quantified by artificial systems, and (2) how can these
states be represented by a classification system to provide
both detailed assessments and flexible behavioural responses
from a social robot. The rest of this paper discusses possible
answers to these questions in the context of quantifying the
diagnostic behaviours of children with ASD. We present two
studies carried out as a proof-of-concept to demonstrate that
the internal state of task engagement could be classified based
on observable human movement information, and that this
classification could be done by a system able to represent
internal states as points along a continuous dimension. The
logic behind our choice of internal state and its desired
representation is described, where relevant, in the introductions
to each experiment.

II. EXPERIMENT 1

Whilst most ASD symptoms cannot be described as wholly
overt, many have been linked with directly observable be-
haviours. For example, motor skills have been shown to be pre-
dictive of social communication skills for children with ASD
[5]. Additionally, an increased tendency to orient towards non-
social contingencies rather than biological motion is indicative
of ASD [6]. These and other studies have linked movement and
gaze behaviours to a number of ASD characteristics. Move-
ment and gaze information can be measured or estimated by
observing body movements or poses, which can be easily made
accessible to artificial systems, e.g. by converting the position
of an individual’s joints to coordinates in space for each time-
point. Consequently, we argue that this type of information
can be useful for social robots designed to make inferences
about diagnostic status and human internal states. Before a
classifier could be implemented, however, we first needed to
verify that the internal state of interest (task engagement) was
recognizable from the movement information available in our
data set.



For this proof-of-concept study, the desired data set was
defined as one which contained the movement information
of humans experiencing, but not intentionally communicating,
different levels of a non-emotional internal state. To ensure
that the internal state was not being communicated we decided
that the subject should not be interacting with another human.
The decision that the internal state should not be an emotion
was made because we argue that the recognition of non-
emotional internal states (e.g. task engagement, experienced
difficulty) is more valuable for robots designed to interact
in an intervention setting. For example, if a robot is able
to recognize a child’s engagement with an intervention task,
the robot can decide when it is appropriate to provide the
child with prompts or encouragement. However, the ensured
presence of a human (i.e. the clinician), and the vulnerability
of the target population (i.e. children) means that it is arguably
safer and more ethical to provide human interaction in the
event of emotional distress or discomfort.

With these considerations in mind, the data set selected for
this experiment was taken from the openly available PInSoRo
data set [7]1. This data set comprises videos of child-robot
pairs interacting with each other and a touch-screen table-top
(the sand-tray). We argue that these videos meet the require-
ments of showing humans experiencing internal states which
could be described along a continuum (i.e. engagement with
the touch-screen) which were not being actively communicated
(i.e. due to the lack of a human interaction partner). The videos
have been annotated for a number of behaviors including
whether the child was engaged in “goal oriented”, “aimless”
or “no” play. We believe these annotations are analogous to
“high”, “intermediate” and “low” levels of task engagement
respectively. A preliminary study was designed to validate this
assumption.

A. Method

1) Participants: Five participants (students and employees)
were recruited from the University of Plymouth’s School of
Computing, Electronics and Mathematics on a volunteer basis.
Demographic information was not collected.

2) Materials: A total of forty-five video clips were ex-
tracted from the data set for this study. We selected fifteen
clips with the annotation “goal-oriented play”, fifteen with the
annotation “aimless play” and fifteen with the annotation “no
play”. Clip lengths ranged from 12-30 seconds.

After clips were selected we extracted both the full vi-
sual scene versions and the movement-alone versions. The
movement-alone versions were processed such that they de-
picted the children’s joint-points, connected by coloured lines,
against a black background. These videos act as visual rep-
resentations of the data used as input for the conceptor-
based system in that they depict only movement and pose
information by showing the position of the child’s body in
each frame.

1https://freeplay-sandbox.github.io

3) Procedure: For each participant the experiment was
conducted over two days. Participants watched the full visual
scene videos on the first day and were then asked to return
the next day when they would watch the movement-alone
videos. Participants all received the following instructions
before beginning the experiment:

You’re about to watch several videos of children interacting
with a touch-screen table-top. The children were able to
either play a specific game on the touch-screen, or to do
whatever they want. After each clip you will be asked to

judge the child’s level of task engagement.

Participants were then given the opportunity to ask any ques-
tions they may have had and were instructed about their right
to withdraw before beginning the experiment.

This study was created using JSPsych and presented on a
desktop computer. Participants were positioned a comfortable
distance away from the screen where they could still reach the
keyboard and mouse to provide responses. At the beginning
of the experiment, the instructions were reiterated. Participants
were then presented with a consent form within the experiment
script and given two response options. If participants selected
the “I consent” option, the experiment proceeded as normal.
If participants selected “I do not consent” the experiment
was terminated. Participants then viewed nine of each type
of clip (a total of twenty-seven clips) presented in a random
order. Following each clip, participants were presented with
the question “How engaged was the child with their task on
the touch screen table-top?”. This question was accompanied
by a 7-point Likert scale ranging from 1 = “Not at all Engaged”
to 7 = “Highly Engaged”. Participants used this scale to report
how engaged they thought the child in the clip had been and
then continued on to the next clip.

At the end of the experiment on the first day, participants
were given the opportunity to ask any questions they had and
were asked to return the next day to complete the second half.
On the second day, the experiment proceeded in the same way
except participants were shown the movement-alone videos
instead of the full visual scene videos. Each participant saw
the same twenty-seven clips in both sessions. At the end of
the second session participants were fully debriefed on the
nature and purpose of the study and were thanked for their
participation. Each session took approximately 10-15 minutes
to complete.

B. Results

The following analyses were run using RStudio.
1) Inter-Rater Agreement: The data were analyzed in two

main ways. We firstly examined inter-rater agreement by
calculating Krippendorff’s alpha for the responses. We initially
checked whether participants gave similar responses for each
of the three types of videos. To do this, Krippendorff’s alpha
was calculated for responses to all of the videos of each type.
The alpha scores have been interpreted in terms of the bench-
marks outlined by Landis and Koch [8]. Responses showed
“fair” agreement for the goal-oriented (high engagement)



clips (Krippendorff’s alpha = 0.269) and the no-play (low
engagement) clips (Krippendorff’s alpha = 0.267). Responses
for aimless (intermediate engagement) clips showed “slight”
agreement (Krippendorff’s alpha = 0.171). The low levels of
agreement can partially be explained by the fact that there
were very few raters (2-4) per clip. As such we did not expect
perfect levels of agreement and argue that the levels obtained
suggest a sufficient degree of similarity in participants’ ratings.

We then examined whether participants had higher agree-
ment when viewing the full visual scene clips compared to the
movement-alone clips for each clip type. The results of this
analysis are reported in Table 1. For the goal-oriented and
no-play clips, participants tended to show similar levels of
agreement in each condition. However, for the aimless clips,
participants demonstrated poor agreement when viewing the
movement-alone clips.

TABLE I
TABLE OF INTER-RATER AGREEMENT SCORES FOR RESPONSES TO EACH

CLIP-TYPE IN EACH CONDITION

Clip Type Krippendorff’s Alpha (3 d.p.)
Full Scene movement-alone

Goal Oriented 0.382 (fair) 0.368 (fair)
Aimless 0.247 (fair) -0.022 (poor)
No Play 0.126 (slight) 0.202 (fair)

2) Ratings: The second set of analyses looked at the how
participants rated each type of video. Overall mean rating
was 4.81 (SD = 1.25) for goal-oriented clips, 4.16 (SD =
1.52) for aimless clips, and 2.43 (SD = 1.54) for no-play
clips. An ANOVA revealed a significant main effect of clip-
type on ratings (F(2,267)=64.99, p<0.001). Importantly, a post
hoc Tukey test revealed significant differences between all
conditions (Tukeys HSD: all differences >0.6, all ps <0.007;
see Table 2).

TABLE II
TABLE OF RESULTS FOR POST HOC TUKEY’S HONEST SIGNIFICANT

DIFFERENCE TEST.

Comparison Difference Significance (p adj)
Goal Oriented − Aimless 0.656 p = 0.007
Goal Oriented − No Play 2.348 p < 0.001
Aimless − No Play 1.722 p < 0.001

These results demonstrate that participants rated the clips in
terms of engagement such that goal-oriented clips showed the
highest levels of engagement, no-play clips showed the lowest
levels, and aimless clips fell in-between these two extremes.
Consequently, we feel our assumption that these annotations
reflect different levels of engagement is sufficiently supported
for these data to be used to train and test a conceptor-
based classifier to recognize engagement based on observable
behaviour. The remainder of this paper describes the design
and initial tests of such a classifier.

III. EXPERIMENT 2
In addressing the second question of how to represent inter-

nal states, we consider that ASD diagnosis involves ranking

behaviours in terms of severity [9]. In this way, behaviours
important to ASD diagnosis can be thought of as lying along
a continuum of severity. To emulate this we therefore want
a classification technique which can identify different ‘levels’
along a continuous dimension. This can be achieved using
classical machine learning techniques by training a classifier
on examples of each severity level. However, obtaining a
large enough training data set for this would be very time-
consuming and difficult, owing to the need to have expert
commentators provide a severity label for each example. We
therefore require a method which can learn several classifica-
tion categories for each behaviour of interest, using a limited
training data set. One approach which is suited to this task is
conceptors [10].

Conceptors are neuro-computational mechanisms that can
be used for learning a large number of dynamical patterns
based on learned prototypical extremes [10]. This approach
assumes that there is a continuum underlying the behavior.
New patterns can be generated by combining and morphing the
learned extremes. As such, we argue that conceptors may be
appropriate for classifying human internal states. The second
study described here tested this hypothesis by designing a
conceptor-based system to recognize task engagement from
observable human movements.

A. Method

1) Materials: The data set for this study was again taken
from the PInSoRo data set. All of the clips annotated with the
labels “goal-oriented play” (high engagement) and “no play”
(low engagement) were extracted (total of 354 clips). Clips
were preprocessed such that the xyz coordinates of the child’s
joints in each frame were taken as the input for the conceptor-
based classifier. A subset of “high” (62 clips) and “low” (115
clips) engagement clips made up the training data set. The
remaining 177 clips made up the test data set.

2) Conceptor-Based Classifier: The conceptor-based ap-
proach is based on a key dynamical phenomenon in Recurrent
Neural Networks; “if a ‘reservoir’ is driven by a pattern, the
entrained network states are confined to a linear subspace of
network state space which is characteristic of the pattern”
[10]. In this way the dynamics of a pattern (in our case an
overt behavior for a classifiable activity like engagement) will
occupy different regions of the state space, and they can be
encoded in a conceptor. A conceptor (Cj) acts as a map
associated with a pattern (pj). To build a conceptor-based
classifier we computed J conceptors, one for each class in
our classifier. To obtain the conceptors an echo state network
(ESN) was first created with an input layer of K input units
and a hidden layer reservoir of N neurons. For each class
the network will be driven, independently, with all training
samples smj in each class j, according to the ESN state update
equation:

x(n+ 1) = tanh(W · x(n) +W in · p(n+ 1) + b) (1)

This yielded a set of network states Xj = [x(1) . . . x(t)]
where t is the number of time-steps in sj from which a state



TABLE III
PREDICTING INTERNAL STATES WITH CONCEPTORS.

Algorithm: Conceptor-based classification.
Input: A test sample s belonging to one a class j.

1) Take a sample s from the test set.
2) Drive the reservoir with sample s to obtain a state

vector z = [x(1) · · ·x(n)], where n is the # of steps
in s.

3) For each Conceptor Cj compute h(j) = zTCjz, a
“positive evidence” quantity of z belonging to class j.

4) Collect each evidence h(j) into a j−dimensional clas-
sification hypothesis vector h+ = {h(1) · · ·h(j)}.

5) Classify s as belonging to class j from j =
argmax(h+).

6) END

Output: Class sample s belongs to.

correlation matrix Rj = XjX
T
j /Mj is obtained, where Mj is

the total number of samples for class j. Next we computed
conceptor Cj through the equation:

C(R,α) = R(R+ α−2)−1 (2)

Where R is a correlation matrix and α ∈ (0,∞) in an
“apperture” parameter. For more see [10].

Once we computed a conceptor matrix for each class we
were able to classify a new sample s from the test set
by feeding it into the ESN reservoir to obtain a new state
vector z = [x(1) . . . x(n)]. then, for each conceptor, the
“positive evidence” quantity zTCjz was computed. This led
to a classification by deciding for j = argmax(zTCjz) as the
class j to which the sample s belongs. The procedure for the
conceptor-based classifier is summarize in Table III-A2.

B. Results

The resultant conceptors were tested using previously un-
seen samples from the high and low engagement categories.
The results of this test are shown in Figure 1. Performance
is above chance for both classes (high engagement: 60%, low
engagement: 75%).

Fig. 1. Confusion matrices showing classification performance of trained
conceptors on training data (left) and test data (right).

IV. CONCLUSIONS

This study demonstrates that it is possible to train a
conceptor-based system, on real non-periodic data, to classify
between high and low engagement based on observable human
behavior. The conceptor-based system successfully learned to
recognize high and low engagement from observable human
movement. Future work will construct new conceptors by
linearly combining these learned conceptors. We will then
test whether these new conceptors can be used to recognize
intermediate levels of engagement identified in the PInSoRo
data set.

If new conceptors can be generated, this method will
show promise for use in providing diagnostic information
for clinicians assessing children with ASD. The ability to
interpolate between extremes along a continuum means that
such a system could be trained on a smaller dataset, whilst
still achieving a high level of detail through the generation of
multiple intermediate classification categories.
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