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Executive Summary

This document contains an update on the changes to the input modalities since D4.2. As the two
domain (the space domain and the story-telling domain) have been merged into a single learning
experience, the changes to the input modalities have been relatively modest compared to the software
we used in 2017. Considerable effort has however been invested in designing a pleasant learning
experience for the young learners, and on evaluating how people (both children and adults) perceive
and communicate about spatial relations, with a specific focus on how spatial relations can be expressed
and communicated between people and social robots.
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Principal Contributors

The main authors of this deliverable are as follows (in alphabetical order):
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Version 1.0 (T.B. 10-10-2018) First draft of report.
Version 1.1 (C.W. 30-10-2018)
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1 Deliverable Outline

This deliverable is the final deliverable of WP4 (Multimodal input processing) and reports on the efforts
in building autonomous perception for social robotics, specifically for social robots used in tutoring
applications.

2 Background

The robot has a number of components which aid in social signal processing. Some components
were thoroughly evaluated but not used in the final robot tutoring system, which was evaluated in
the large-scale L2TOR study. Automated speech recognition, for example, was deemed immature
for children’s speech (Kennedy et al., 2017) and was not further explored as an input modality for
the system. Other input modalities, though functional, were not included in the final system for the
large-scale evaluation, as their contribution to the autonomous functioning of the system was not
needed. The Voice Activity Detection, face recognition, and emotion recognition components were not
used in the large-scale evaluation system. Components such as face detection, motion detection, tablet
input and to a limited extent speech recognition (for simple utterances, such as yes/no replies) were
used in the final system.

This deliverable reports on work in T4.3: Head pose, gaze tracking and gesture (M13-M36),
T4.4: Emotion and affect recognition (M13-M24), T4.5: Tablet input (period M13-M36) and T4.6:
Environment processing (period M1-M36).

3 Completed work

3.1 Head pose, gaze tracking and gesture (T4.3)

Gaze tracking is still relatively difficult to achieve using low-res camera images, especially in child-
robot interaction. We did however explore the potential of using head tracking as a proxy for gaze
tracking using the OpenPose software. OpenPose proved to be particularly effective at tracking
skeletons, including head pose, in low quality data from dynamic child interaction (Lemaignan et al.,
2018a). However, it should be noted that head tracking is a poor proxy for gaze tracking, which was
shown by partner PLYM in a related project (Kennedy et al., 2015).

Gesture tracking was used in two evaluation studies in L2ZTOR (de Wit et al., 2017; Vogt et al.,
2017), and relied on skeleton tracking using the Kinect SDK and the Microsoft Kinect One sensor.

3.2 Emotion and affect recognition (T4.4)

Reading emotions or affect has typically been approached by using computer vision to read faces. This
has traditionally relied on machine learning, which has been trained on datasets containing adults faces,
often expressing acted out emotions. Because of that, the emotion reading software which is available
commercially, or which is available as open source output from research projects, does not work well
for highly dynamic contexts in which young users are observed using a low-quality camera. In addition,
existing methods only report a few categories of affect (often only Ekman’s six basic emotions) in a
winner-takes-all fashion. This lack of subtlety makes it less appropriate for adaptively changing the
interaction to respond to changes in the user’s emotion.

We explored how motion data, as captured by a RGB or RGBD camera, could be used to read
emotion, as well as other internal states (Bartlett et al., 2018). To this end we collected a large dataset
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consisting of 45 hours of annotated interactions between children and between a child and robot. The
PInSoRo dataset, containing tracked skeletons of the videos and annotations, has been made publicly
available for data-driven approaches to social Human-Robot Interaction (Lemaignan et al., 2018a, see
appendix).

At Bielefeld University, we tried to build a training set for an affect classifier based on Kinect
recordings, but unfortunately the inter-rater agreement was too low between the coders (who were
trained as teachers) to allow for the training of a classifier. The affective expressions of children during
learning are very subtle and context dependant, making it hard, even for trained teachers, to agree on
what the affective state is of the child. For the experiments in which the tutoring system adapts the
difficulty (see WP5), we relied on a single Wizard to recognise emotions during the interaction, and the
system adapted its responses based on this input. While the reading of the affective state might not be
correct, it is because of the use of a single use still consistent.

3.3 Tablet input (T4.5)

The main input modality to the robot is the touch-screen tablet, which sits between child and the robot
(see figure 1). The tablet is used to display educational content, implemented as animated scenes,
and to record responses by the child. This on the one hand gives feedback on the child’s learning
and performance, but also allows a view on the child’s responsiveness, which indirectly informs the
system about the child’s engagement. Timing information can be used to adapt the learning experience.
Ramachandran et al. (2017) for example introduced small breaks when the evolution of the response
time decreased beyond a pre-set threshold, and showed it to be an effective strategy to re-engage
children with a subsequent positive impact on learning.

Figure 1: The evaluation setup, with a Microsoft Surface tablet being used to display educational
content and to collect responses from the young learner.

3.4 Environment processing (T4.6)

Environment processing is a catch-all term for processing social cues and environment cues not directly
related to the dyadic interaction between the child and the robot. While being aware of the wider social
environment could be useful for some HRI applications, in L2ZTOR we have not invested in this due to
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the constrained nature of the dyadic interaction which does not require the system to be aware of social
others.

We did however continue to develop the UNDERWORLDS system which is responsible for reading
the spatial environment of objects. It is a lightweight software system for spatio-temporal situation
assessment. It builds an internal representation of physical objects, which could exist in the real world
or in a simulation environment, and calculates visibility for actors in the environment and spatial
relations between objects (Lemaignan et al., 2018b).

In L2TOR, UNDERWORLDS is used to support the spatial reasoning of the robot when teaching
spatial language to the child. It reads the 3D simulated environment, and can build representations such
as “GIRL NEXT-TO SWING” which in turn generates the output “the girl is next to the swing”. It
respond to changes, so if the child moves objects or actors on screen, UNDERWORLD updates its
internal representation and generates new utterances.
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A Annex Descriptions

A.1 Bartlett et al. (2018) What Can You See? Identifying Cues on Internal States
from the Kinematics of Natural Social Interactions

Bibliography - Bartlett, M., Belpaeme, Thill,S., Edmunds, C. E. R., Lemaignan, S. (2018) What
Can You See? Identifying Cues on Internal States from the Kinematics of Natural Social Interactions.
In IDC - Workshop 'The Near Future of Childrens Robotics’ 2018.

Abstract - One goal of research on child-robot interactions is to enable robots to autonomously adapt
to a childs behaviour in applications such as tutoring and therapeutic settings, for example, adapting to
a childs learning or therapeutic needs. This requires robots to track and interpret the internal states of
human interaction partners. Studying how humans are able to infer the internal states of others can
guide research aiming to endow robots with this skill. Researchers in the fields of psychology and
Human-Robot Interaction (HRI) have identified that humans use information such as observed motor
activity and contextual information to judge the internal states (e.g. intentions) of others. To design
robots able to track the internal states of children it is necessary to first determine what internal-state
cues are available from the different sources of information within a social scene, and thereby determine
what data are sufficient for internal-state-reading in these scenarios. It is also important to consider the
quality and availability of data.

Relation to WP - This work directly contributes to Tasks T4.1-T4.3.

A.2 Lemaignan et al. (2018) The PInSoRo dataset: Supporting the data-driven study
of child-child and child-robot social dynamics

Bibliography - Lemaignan, S., Edmunds, C.E.R., Senft, E., Belpaeme, T. (2018) PLOS One,
13(10):€0205999. DOI: 10.1371/journal.pone.0205999

Abstract - The study of the fine-grained social dynamics between children is a methodological
challenge, yet a good understanding of how social interaction between children unfolds is important not
only to Developmental and Social Psychology, but recently has become relevant to the neighbouring
field of Human-Robot Interaction (HRI). Indeed, child-robot interactions are increasingly being
explored in domains which require longer-term interactions, such as healthcare and education. For a
robot to behave in an appropriate manner over longer time scales, its behaviours have to be contingent
and meaningful to the unfolding relationship. Recognising, interpreting and generating sustained and
engaging social behaviours is as such an importantand essentially, openresearch question. We believe
that the recent progress of machine learning opens new opportunities in terms of both analysis and
synthesis of complex social dynamics. To support these approaches, we introduce in this article a
novel, open dataset of child social interactions, designed with data-driven research methodologies
in mind. Our data acquisition methodology relies on an engaging, methodologically sound, but
purposefully underspecified free-play interaction. By doing so, we capture a rich set of behavioural
patterns occurring in natural social interactions between children. The resulting dataset, called the
PInSoRo dataset, comprises 45+ hours of hand-coded recordings of social interactions between 45
child-child pairs and 30 child-robot pairs. In addition to annotations of social constructs, the dataset
includes fully calibrated video recordings, 3D recordings of the faces, skeletal informations, full audio
recordings, as well as game interactions.
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A.3 Lemaignan et al. (2018) Underworlds: Cascading Situation Assessment for Robots

Bibliography - Lemaignan, S., Sallami, Y., Wallbridge, C.D., Clodic, A., Belpaeme, T., Alami, R. to
be published in Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems

Abstract - We introduce Underworlds, a novel lightweight framework for cascading spatio-temporal
situation assessment in robotics. Underworlds allows programmers to represent the robot’s environ-
ment as real-time distributed data structures, containing both scene graphs (for representation of 3D
geometries) and timelines (for representation of temporal events). Underworlds supports cascading
representations: the environment is viewed as a set of worlds that can each have different spatial and
temporal granularities, and may inherit from each other. Underworlds also provides a set of high-level
client libraries and tools to introspect and manipulate the environment models.

This article presents the design and architecture of this open-source tool, and explores some
applications, along with examples of use.

Relation to WP- This work contributes to Task T4.6.
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Introduction

One goal of research on child-robot interactions is to enable
robots to autonomously adapt to a child’s behaviour in ap-
plications such as tutoring [4] and therapeutic settings [5],
for example, adapting to a child’s learning or therapeutic
needs. This requires robots to track and interpret the in-
ternal states of human interaction partners. Studying how
humans are able to infer the internal states of others can
guide research aiming to endow robots with this skill. Re-
searchers in the fields of psychology and Human-Robot
Interaction (HRI) have identified that humans use informa-
tion such as observed motor activity [7] and contextual in-
formation [3] to judge the internal states (e.g. intentions) of
others. To design robots able to track the internal states of
children it is necessary to first determine what internal-state
cues are available from the different sources of information
within a social scene, and thereby determine what data are
sufficient for internal-state-reading in these scenarios. It

is also important to consider the quality and availability of
data.

Here we discuss the use of skeletal data which is often eas-
ily obtained and, when provided by tools such as Open-
Pose [9] which deals well with occlusions, of high quality.
Specifically, we propose a methodology for identifying what
humans gain from the kinematics of a child-child social in-
teraction. The findings from studies based on this method-



ology could act as a baseline for what an artificial system
can be expected to glean from such data.

Background

Studies examining the mirror neuron system (MNS) found
in primates and humans indicate that humans use observed
kinematics to make inferences about the observed actor [7,
3]. Broadly speaking, one can identify two types of theory
which describe this process. The first type of theory pro-
poses that recognition is a result of an observer mapping
the observed kinematics onto their own motor system which
allows them to simulate a representation of the intentions
driving the observed action [7]. Importantly, this mecha-
nism uses only kinematic information to infer intention. One
problem with this account is that humans are able to deal
with situations where the same action could be driven by
different intentions (e.g. grasping a cup to drink, or to clean
it) [3]. A second school of thought incorporates processing
of contextual cues (e.g how dirty the cup is) into the MNS
whereby identical actions driven by different intentions can
be differentiated [2]. Evidence supporting the argument that
contextual information influences intention-reading comes
from lacoboni et al. [3] who asked participants undergo-

ing an fMRI scan to watch video clips of a reach-to-grasp
action. The information available in the videos was manipu-
lated with three conditions: (1) action embedded in context,
(2) action without context, (3) context alone. These were
nested within two further conditions such that the same
action was driven by one of two intentions. lacoboni et al.
found that participants’ neural activity was reliably different
between the two intention conditions, and that the MNS was
most active when the action was embedded in context. This
suggests that intention recognition involves integrating both
contextual and kinematic information.

The successful design and training of artificial internal-
state-reading systems for child-robot interactions requires
that a mapping between the inputs (e.g. a child’s posture)
and outputs (e.g. a child’s internal state) is available. For
this, it is important that we identify what internal-state in-
formation is available in the different data sources. This
can be achieved by assessing what inferences humans are
able to make from, for example, the kinematics and dynam-
ics of a social scene (like on Fig. 1, right). One way to do
this is by using point-light displays where the position and
movements of an actors joints are denoted on an other-
wise blank display. Studies using this method have already
shown that humans are able to recognise features such as
gender [1] and intention [8] from these types of stimuli. HRI
researchers can use these findings to define what outputs
an artificial system should be able to produce given kine-
matic data.

However, one key limitation of these studies is that the stim-
uli used are often artificially produced, e.g. by creating sim-
ulated motions in the point-light displays (e.g. [1]), or by
filming actors performing the actions in an artificial setting,
(e.g. [3, 8]). Whilst this allows researchers to demonstrate
that internal-state information is available in kinematics,

it does not provide us with insight into what humans can
infer from the kinematics of real-world social interactions.
Additionally, for child behaviour specifically, creating an ar-
tificial dataset may be more challenging, for example, due
to variations in cognitive ability with age. Obtaining data
from natural interactions is therefore potentially easier and
more ecologically valid. The rest of this paper discusses a
methodology aimed at identifying what internal-state infor-
mation humans can glean from only the kinematic informa-
tion available in a naturalistic child-child social interaction.



Figure 1: Original video clip vs. skeletal only data

Proposed Methodology

Predictions and Design: The proposed study aims to ex-
amine what information is available in the kinematics of a
naturalistic child-child social interaction. To do this partici-
pants will either be shown the original or skeletal videos of
real interactions (Fig. 1) and then asked questions about
the videos. There will be two questioning conditions where
participants are either asked only open-ended questions, or
are also asked specific questions. Participants’ responses
following the original clips will be compared to those follow-
ing the skeletal videos. Whilst we expect that participants
will produce less detailed descriptions following skeletal
compared to the original videos, we do expect participants
to detect important features from the skeletal videos which
would be useful to a robot system, such as the affective va-
lence of the interaction, actions being performed, and the
nature of the relationship between the agents.

The proposed study will have a 2 (open-ended/specific
questions) x 2 (original/skeletal videos) design. Both con-
ditions will be implemented between-subjects. Video pre-
sentation order will be fully random to control for ordering
effects. Participants will be recruited from a crowd-sourcing
platform.

Stimuli and Materials: To obtain naturalistic stimuli the

proposed study will utilise videos of child-child pairs play-
ing a game on a touch-screen table top from the PInSoRo
dataset [6], made openly available by our group'. Short
clips of child-child interactions approximately 30 seconds
long will be extracted from the videos, each containing dif-
ferent social and interaction events (e.g. turn-taking, a dis-
agreement). To isolate the kinematic information from con-
textual cues for the skeletal video condition, the OpenPose
library [9] is used. It jointly detects human body, hand, and
facial landmarks.

After each clip participants will be asked questions about
the interaction. There will be two questioning conditions
such that half of the participants are asked a single open-
ended question following each video: "Describe what you
have just seen in the video". This style of questioning re-
duces the risk of "leading questions", allowing us to explore
what participants gain from the video without guidance.
However, it is often difficult to analyse open responses and
respondents may not provide enough detail to reflect their
achieved level of insight on features-of-interest. To deal with
these limitations half of the participants will be given the
same open-ended question, then a series of specific ques-
tions which will guide respondents to discuss details of in-
terest to the researcher in a quantifiable manner. The spe-
cific questions consist of multiple-choice and Likert scale
questions such as "What is the relationship between these
characters: Friends/Neutral/Unfriendly?" and "Please rate
how cooperative each character was: 1 = not cooperative
at all, 10 = very cooperative". Participants in the specific
questioning condition will also be given a final open-ended
question on each trial asking "Did you notice anything else
in the video?".

'https://freeplay-sandbox.github.io



Conclusion

The proposed method aims to provide insight into what
internal-state information humans are able to glean from
kinematic data, with a focus on social situations. The find-
ings of such a study have the potential to guide the design
of artificial internal-state-reading systems by providing an
expectation of what inferences/outputs the system should
be able to draw from the data. Specifically, we plan to ap-
ply this knowledge to inform the design of an automatic
classifier of social interactions. Whilst the study discussed
focuses on kinematic data for internal-state reading in nat-
uralistic interactions with children, this methodology could
easily be adapted to examine the information available in a
variety of data sources independently of other inputs. We
argue that conducting this type of study is an important step
when developing robot systems as it can help to stream-
line the process and provide more direct empirical support
for the use of particular data types as inputs to the robot
system. For example, by examining how humans recog-
nise when a child is having difficulty with a task or activity,
robot tutors could be made able to identify when assistance
needs to be provided to a student during a lesson.
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Abstract

The study of the fine-grained social dynamics between children is a methodological chal-
lenge, yet a good understanding of how social interaction between children unfolds is impor-
tant not only to Developmental and Social Psychology, but recently has become relevant to
the neighbouring field of Human-Robot Interaction (HRI). Indeed, child-robot interactions
are increasingly being explored in domains which require longer-term interactions, such as
healthcare and education. For a robot to behave in an appropriate manner over longer time
scales, its behaviours have to be contingent and meaningful to the unfolding relationship.
Recognising, interpreting and generating sustained and engaging social behaviours is as
such an important—and essentially, open—research question. We believe that the recent
progress of machine learning opens new opportunities in terms of both analysis and synthe-
sis of complex social dynamics. To support these approaches, we introduce in this article a
novel, open dataset of child social interactions, designed with data-driven research method-
ologies in mind. Our data acquisition methodology relies on an engaging, methodologically
sound, but purposefully underspecified free-play interaction. By doing so, we capture a rich
set of behavioural patterns occurring in natural social interactions between children. The
resulting dataset, called the PInSoRo dataset, comprises 45+ hours of hand-coded record-
ings of social interactions between 45 child-child pairs and 30 child-robot pairs. In addition to
annotations of social constructs, the dataset includes fully calibrated video recordings, 3D
recordings of the faces, skeletal informations, full audio recordings, as well as game
interactions.

Introduction
Studying social interactions

Studying social interactions requires a social situation that effectively elicits interactions
between the participants. Such a situation is typically scaffolded by a social task, and conse-
quently, the nature of this task influences in fundamental ways the kind of interactions that
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might be observed and analysed. In particular, the socio-cognitive tasks commonly found in
both the experimental psychology and human-robot interaction (HRI) literature often have a
narrow focus: because they aim at studying one (or a few) specific social or cognitive skills in
isolation and in a controlled manner, these tasks are typically conceptually simple and highly
constrained (for instance, object hand-over tasks; perspective-taking tasks; etc.). While these
focused endeavours are important and necessary, they do not adequately reflect the complexity
and dynamics of real-world, natural interactions (as discussed by Baxter et al. in [1], in the
context of HRI). Consequently, we need to investigate richer interactions, scaffolded by socio-
cognitive tasks that:

« are long enough and varied enough to elicit a large range of interaction situations;

« foster rich multi-modal interactions, such as simultaneous speech, gesture, and gaze
behaviours;

« are not over-specified, in order to maximise natural, non-contrived behaviours;

« evidence complex social dynamics, such as rhythmic coupling, joint attention, implicit turn-
taking;

« include a level of non-determinism and unpredictability.

The challenge lies in designing a social task that exhibits these features while maintaining
essential scientific properties (repeatability; replicability; robust metrics) as well as good practi-
cal properties (not requiring unique or otherwise very costly experimental environments; not
requiring very specific hardware or robotic platform; easy deployment; short enough experi-
mental sessions to allow for large groups of participants).

Looking specifically at social interactions amongst children, we present in the next section
our take on this challenge, and we introduce a novel task of free play. The task is designed to
elicit rich, complex, varied social interactions while supporting rigorous scientific methodolo-
gies, and is well suited for studying both child-child and child-robot interactions.

Social play

Our interaction paradigm is based on free and playful interactions (hereafter, free play) in
what we call a sandboxed environment. In other words, while the interaction is free (partici-
pants are not directed to perform any particular task beyond playing), the activity is both scaf-
folded and constrained by the setup mediating the interaction (a large interactive table), in a
similar way to children freely playing with sand within the boundaries of a sandpit. Conse-
quently, while participants engage in open-ended and non-directed activity, the play situation
is framed to be easily reproducible as well as practical to record and analyse.

This initial description frames the socio-cognitive interactions that might be observed and
studied: playful, dyadic, face-to-face interactions. While gestures and manipulations (including
joint manipulations) play an important role in this paradigm, the participants do not typically
move much during the interaction. Because it builds on play, this paradigm is also primarily
targeted to practitioners in the field of child-child or child-robot social interactions.

The choice of a playful interaction is supported by the wealth of social situations and social
behaviours that play elicits (see for instance parts 3 and 4 of [2]). Most of the research in this
field builds on the early work of Parten who established five stages of play [3], corresponding
to different stages of development, and accordingly associated with typical age ranges: (a) soli-
tary (independent) play (age 2-3): child playing separately from others, with no reference to
what others are doing; (b) onlooker play (age 2.5-3.5): child watching others play; may engage
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in conversation but not engage in doing; true focus on the children at play; (c) parallel play
(also called adjacent play, social co-action, age 2.5-3.5): children playing with similar objects,
clearly beside others but not with them; (d) associative play (age 3-4): child playing with others
without organization of play activity; initiating or responding to interaction with peers; (e)
cooperative play (age 4+): coordinating one’s behavior with that of a peer; everyone has a role,
with the emergence of a sense of belonging to a group; beginning of “team work.”

These five stages of play have been extensively discussed and refined over the last century,
yet remain remarkably widely accepted. It must be noted that the age ranges are only indica-
tive. In particular, most of the early behaviours still occur at times by older children.

Machine learning, robots and social behaviours

The data-driven study of social mechanisms is still an emerging field, and only limited litera-
ture is available.

The use of interaction datasets to teach artificial agents (robots) how to socially behave has
been previously explored, and can be considered as the extension of the traditional learning
from demonstration (LfD) paradigms to social interactions [4, 5]. However, existing research
focuses on low-level identification or generation of brief, isolated behaviours, including social
gestures [6] and gazing behaviours [7].

Based on a human-human interaction dataset, Liu et al. [8] have investigated machine
learning approaches to learn longer interaction sequences. Using unsupervised learning, they
train a robot to act as a shop-keeper, generating both speech and socially acceptable motions.
Their approach remains task-specific, and they report only limited success. They however
emphasise the “life-likeness” of the generated behaviours.

This burgeoning interest in the research community for the data-driven study of social
responses is however impaired by the lack of structured research efforts. In particular, there is
only limited availability of large and open datasets of social interactions, suitable for machine-
learning applications.

One such dataset is the Multimodal Dyadic Behavior Dataset (MMDB, [9]). It comprises of
160 sessions of 3 to 5 minute child-adult interactions. During these interactions, the experi-
menter plays with toddlers (1.5 to 2.5 years old) in a semi-structured manner. The dataset
includes video streams of the faces and the room, audio, physiological data (electrodermal
activity) as well as manual annotations of specific behaviours (like gaze to the examiner, laugh-
ter, pointing). This dataset focuses on very young children during short, adult-driven interac-
tions. As such, it does not include episodes of naturally-occurring social interactions between
peers, and the diversity of said interactions is limited. Besides, the lack of intrinsic and extrinsic
camera calibration information in the dataset prevent the automatic extraction and labeling of
key interaction features (like mutual gaze).

Another recent dataset, the Tower Game Dataset [10], focuses specifically on rich dyadic
social interactions. The dataset comprises of 39 adults recorded over a total of 112 annotated
sessions of 3 min in average. The participants are instructed to jointly construct a tower using
wooden blocks. Interestingly, the participants are not allowed to talk to maximise the amount
of non-verbal communication. The skeletons and faces of the participants are recorded, and
the dataset is manually annotated with so-called Essential Social Interaction Predicates (ESIPs):
rhythmic coupling (entrainment or attunement), mimicry (behavioral matching), movement
simultaneity, kinematic turn taking patterns, joint attention. This dataset does not appear to
be publicly available on-line.

The UE-HRI dataset [11] is another recently published (2017) dataset of social interactions,
focusing solely on human-robot interactions. 54 adult participants were recorded (duration
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M = 7.7min) during spontaneous dialogues with a Pepper robot. The interactions took place
in a public space, and include both one-to-one and multi-party interactions. The resulting
dataset includes audio and video recordings from the robot perspective, as well as manual
annotations of the levels of engagement. It is publicly available.

PInSoRo, our dataset, shares some of the aims of the Tower Game and UE-HRI datasets,
with however significant differences. Contrary to these two datasets, our target population are
children. We also put a strong focus on naturally occurring, real-world social behaviours. Fur-
thermore, as presented in the following sections, we record much longer interactions (up to 40
minutes) of free play interactions, capturing a wider range of socio-cognitive behaviours. We
did not place any constraints on the permissible communication modalities, and the record-
ings were manually annotated with a focus on social constructs.

Material and methods
The free-play sandbox task

As previously introduced, the free-play sandbox task is based on face-to-face free-play interac-
tions, mediated by a large, horizontal touchscreen. Pairs of children (or alternatively, one child
and one robot) are invited to freely draw and interact with items displayed on an interactive
table, without any explicit goals set by the experimenter (Fig 1). The task is designed so that
children can engage in open-ended and non-directive play. Yet, it is sufficiently constrained to

child 2

robot

RGB-D camera 1
+ microphone

touchscreen

environment
camera

RGB-D camera 2
+ microphone

child 1

experimenter

Fig 1. The free-play social interactions sandbox: Two children or one child and one robot (as pictured here) interacted in a free-play situation, by
drawing and manipulating items on a touchscreen. Children were facing each other and sit on cushions. Each child wore a bright sports bib, either
purple or yellow, to facilitate later identification.

https://doi.org/10.1371/journal.pone.0205999.9001
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Fig 2. Example of a possible game situation. Game items (animals, characters. . .) can be dragged over the whole play area, while the background
picture can be painted over by picking a colour. In this example, the top player is played by a robot.

https://doi.org/10.1371/journal.pone.0205999.9002

be suitable for recording, and allows the reproduction of social behaviour by an artificial agent
in comparable conditions.

Specifically, the free-play sandbox follows the sandtray paradigm [12]: a large touchscreen
(60cm x 33cm, with multitouch support) is used as an interactive surface. The two players, fac-
ing each other, play together, moving interactive items or drawing on the surface if they wish
so (Fig 2). The background image depicts a generic empty environment, with different sym-
bolic colours (water, grass, beach, bushes. . .). By drawing on top of the background picture,
the children can change the environment to their liking. The players do not have any particular
task to complete, they are simply invited to freely play. They can play for as long as they wish.
However, for practical reasons, we had to limit the sessions to a maximum of 40 minutes.

Even though the children do typically move a little, the task is fundamentally a face-to-face,
spatially delimited, interaction, and as such simplifies the data collection. In fact, the children’s
faces were successfully detected in 98% of the over 2 million frames recorded during the PIn-
SoRo dataset acquisition campaign.

Experimental conditions. The PInSoRo dataset aims to establish two experimental base-
lines for the free-play sandbox task: the human social interactions’ baseline on one hand
(child—child condition), an ‘asocial’ baseline on the other hand (child-non-social robot condi-
tion). These two baselines aim to characterise the qualitative and quantitative bounds of the
spectrum of social interactions and dynamics that can be observed in this situation.

In the child-child condition, a diverse set of social interactions and social dynamics were
expected to be observed, ranging from little social interactions (for instance, with shy children)
to strong, positive interactions (for instance, good friends), to hostility (children who do not
get along very well).
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In the asocial condition, one child was replaced by an autonomous robot. The robot was
purposefully programmed to be asocial. It autonomously played with the game items as a child
would (although it did not perform any drawing action), but avoided all social interactions: no
social gaze, no verbal interaction, no reaction to child-initiated game actions.

From the perspective of social psychology, this condition provides a baseline for the social
interactions and dynamics at play (or the lack thereof) when the social communication chan-
nel is severed between the agents, while maintaining a similar social setting (face-to-face inter-
action; free-play activity).

From the perspective of human-robot interaction and artificial intelligence in general, the
child-‘asocial robot’ condition provides a baseline to contrast with for yet-to-be-created richer
social and behavioural AI policies.

Hardware apparatus. The interactive table was based on a 27” Samsung All-In-One com-
puter (quad core i7-3770T, 8GB RAM) running Ubuntu Linux and equipped with a fast 1TB
SSD hard-drive. The computer was held horizontally in a custom aluminium frame standing
26¢m above the floor. All the cameras were connected to the computer via USB-3. The com-
puter performed all the data acquisition using ROS Kinetic (http://www.ros.org/). The same
computer was also running the game interface on its touch-enabled screen (60cm x 33cm),
making the whole system standalone and easy to deploy.

The children’s faces were recorded using two short range (0.2m to 1.2m) Intel RealSense
SR300 RGB-D cameras placed at the corners of the touchscreen (Fig 1) and tilted to face the
children. The cameras were rigidly mounted on custom 3D-printed brackets. This enabled a
precise measurement of their 6D pose relative to the touchscreen (extrinsic calibration).

Audio was recorded from the same SR300 cameras (one mono audio stream was recorded
for each child, from the camera facing him or her).

Finally, a third RGB camera (the RGB stream of a Microsoft Kinect One, the environment
camera in Fig 1) recorded the whole interaction setting. This third video stream was intended
to support human coders while annotating the interaction, and was not precisely calibrated.

In the child-robot condition, a Softbank Robotics’ Nao robot was used. The robot remained
in standing position during the entire play interaction. The actual starting position of the
robot with respect to the interactive table was recalibrated before each session by flashing a 2D
fiducial marker on the touchscreen, from which the robot could compute its physical location.

Software apparatus. The software-side of the free-play sandbox is entirely open-source
(source code: https://github.com/freeplay-sandbox/). It was implemented using two main
frameworks: Qt QML (http://doc.qt.io/qt-5/qtquick-index.html) for the user interface (UI) of
the game (Fig 2), and the Robot Operating System (ROS) for the modular implementation of
the data processing and behaviour generation pipelines, as well as for the recordings of the var-
ious datastreams (Fig 4). The graphical interface interacts with the decisional pipeline over a
bidirectional QML-ROS bridge that was developed for that purpose (source code available
from the same link).

Fig 3 presents the complete software architecture of the sandbox as used in the child-robot
condition (in the child-child condition, robot-related modules were simply not started).

Robot control. As previously described, one child was replaced by a robot in the child-
robot condition. Our software stack allowed for the robot to be used in two modes of opera-
tions: either autonomous (selecting actions based on pre-programmed play policies), or con-
trolled by a human operator (so-called Wizard-of-Oz mode of operation).

For the purpose of the PInSoRo dataset, the robot behaviour was fully autonomous, yet
coded to be purposefully asocial (no social gaze, no verbal interaction, no reaction to child-ini-
tiated game actions). The simple action policy that we implemented consisted in the robot
choosing a random game item (in its reach), and moving that item to a predefined zone on the
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Fig 3. Software architecture of the free-play sandbox (data flows from orange dots fo blue dots). Left nodes interact with the interactive table hardware (game
interface (1) and camera drivers (2)). The green nodes in the centre implement the behaviour of the robot (play policy (3) and robot behaviours (4)). Several helper
nodes are available to provide for instance a segmentation of the children drawings into zones (5) or A* motion planning for the robot to move in-game items (6).
Nodes are implemented in Python (except for the game interface, developed in QML) and inter-process communication relies on ROS. 6D poses are managed and
exchanged via ROS TF.

https://doi.org/10.1371/journal.pone.0205999.g003

map (e.g. if the robot could reach the crocodile figure, it would attempt to drag it to a blue, i.e.
water, zone). The robot did not physically drag the item on the touchscreen: it relied on a A*
motion planner to find an adequate path, sent the resulting path to the touchscreen GUI to
animate the displacement of the item, and moved its arm in a synchronized fashion using the
inverse kinematics solver provided with the robot’s software development kit (SDK).

In the Wizard-of-Oz mode of operation, the experimenter would remotely control the
robot through a tablet application developed for this purpose (Figs 3—-11). The tablet exactly
mirrored the game state, and the experimenter dragged the game items on the tablet as would
the child on the touchscreen. On release, the robot would again mimic the dragging motion on
the touchscreen, moving an object to a new location. This mode of operation, while useful to
conduct controlled studies, was not used for the dataset acquisition.

Experiment manager. We developed as well a dedicated web-based interface (usually
accessed from a tablet) for the experimenter to manage the whole experiment and data acquisi-
tion procedure (Figs 3-10). This interface ensured that all the required software modules
were running; it allowed the experimenter to check the status of each of them and, if needed,
to start/stop/restart any of them. It also helped managing the data collection campaign by
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Fig 4. The free-play sandbox, viewed at runtime within ROS RViz. Simple computer vision was used to segment the background drawings into zones
(visible on the right panel). The poses and bounding boxes of the interactive items were broadcast as well, and turned into an occupancy map, used to
plan the robot’s arm motion. The individual pictured in this figure has given written informed consent (as outlined in PLOS consent form) to appear.
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Fig 5. The coding scheme used for annotating social interactions occurring during free-play episodes. Three main
axis were studied: task engagement, social engagement and social attitude.

https://doi.org/10.1371/journal.pone.0205999.g005
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Fig 6. 2D skeletons, including facial landmarks and hand details are automatically extracted using the OpenPose
library [18].

https://doi.org/10.1371/journal.pone.0205999.g006

providing a convenient interface to record the participants’ demographics, resetting the game
interface after each session, and automatically enforcing the acquisition protocol (presented in
Table 1).

Coding of the social interactions

Our aim is to provide insights on the social dynamics, and as such we annotated the dataset
using a combination of three coding schemes for social interactions that reuse and adapt estab-
lished social scales. Our resulting coding scheme (Fig 5) looked specifically at three axis: the
level of task engagement (that distinguishes between focused, task oriented behaviours, and dis-
engaged—yet sometimes highly social — behaviours); the level of social engagement (reusing
Parten’s stages of play, but at a fine temporal granularity); the social attitude (that encoded atti-
tudes like supportive, aggressive, dominant, annoyed, etc).

Task engagement. The first axis of our coding scheme aimed at making a broad distinc-
tion between ‘on-task’ behaviours (even though the free-play sandbox did not explicitly require
the children to perform a specific task, they were still engaged in an underlying task: to play
with the game) and ‘off-task’ behaviours. We called ‘on-task’ behaviours goal oriented: they
encompassed considered, planned actions (that might be social or not). Aimless behaviours
(with respect to the task) encompassed opposite behaviours: being silly, chatting about unre-
lated matters, having a good laugh, etc. These Aimless behaviours were in fact often highly
social, and played an important role in establishing trust and cooperation between the peers.
In that sense, we considered them as as important as on-task behaviours.

Social engagement: Parten’s stages of play at micro-level. In our scheme, we character-
ised Social engagement by building upon Parten’s stages of play [3]. These five stages of play
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https://doi.org/10.1371/journal.pone.0205999.9g007

are normally used to characterise rather long sequences (at least several minutes) of social
interactions. In our coding scheme, we applied them at the level of each of the micro-
sequences of the interactions: one child is drawing and the other is observing was labelled as
solitary play for the former child, on-looker behaviour for the later; the two children discuss
what to do next: this sequence was annotated as a cooperative behaviour; etc.

We chose this fine-grained coding of social engagement to enable proper analyses of the
internal dynamics of a long sequence of social interaction.

Social attitude. The constructs related to the social attitude of the children derived from
the Social Communication Coding System (SCCS) proposed by Olswang et al. [13]. The SCCS
consists in 6 mutually exclusive constructs characterising social communication (hostile; pro-
social; assertive; passive; adult seeking; irrelevant) and were specifically created to characterise
children’s communication in a classroom setting.

We transposed these constructs from the communication domain to the general beha-
vioural domain, keeping the pro-social, hostile (whose scope we broadened in adversarial),
assertive (i.e. dominant), and passive constructs. In our scheme, the adult seeking and irrelevant
constructs belong to Task Engagement axis.

Finally, we added the construct Frustrated to describe children who are reluctant or refuse
to engage in a specific phase of interaction because of a perceived lack of fairness or attention
from their peer, or because they fail at achieving a particular task (like a drawing).

PLOS ONE | https://doi.org/10.1371/journal.pone.0205999 October 19, 2018 10/19



o ®
@ : PLOS | ONE The PInSoRo dataset of child-child and child-robot social dynamics

@ Child-child
e Child-robot
0.0006

0.0005

0.0002

0.0001

00000 O A I e e T e

00:00 05:00 10:00 15:00 20:00 25:00 30:00 35:00 40:00
Duration (min)

Fig 8. Density distribution of the durations of the interactions for the two conditions. Interactions in the child-robot condition were generally shorter than the
child-child interactions. Interactions in the child-child condition followed a bi-modal distribution, with one mode centered around minute 15 (similar to the child-
robot one) and one, much longer mode, at minute 37.

https://doi.org/10.1371/journal.pone.0205999.9008

Protocol

We adhered to the acquisition protocol described in Table 1 with all participants. To ease later
identification, each child was also given a different and brightly coloured sports bib to wear.

Importantly, during the Greetings stage, we showed the robot both moving and speaking
(for instance, “Hello, 'm Nao. Today I'll be playing with you. Exciting!” while waving at the
children). This was of particular importance in the child-robot condition, as it set the chil-
dren’s expectations in term of the capabilities of the robot: the robot could in principle speak,
move, and even behave in a social way.

Also, the game interface of the free-play sandbox offered a tutorial mode, used to ensure the
children know how to manipulate items on a touchscreen and draw. In our experience, this
never was an issue for children.

Data collection

Table 2 lists the raw datastreams that were collected during the game. By relying on ROS for
the data acquisition (and in particular the rosbag tool), we ensured all the datastreams were
synchronised, timestamped, and, where appropriate, came with calibration information (for
the cameras mainly). For the PInSoRo dataset, cameras were configured to stream in qHD res-
olution (960x540 pixels) in an attempt to balance high enough resolution with tractable file
size. It resulted in bag files weighting ~1GB per minute.

Besides audio and video streams, user interactions with the game were monitored and
recorded as well. The background drawings produced by the children were recorded. They
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https://doi.org/10.1371/journal.pone.0205999.9009

were also segmented according to their colours, and the contours of resulting regions were
extracted and recorded. The positions of all manipulable game items were recorded (as ROS
TF frames), as well as every touch on the touchscreen.

Data post-processing

Table 3 summarises the post-processed datastreams that are made available alongside the raw
datastreams.

Audio processing. Audio features were automatically extracted using the OpenSMILE
toolkit [14]. We used a 33ms-wide time windows in order to match the cameras FPS. We
extracted the INTERSPEECH 2009 Emotion Challenge standardised features [15]. These are a
range of prosodic, spectral and voice quality features that are arguably the most common fea-
tures we might want to use for emotion recognition [16]. For a full list, please see [15]. As no
reliable speech recognition engine for children voice could be found [17], audio recordings
were not automatically transcribed.

Facial landmarks, action-units, skeletons, gaze. Offline post-processing was performed
on the images obtained from the cameras. We relied on the CMU OpenPose library [18] to
extract for each child the upper-body skeleton (18 points), 70 facial landmarks including the
pupil position, as well as the hands’ skeleton (Fig 6).

This skeletal information was extracted from the RGB streams of each of the three cameras,
for every frame. It is stored alongside the main data in an easy-to-parse JSON file.

For each frame, 17 action units, with accompanying confidence levels, were also extracted
using the OpenFace library [19]. The action-units recognised by OpenFace and provided
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Fig 10. Mean time (and standard deviation) that each construct has been annotated in each recording. The large standard deviations reflect the broad range of
group dynamics captured in the dataset.
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Fig 11. Percentage of observations for each constructs with respect the children’s age.
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Table 1. Data acquisition protocol.
Greetings (about 5 min)
« explain the purpose of the study: showing robots how children play

« briefly present a Nao robot: the robot stands up, gives a short message (Today I'll be watching you playing in the
child-child condition;Today I'll be playing with you in the child-robot condition), and sits down.

« place children on cushions

« complete demographics on the tablet

« remind the children that they can withdraw at anytime
Gaze tracking task (40 sec)

children are instructed to closely watch a small picture of a rocket that moves randomly on the screen. Recorded

data is used to train a eye-tracker post-hoc.

Tutorial (1-2 min)

explain how to interact with the game, ensure the children are confident with the manipulation/drawing.

Free-play task (up to 40 min)

« initial prompt: “Just to remind you, you can use the animals or draw. Whatever you like. If you run out of ideas,

there’s also an ideas box. For example, the first one is a zoo. You could draw a zoo or tell a story. When you get
bored or don’t want to play anymore, just let me know.”

« let children play

« once they wish to stop, stop recording
Debriefing (about 2 min)

« answer possible questions from the children

« give small reward (e.g. stickers) as a thank you

https://doi.org/10.1371/journal.pone.0205999.t001

Table 2. List of raw datastreams available in the PInSoRo dataset. Each datastream is timestamped with a synchro-
nised clock to facilitate later analysis.

Domain Type Details

child 1 audio 16kHz, mono, semi-directional
face (RGB) qHD (960x540), 30Hz
face (depth) VGA (640x480), 30Hz

child 2 audio 16kHz, mono, semi-directional
face (RGB) qHD (960x540), 30Hz
face (depth) VGA (640x480), 30Hz

environment RGB qHD (960x540), 29.7Hz

game interactions background drawing (RGB) 4Hz
finger touches 6 points multi-touch, 10Hz
game items pose TF frames, 10Hz

other static transforms between touchscreen and facial cameras

cameras calibration informations

https://doi.org/10.1371/journal.pone.0205999.t002

alongside the data are AUO1, AU02, AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14,
AU15, AU17, AU20, AU23, AU25, AU26, AU28 and AU45 (classification following https://
www.cs.cmu.edu/~face/facs.htm).

Gaze was also estimated, using two techniques. First, head pose estimation was performed
following [20], and used to estimate gaze pose. While this technique is effective to segment
pose at a coarse level (i.e. gaze on interactive table vs. gaze on other child/robot vs. gaze on
experimenter), it offers limited accuracy when tracking the precise gaze location on the surface
of the interactive table (due to not tracking the eye pupils).

We complemented head pose estimation with a neural network (a simple 7-layers, fully
connected, multi-layer perceptron with ReLU activations and 64 units per layer), implemented
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Table 3. List of post-processed datastreams available in the PInSoRo dataset. With the exception of social annota-
tions, all the data was automatically computed from the raw datastreams at 30Hz.
Domain Type Details
children face 70 facial landmarks (2D)
17 facial action-units
head pose estimation (TF frame)

gaze estimation (TF frame)

skeleton 18 points body pose (2D)
20 points hand tracking (2D, only when visible)
audio INTERSPEECH’s 16 low-level descriptors
annotations timestamped annotations of social behaviours and remarkable events

https://doi.org/10.1371/journal.pone.0205999.t003

with the Caffe framework (source available here: https://github.com/severin-lemaignan/
visual_tracking_caffe).

The network trained from a ground truth mapping between the children’ faces and 2D gaze
coordinates. Training data is obtained by asking the children to follow a target on the screen
for a short period of time before starting the main free play activity (see protocol, Table 1). The
position of the target provides the ground truth (x, y) coordinates of the gaze on the screen.
For each frame, the network is then fed a feature vector comprising 32 facial and skeletal (x, y)
points of interest relevant to gaze estimation (namely, the 2D location of the pupils, eye con-
tours, eyebrows, nose, neck, shoulders and ears). The training dataset comprises 80% of the
fully randomized dataset (123711 frames) and the testing dataset the remaining 20% (30927
frames). Using this technique, we measured a gaze location error of 12.8% on our test data
between the ground truth location of the target on the screen and the estimated gaze location
(i.e. £9cm over the 70cm-wide touchscreen). The same pre-trained network is then used to
provide gaze estimation during the remainder of the free play activity.

Video coding. The coding was performed post-hoc with the help of a dedicated annota-
tion tool (Fig 7) which is part of the free-play sandbox toolbox. This tool can replay and ran-
domly seek in the three video streams, synchronised with the recorded state of the game
(including the drawings as they were created). An interactive timeline displaying the annota-
tions is also displayed.

The annotation tool offers a remote interface for the annotator (made of large buttons, and
visually similar to Fig 5) that is typically displayed on a tablet and allow the simultaneous cod-
ing of the behaviours of the two children. Usual video coding practices (double-coding of a
portion of the dataset and calculation of an inter-judge agreement score) were followed.

Results—The PInSoRo dataset

Using the free-play sandbox methodology, we have acquired a large dataset of social interac-
tions between either pairs of children or one child and one robot. The data collection took
place over a period of 3 months during Spring 2017.

In total, 120 children were recorded for a total duration of 45 hours and 48 minutes of data
collection. These 120 children (see demographics in Table 4; sample drawn from local schools)
were randomly assigned to one of two conditions: the child-child condition (90 children, 45
pairs) and a child-robot condition (30 children). The sample sizes were balanced in favour of
the child-child condition as the social dynamics that we ultimately want to capture are much
richer in this condition.
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Table 4. Descriptive statistics for the children.

Condition Age Mean Age SD # girls # boys
Whole group 6.4 1.3 55 65
Child-child 6.3 1.4 42 48
Child-robot 6.9 0.9 12 18

https://doi.org/10.1371/journal.pone.0205999.t004

In both conditions, and after a short tutorial, the children were simply invited to freely play
with the sandbox, for as long as they wished (with a cap at 40 min; cf. protocol in Table 1).

In the child-child condition, 45 free-play interactions (i.e. 90 children) were recorded with
a mean duration M = 24.15 min (standard deviation SD = 11.25 min). In the child-robot con-
dition, 30 children were recorded, M = 19.18 min (SD = 10 min).

Fig 8 presents the density distributions of the durations of the interactions for the two base-
lines. The distributions show that (1) the vast majority of children engaged easily and for non-
trivial amounts of time with the task; (2) the task led to a wide range of levels of commitment,
which is desirable: it supports the claim that the free-play sandbox is an effective paradigm to
observe a range of different social behaviours; (3) many long interactions (>30 min) were
observed, which is especially desirable to study social dynamics.

The distribution of the child-robot interaction durations shows that these interactions are
generally shorter. This was expected as the robot’s asocial behaviour was designed to be less
engaging. Often, the child and the robot were found to be playing side-by-side—in some case
for rather long periods of time—without interacting at all (solitary play).

Over the whole dataset, the children faces were detected on 98% of the images, which vali-
dates the positioning of the camera with respect to the children to record facial features.

Annotations

Five expert annotators performed the dataset annotation. Each annotator received one hour of
training by the experimenters, and were compensated for their work.

In total, 13289 annotations of social dynamics were produced, resulting in an average of
149 annotations per record (SD = 136), which equates to an average of 4.2 annotations/min
(SD =2.1), and an average duration of annotated episodes of 48.8 sec (SD = 33.3). Fig 9 shows
the repartition of the annotation corpus over the different constructs presented in Fig 5. Fig 10
shows the mean annotation time and standard deviation per recording for each construct.

Overall, 23% of the dataset was double-coded. Inter-coder agreement was found to be
51.8% (SD = 16.8) for task engagement annotations; 46.1% (SD = 24.2) for social engagement;
56.6% (SD = 22.9) for social attitude.

These values are relatively low (only partial agreement amongst coders). This was expected,
as annotating social interactions beyond surface behaviours is indeed generally difficult. The
observable, objective behaviours are typically the result of a superposition of the complex and
non-observable underlying cognitive and emotional states. As such, these deeper socio-cogni-
tive states can only be indirectly observed, and their labelling is typically error prone.

However, this is not anticipated to be a major issue for data-driven analyses, as machine
learning algorithms are typically trained to estimate probability distributions. As such, diver-
gences in human interpretations of a given social episode will simply be reflected in the proba-
bility distribution of the learnt model.

When looking at social behaviours with respect to age groups, expected behavioural trends
are observed (Fig 11): adult seeking goes down when children get older; more cooperative play
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is observed with older children, while more parallel play takes place with younger ones. In con-
strast, the social attitudes appear evenly distributed amongst age groups.

Dataset availability and data protection

All data has been collected by researchers at the University of Plymouth, under a protocol
approved by the university ethics committee. The parents of the participants explicitly con-
sented in writing to sharing of their child’s video and audio with the research community. The
data does not contain any identifying information, except the participant’s images. The child’s
age and gender are also available. The parents of the children in this manuscript have given
written informed consent (as outlined in PLOS consent form) to publish these case details.

The dataset is freely available to any interested researcher. Due to ethical and data protec-
tion regulations, the dataset is however made available in two forms: a public, Creative Com-
mons licensed, version that does not include any video material of the children (no video nor
audio streams), and hosted on the Zenodo open-data platform: https://zenodo.org/record/
1043508. The complete version that includes all video streams is freely available as well, but
interested researchers must first fill a data protection form. The detail of the procedure are
available online: https://freeplay-sandbox.github.io/application.

Discussion of the free-play sandbox

The free-play sandbox elicits a loosely structured form of play: the actual play situations are
not known beforehand and might change several times during the interaction; the game
actions, even though based on one primary interaction modality (touches on the interactive
table), are varied and unlimited (especially when considering the drawings); the social interac-
tions between participants are multi-modal (speech, body postures, gestures, facial expres-
sions, etc.) and unconstrained. This loose structure creates a fecund environment for children
to express a range of complex, dynamics, natural social behaviours that are not tied to an
overly constructed social situation. The diversity of the social behaviours that we have been
able to capture can indeed been seen in Figs 9 and 11.

Yet, the interaction is nonetheless structured. First, the physical bounds of the interactive
table limit the play area to a well defined and relatively small area. As a consequence, children
are mostly static (they are sitting in front of the table) and their primary form of physical inter-
action is based on 2D manipulations on a screen.

Second, the game items themselves (visible in Fig 2) structure the game scenarios. They are
iconic characters (animals or children) with strong semantics associated to them (such as
‘crocodiles like water and eat children’). The game background, with its recognizable zones,
also elicit a particular type of games (like building a zoo or pretending to explore the
savannah).

These elements of structure (along with other, like the children demographics) arguably
limit how general the PInSoRo dataset is. However, it also enable the free-play
sandbox paradigm to retain key properties that makes it a practical and effective scientific tool:
because the game builds on simple and universal play mechanics (drawings, pretend play with
characters), the paradigm is essentially cross-cultural; because the sandbox is physically
bounded and relatively small, it can be easily transported and practically deployed in a range
of environments (schools, exhibitions, etc.); because the whole apparatus is well defined and
relatively easy to duplicate (it essentially consists in one single touchscreen computer), the
free-play sandbox facilitates the replication of studies while preserving ecological validity.

Compared to existing datasets of social interactions (the Multimodal Dyadic Behavior Data-
set, the Tower Game dataset and the UE-HRI dataset), PInSoRo is much larger, with more than
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45 hours of data, compared to 10.6, 5.6 and 6.9 hours respectively. PInSoRo is fully multi-
modal whereas the Tower Game dataset does not include verbal interactions, and the UE-HRI
dataset focuses instead of spoken interactions. Compared to the Multimodal Dyadic Behavior
Dataset, PInSoRo captures a broader range of social situations, with fully calibrated data-
streams, enabling a broad range of automated data processing and machine learning applica-
tions. Finally, PInSoRo is also unique for being the first (open) dataset capturing long
sequences (up to 40 minutes) of ecologically valid social interactions amongst children or
between children and robots.

Conclusion—Towards the machine learning of
social interactions?

We presented in this article the PInSoRo dataset, a large and open dataset of loosely con-
strained social interactions between children and robots. By relying on prolonged free-play
episodes, we captured a rich set of naturally-occurring social interactions taking place between
pairs of children or pairs of children and robots. We recorded an extensive set of calibrated
and synchronised multimodal datastreams which can be used to mine and analyse the social
behaviours of children. As such, this data provides a novel playground for the data-driven
investigation and modelling of the social and developmental psychology of children.

The PInSoRo dataset also holds considerable promise for the automatic training of models
of social behaviours, including implicit social dynamics (like rhythmic coupling, turn-taking),
social attitudes, or engagement interpretation. As such, we foresee that the dataset might play
an instrumental role in enabling artificial systems (and in particular, social robots) to recog-
nise, interpret, and possibly, generate, socially congruent signals and behaviours whenever
interacting with children. Whether such models can help uncover some of the implicit precur-
sors of social behaviours, and is so, whether the same models, learnt from children data, can as
well be used to interpret adult social behaviours, are open—and stimulating—questions that
this dataset might contribute to answer.
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UNDERWORLDS: Cascading Situation Assessment for Robots
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Abstract— We introduce UNDERWORLDS, a novel lightweight
framework for cascading spatio-temporal situation assessment
in robotics. UNDERWORLDS allows programmers to represent
the robot’s environment as real-time distributed data struc-
tures, containing both scene graphs (for representation of
3D geometries) and timelines (for representation of temporal
events). UNDERWORLDS supports cascading representations: the
environment is viewed as a set of worlds that can each have
different spatial and temporal granularities, and may inherit
from each other. UNDERWORLDS also provides a set of high-
level client libraries and tools to introspect and manipulate the
environment models.

This article presents the design and architecture of this
open-source tool, and explores some applications, along with
examples of use.

I. INTRODUCTION

UNDERWORLDS is a distributed and lightweight open-
source framework' that enables robot programmers to build
and refine spatial and temporal models of the environment
surrounding a robot in real-time. UNDERWORLDS makes it
possible to share these world models amongst the software
components running on the robot. Additionally, UNDER-
WORLDS enables users to represent and manipulate multi-
ple alternatives to the current, perceived world model in
a distributed manner. For instance, the world with some
objects filtered out; the world ‘viewed’ from the perspective
of another agent; a hypothetical world resulting from the
simulated application of a plan, etc.

A. Distributed Situation Assessment

Anchoring perceptions in a symbolic model suitable for
decision-making requires perception abilities and their sym-
bolic interpretation. We call physical situation assessment
the cognitive skill that a robot exhibits when it represents
and assesses the nature and content of its surroundings and
monitors its evolution.

Numerous approaches exist, like amodal (in the sense of
modality-independent) proxies [1], grounded amodal repre-
sentations [2], semantic maps [3], [4], [S] or affordance-
based planning and object classification [6], [7].

UNDERWORLDS is specifically inspired by geometric and
temporal reasoners like SPARK (SPAtial Reasoning & Knowl-
edge) [8] or TOASTER (Tracking Of Agents and Spatio-

L Author is with Bristol Robotics Lab, University of the West of England,
Bristol, United Kingdom severin.lemaignan@brl.ac.uk,
2Authors are with LAAS-CNRS, Université de Toulouse, CNRS,
Toulouse, France firstname.surname@laas.fr, SAuthors
are with CRNS, Plymouth University, Plymouth, United Kingdom
firstname.surname@plymouth.ac.uk

'https://github.com/underworlds-robot/underworlds

TEmporal Reasoning) [9]. SPARK acts as a situation as-
sessment reasoner that generates symbolic knowledge from
the geometry of the environment with respect to relations
between objects, robots and humans. It also takes into
account the different perspective that each agent has on
the environment. SPARK embeds a modality-independent
geometric model of the environment that serves both as basis
for the fusion of the perception modalities and as bridge with
the symbolic layer [10]. This geometric model is built from
3D CAD models of the objects, furniture and robots, and
full body, rigged models of humans. It is updated at run-time
by the robot’s sensors. Likewise, UNDERWORLDS embeds a
grounded amodal model of the environment, updated online
from the robot’s sensors (sensor fusion).

However, SPARK is a monolithic module that does not
support sharing its internal 3D model with other external
components. In contrast, UNDERWORLDS focuses on offering
a shared and distributed representation of the environment
within the robot’s software architecture. This also distin-
guishes UNDERWORLDS from complex cognitive toolkits like
KnowRob (as found in OpenEASE [11]). While these tools
maintain a spatio-temporal model of the world, this model is
internal and not meant to be made widely accessible to other
external processes. UNDERWORLDS focuses instead on re-
usability and sharing of distributed spatio-temporal models.
As such, UNDERWORLDS can be seen as a middleware for
spatio-temporal world models and, contrary to KnowRob,
it does not provide any intrinsic high-level processing or
reasoning capability. Such reasoning skills are implemented
in loosely-coupled clients (see Section III hereafter).

Work on distributed scene graphs [12] has been previously
applied to robotics to provide a shared 3D representation
of the robot’s environment (for instance, the Robot Scene
Graph [13] or the Deep State Representation proposed
in [14]). UNDERWORLDS offers a similar distribution mech-
anism for 3D scene graphs and extends it to temporal repre-
sentations. Besides, UNDERWORLDS further extends this line
of work by providing the ability to create, manipulate and
share multiple alternative worlds. As an example, these could
correspond to filtered or hypothetical views on the initial,
perceived model of the environment.

B. Representing Alternative States of the World

The components which make use of spatial and temporal
models of the environment are usually found in the inter-
mediate layers of robotic architectures, between the low-
level perceptual layers, and the high-level decisional layers.
They include modules like geometric reasoners (that compute



spatial and topological relations between objects), motion
planners or action recognition modules.

These components exhibit different needs in terms of
representation, like different nominal spatial and/or tempo-
ral resolutions. For instance, a 3D motion planner would
typically use coarse 3D models of surrounding objects to
lower the computational load while planning, while a module
assessing the visibility of objects might need high-resolution
models for accurate 3D visibility testing. This requirement
of multiple task-specific representations has been framed as
the need for deep representations by Beetz [15].

Traditional robotic middlewares, like ROS, are not par-
ticularly well suited to deal with these different needs:
full geometric data can be represented, but is not first-
class citizen: a basic task like displaying a 3D mesh at an
arbitrary position is not particularly easy to perform with
ROS, requiring the combination of static Collada meshes,
a URDF kinematic description, TF broadcasters, and a 3D
visualisation tool like RViz. Critically, simultaneously repre-
senting and reasoning on alternative states of the environment
is not directly feasible.

Representing alternative states is however often highly
desirable. For instance, software components manipulating
environment models typically perform better if the models
are physically consistent. However, low-level perception in-
accuracies often introduce hard-to-avoid physical inconsis-
tencies (like detected objects floating in the air, or wrongly
inset into other objects). Therefore, a post-process stage
(for instance, using a physics simulation engine) is needed
to move the objects seen by the robot into physically-
correct positions. Implemented with a classical approach
(for instance, using ROS TF frames), we would repre-
sent an object book with two frames: the original frame
(e.g.,book_frame_raw) and a second one computed by the
physics engine (e.g..,book_frame_corrected). Such an
approach leads to the robot’s 3D model being cluttered with
multiple frames and does not scale well.

Another example pertains to geometric task planning:
a geometric task planner typically needs to reason over
hypothetical future states of the environment (“What happens
if I move this glass onto that pile of books?”). The planner
generates many possible future states, which in turn might
require further processing (for instance, running a physics
simulation). Such a tool would benefit a flexible representa-
tion system, where models are derived from each other, with
partial modifications and different timescales.

A third example relates to human-robot interaction sce-
narios where perspective taking is important (a prototypical
example being the game ‘I spy with my little eye’, as
implemented in [16]). Perspective taking is a cognitive skill
that relies on the ability for an agent to take someone else’s
point of view to estimate what they see from their perspec-
tives. Perspective taking has previously been implemented
in robotics by temporarily placing virtual cameras at eye
locations for each of the humans tracked by the robot [17].
While acceptable for simple cases, such an approach does
not maintain truly independent spatio-temporal models of

the environment for each agent, and in particular, it does not
permit the representation of proper false-belief situations. On
the contrary, separate, independent world models as imple-
mented by UNDERWORLDS effectively support such a skill,
which is an important precursor to research and implement
human’s mind modelling (i.e., a theory of mind) [18].

Lastly, geometric pre-supposition accommodation makes
another interesting case for alternative worlds representation.
Pre-supposition accommodation originally comes from lin-
guistics, where it describes the mechanism by which context
is adjusted [...] to accept [...] a sentence that imposes certain
requirements on the context in which it is processed [19]. In
the context of spatio-temporal representations, we call pre-
supposition accommodation the ability of an agent to adjust
its model so that it matches some contextual constraint.
For instance, if A tells B to “catch the red balloon behind
you”, B might create a representation of an imaginary red
balloon, placed behind her, even without actually observing
the balloon: B accommodates the pre-supposition of a red
balloon being present behind herself. Endowing robots with
this capability has been touched upon by Mavridis et al.
within their multi-modal Grounded Situation Model [2].
However, to the best of our knowledge, a general framework
which would enable robots to accommodate spatial and
temporal pre-suppositions by deriving imaginary worlds from
existing ones has not been proposed so far.

UNDERWORLDS addresses this need and the main con-
tribution of this work is a generic approach to represent
and share multiple parallel representations of the world.
UNDERWORLDS does so by allowing clients to clone existing
worlds, modify them, and re-share them, without the cost of
duplicating geometric data (as explained in section II). By
organising clients in a network (Figure 1), worlds can be
made dependent on each other, resulting in a loosely-coupled
modular approach to spatio-temporal world representation
that we call cascading situation assessment.

II. DESIGN AND ARCHITECTURE

A. Software architecture

Figure 1 depicts a typical UNDERWORLDS topology: a
graph (that happens to be an acyclic graph on Figure 1, but
does not have to be in the general case) of worlds, with
clients connecting the worlds to each others.

1) Clients: Software components implementing accessing
UNDERWORLDS worlds are called clients. Clients can both
read and write onto the worlds they are connected to,
and automatically see updates broadcast by other clients
connected to the same world. To ensure data consistency,
worlds can have many simultaneous readers, but only one
writer at a given time.

UNDERWORLDS provides several standard clients (like a
3D visualisation tool or a physics engine simulator). Clients
are however typically written by the end users, depending
on the needs of one’s specific architecture.

2) Worlds: Worlds are effectively distributed data struc-
tures composed of a scene graph representing the 3D ge-



client
ROS interface

client

Sensor fusion ]

world base

scene graph
+ timeline

b [ | ! oLy
a3

client 1

Physics-based position correction

l

world corrected

0@

LU,
—

client

Computation of

. . 3 rapl
spatial relations scene grapa

+ timeline

! I Y
3 39—

client client

3D motion planner

I

world post_planning

m@@ S\

Semantic mapping ]

world semantic_map

scene graph

+ timeline + timeline N
Jﬂ &
R ' LR Lo Ll
3 — — ——
client l client l

Fig. 1. Schema of a possible UNDERWORLDS network: eight clients (user-
written & architecture specific; in blue) are sharing environment models
through four independent worlds (made from joint spatial and temporal
models). This architecture enables successive and modular refinement of
the models (cascading situation assessment), effectively adapted to each
client’s needs.

ometry of the environment, and a timeline storing temporal
events.

While each world is technically independent from all the
others, dependencies (and therefore, coupling) arise between
worlds from the clients’ connections. For instance, filters
effectively create a dependency between worlds. On Fig-
ure 1, the Physics-based position correction client creates a
dependency between the world base (which represents here
the result of raw sensor fusion) and the world corrected
which would be a physically-consistent copy of base. As a
result, an UNDERWORLDS network can also be seen as a de-
pendency graph between worlds (where cyclic dependencies
are permissible).

This architecture enables what we call cascading situation
assessment: independent software components (the clients)
build, refine and share successive models of the environment
by a combination of filtering/transformations steps and model
branching. A change performed by one client (for instance, a
face tracker updates the pose of the human head) may thereby

cascade to each of the downstream, dependent worlds.

3) Scenes: Worlds contain both a geometric model and
a temporal model. The geometric model is represented as
a scene graph. The scene graph has a unique root node, to
which a tree of other nodes is parented.

Nodes in an UNDERWORLDS scene graph have three pos-
sible types: objects that represent concrete physical objects
(typically with one or several associated 3D meshes); entities
that represent abstract entities like reference frames or groups
of objects; perspectives that represent viewpoints of the
scene (like cameras or human gaze).

Every node has a unique ID, a parent, a 3D transformation
relative to the parent and an optional name. Object nodes
optionally store as well pointers to their associated meshes.
Importantly, mesh data (or other geometric datasets like
point clouds) are not stored within the nodes themselves.
UNDERWORLDS represents geometric data as immutable
data, identified by their hash value (preventing de facto data
duplication). Nodes only store the hash corresponding to the
desired geometric data, and the actual data is pulled from
the server by the clients whenever they actually need it (for
rendering for instance).

4) Timelines: Complementing the spatial representation
encapsulated in the scene graph, each world also stores the
world’s timeline. This data structure is shared and synchro-
nised amongst the clients in the same way as the scene
graph. Clients can record and query both events (duration-
less states) and situations in the timeline, i.e., states with a
start time and a (possibly open-ended) end time.

B. Distributed spatio-temporal models

UNDERWORLDS is not a monolithic piece of software.
Instead, it stands for both a network of interconnected
clients which manipulate spatial and temporal models of the
robot environment (for instance, a motion planner, a object
detection module, a human skeleton tracker, etc.), and for
a client library that makes it possible to interface existing
software components with the network.

Critically, the network is essentially hidden to the client:
from the user perspective, the environment model is manip-
ulated as a local data structure (see Listing 1). Modifications
to the model are asynchronously synchronised with a central
server (the underworlded daemon) and broadcast to every
other client connected to the same world.

As previously mentioned, worlds are composite data struc-
tures comprised of a scene graph and a timeline. These
data structures are synchronised using Google’s gRPC mes-
sage passing framework?, ensuring high throughput, relia-
bility and cross-platform/cross-language support. The UN-
DERWORLDS API is specifically discussed hereafter, in sec-
tion III-A.

UNDERWORLDS is meant to broadcast complex environ-
ment representations (typically including large geometric
datasets, like meshes) in real-time. UNDERWORLDS itself
does not perform many CPU intensive tasks (CPU intensive

Zhttp://www.grpc.io/



processing tasks — sensor fusion, physics simulation, etc.—
are performed by the clients themselves) and as such, the
performance bottleneck is essentially the network’s data
throughput. In that regard, one of the simple yet critical
optimisations performed by UNDERWORLDS is automatic
caching of mesh data. Mesh data are not transmitted when
nodes are updated; only a hash value of the mesh data. The
client can then request the full data whenever it is actually
needed.

C. Time and space complexity analysis

UNDERWORLDS is fundamentally about distributing two
datastructures: a scene graph (with nodes representing spatial
entities) and a timeline (where events are stored as a flat list).
Typical time and space complexities arise from these datas-
tructures. In typical usage scenarios (where the number of
nodes or events remain under a few hundred relatively small),
the computational load to manipulate these datastructures
is however dominated by the actual processings performed
by the clients with the data. In the current implementation,
scene graphs and timelines are stored in-memory. Were
they required, serialization and persistent storage are not
anticipated to be difficult to implement.

More interesting is the time complexity of distributing
changes across an UNDERWORLDS network. With n the
number of worlds and m the number of clients in an
UNDERWORLDS network, the worst-case (when every world
is a parameter of every client) time complexity of creating
or updating a node and propagating the change across the
network is O(n x m) (this effectively corresponds to the
UNDERWORLDS server performing n X m requests to notify
clients of the update). The space complexity is the same (as
clients own a full copy of the worlds they monitor), except
for mesh data whose space and time complexities are O(1)
(only the server stores the mesh data).

In the common case of one client performing a full update
of a single world (with p nodes) at each time step, the
complexity of propagating these changes across the network
would be O(p x m). Figure 2 shows measured propagation
time for one change across up to 20 cascading worlds.

III. API & CLIENTS
A. API

As mentioned, UNDERWORLDS uses Google’s gRPC as
message passing protocol. The protocol is explicitly defined
(using the protocol buffers® interface definition language),
and bindings to various languages and platforms can be
automatically generated from the protocol definition file (as
of Jan 2018, gRPC can generate bindings for C, C++, C#,
Node.js, PHP, Ruby, Python, Go and Java, on Windows, Mac,
Linux and Android). The cross-platform/cross-language sup-
port of gRPC is especially welcome in the academic context,
as it offers ease and flexibility to plug a variety of pre-
existing components into an UNDERWORLDS network.

3https://developers.google.com/protocol-buffers/
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Fig. 2. Propagation times of one change (node creation) across n worlds.
The test is performed by running n — 1 pass-through filters that monitor one
world and replicate any changes into the next world. Durations measured
over 20 runs, performed on a 8 core machine.

However, the gRPC message passing layer is low-level
with respect to the typical use of UNDERWORLDS (manip-
ulation of asynchronous, distributed spatio-temporal models
of the robot environment). In particular, the asynchronous
fetching (and conversely, remote updating) of nodes and
time-related objects is typically hidden from the user, and
managed instead by the UNDERWORLDS client library.

UNDERWORLDS currently offers such a high-level client
library for Python only (a C++ library is under development).
Listing 1 gives a complete example of an UNDERWORLDS
client performing simple filtering: the client continuously
listens for changes in an input world, removes some objects
(in this case, items whose volume is below a threshold), and
forwards all other changes to an output world, effectively
making the output world a copy of the input world with all
smaller objects removed.

import underworlds

1

2

3 # by default, connect to the server on localhost
4 with underworlds.Context ("small_object_filter") as ctx:
5

6 in_world = ctx.worlds["worldl"]

7 out_world ctx.worlds["world2"]

8

9 while True:

10

11 in_world.scene.waitforchanges ()

12

13 for node in in_world.scene.nodes:

14 if node.volume > THRESHOLD:

15 out_world.scene.nodes.update (node)

Listing 1: Example of a simple yet complete UNDERWORLDS
filter, written in Python: the client connects to the UNDER-
WORLDS network, blocks until the world wor1d1l changes,
and only propagate nodes that match the condition to the
world world2.

B. Standard Clients

The UNDERWORLDS package provides several standard
clients to perform common tasks on UNDERWORLDS net-
works.



world <I2tor>

Fig. 3. Screenshot of the uwds view 3D visualisation and manipulation
client. In this particular example, the 3D meshes have been pre-loaded using
uwds load. Their positions are then updated at run-time using the robot’s
sensors and proprioception (joint state).

1) 3D Visualisation and manipulation: Interestingly,
while UNDERWORLDS deals with 3D geometries and scenes,
it does represent 3D entities purely as data structures; no
visual representation is involved (and as such, the UNDER-
WORLDS server and core libraries do not depend on any
graphics library like OpenGL). However, for all practical
purposes, the ability to visualise the content of a scene is
desirable. UNDERWORLDS provides a standard client, uwds
view, that performs real-time 3D rendering of worlds, using
OpenGL (Figure 3).

This tool also supports basic object manipulations (trans-
lations, rotations), that are broadcast to the other UNDER-
WORLDS clients connected to the same world.

Assets loading: Often, objects manipulated by the robot
have known meshes with corresponding CAD models that
can be conveniently pre-loaded. In these cases, UNDER-
WORLDS provides a tool, uwds load, that loads a mesh
into a UNDERWORLDS network (and optionally, creates a
node) from a large range of 3D formats (including Collada,
FBX, OBJ, Blender)*.

2) Physics simulation: When perception modules provide
objects localisation, the physical consistency of the locations
is not typically enforced. For instance, objects that are
supposed to lay on a table might be slightly above (or inset
into) the table; or when dropping an item into a box, the
robot can not update the location of the item anymore as it
becomes occluded.

These issues can be alleviated by relying on a physics
simulation to stabilise the position of objects: natural physics
(including gravity) are simulated for a short amount of time
(up to one second) ahead of time, and the objects’ positions
are updated accordingly. To this end, UNDERWORLDS pro-

4The underlying import capability is provided by the ASSIMP library.
http://assimp.sourceforge.net/
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vide a standard filter, the physics_filter, based on the
Bullet RT physics simulation and the pybullet?® library.
It generates an output world that mirrors its input world
after a specific duration of physics simulation, the physical
properties of objects (including mass, friction, inertia) being
provided from standard URDF descriptions.

3) Introspection and debugging: UNDERWORLDS pro-
vides a range of tools to inspect a running network. Graphical
tools (uwds explorer and uwds timeline, see Fig-
ure 4) provide a user-friendly overview of the system’s graph
with the connections between the clients and the worlds, as
well as their activity.

Specialised command-line tools are also available to list
the worlds and their content (uwds 1s) at run-time, or
to display detailed information for a specific node (uwds
show).

4) Interface with ROS: UNDERWORLDS is meant to inte-
grate as easily as possible into existing robot architectures,
and interfaces transparently with ROS’ TF frame system
through the uwds tf client.

The uwds tf client continuously monitors the ROS TF
tree, and mirrors TF frames as nodes in the desired UN-
DERWORLDS world. A node is first created if none matches
a given TF frame, and its transformation is subsequently
updated, mirroring the TF frame. A regular expression can
be provided to only mirror a subset of the TF tree into
UNDERWORLDS.

Currently, the process is unidirectional: the uwds tf
client performs TF to UNDERWORLDS updates, but not the
reverse.

C. Spatial Reasoning and Perspective Taking

Spatial reasoning [20] is a field in its own right, and has
been used for natural language processing for applications
such as direction recognition [21], [22] or language ground-
ing [23]. Other examples in human-robot interaction include

Shttps://pybullet.org/



Ros et al. [17], [16] which has recently been integrated
into a full architecture for autonomous human-robot inter-
action [10].

UNDERWORLDS  provides an  exemplary client
(spatial_relations) to compute both allo-centric
(independent of the viewpoint like isIn or isOn) and
ego-centric (i.e., viewer-dependent, like inFrontOf or
leftOf) spatial relations between objects. Other libraries,
like QSRLib [24], that implement computational models of
Qualitative Spatial Relations, could be trivially combined
with UNDERWORLDS to provide more advanced geometric
analysis. Future developments will also include the results
of the more basic research on spatio-temporal reasoning for
robotics, led by de Leng and Heintz [25].

UNDERWORLDS also implements an efficient algorithm to
assess object visibility from a specific viewpoint (i.e., from
a given perspective node). The algorithm (color picking)
enables fast (single pass) computation of the visibility of
every object in the scene, while providing control regard-
ing how many pixels should be actually visible for the
object to be considered globally visible. The command-
line tool uwds visibility returns the list of visible
objects from the point of view of each camera in a given
world, and UNDERWORLDS also provides the helper class
VisibilityMonitor to programmatically access visibil-
ity information.

When integrated into a filter node, visibility computation
allows easy creation of new worlds representing the esti-
mated perspectives of the different agents.

IV. APPLICATION EXAMPLE: PERSPECTIVE-AWARE
JOINT ACTIONS

UNDERWORLDS is being used within the large European
project MUMMERS® for service robots to compute visibility
and knowledge about objects, places and agents within a mall
environment.

We present here a simplified scenario, yet representative
of situations which are processed in real-time by MuMMER
robots: two humans and a robot are looking at a table and
have to coordinate joint actions (pick and place). One object
on the table (the green box in Figure 5) is only visible to
one human and the robot, but hidden to the second human.
The robot needs to take into account this fact to generate
appropriate and legible joint manipulation actions. Figure 5
illustrates the topology of the UNDERWORLDS network that
we use to this end.

A first client, static_env_provider, provides the envi-
ronment models and allows to build a first ENV world
where static objects, furnitures and walls are present. Then,
three worlds cascade through three (independent) clients:
robots_state_monitor augments ENV with the robot state
(using underneath the ROS robot state publisher node)
and broadcast a new world ENV_ROBOTS. objects_monitor
then recognises and adds the dynamic objects (using
ar_track_alvar’). humans_monitor finally detects and

Shttp://www.mummer—-project.eu
Thttp://wiki.ros.org/ar_track_alvar

Static environment
provider

L_ -
Humans '
monitor

Computation of
spatial relations

|

Fig. 5. Schema of the UNDERWORLDS architecture used in the
MuMMER project. Clients read and generate the worlds ENV —
ENV_ROBOT — ...— HUMAN«*_PERSPECTIVE. The last two worlds
HUMAN{1, 2} _PERSPECTIVE represent the immediate visual perspective
of each of the humans, as well as their past visual perceptions. As such,
they are the visual memories of the humans, that the robot can rely on when
making decisions.

continuously updates the humans poses (using [26]). It
broadcasts a world called BASE that contains as a result the
static environment, the robots, the dynamic objects and the
detected humans.

The world BASE goes through a physics filter client (as
explained in section III-B.2) to obtain the STABLE world
where all elements are present with physically-consistent lo-
cations. This physically-correct world is used by the compu-
tation_of _spatial_relations client to compute spatial relations
such as onTop, isIn or isAbove (see Section III-C).

The world STABLE is also used by a perspectives_filter
client to compute the different visual perspectives of each
agent (in our case: human 1, human 2 and the robot itself).



In addition to a 3D rendering of the input world from the
perspective of the agent, it aggregates the history of what
was visible to the agent at a given point in time. As such, it
does not only offer a snapshot of the agent visual perspective
at the current time but also acts as the visual memory of each
agent.

With this network, the robot can easily compute that an
object on the table is only seen by the human 1 and not the
human 2; additionally, if human 1 moves in a position where
the object is not visible anymore to him, the perspective_filter
will maintain the knowledge that the human had seen it (and
keep the last position where it has been seen).

UNDERWORLDS makes it possible to implement such
a geometric reasoning pipeline in a fully decoupled way,
and each intermediary world can be easily introspected at
run-time. This example shows how UNDERWORLDS facili-
tates the implementation and debugging of complex spatio-
temporal reasoning pipelines.

We are currently deploying a similar network in the frame-
work of the European project MuMMER where a Pepper
robot handles interactive situations in a large shopping centre
in Finland. One of the situation is a guiding task where
Pepper help people to find their route by pointing them
landmarks and explaining them how to reach a destination.
To be effective, this helping behaviour needs to be aware
of the visual perspective of the human. UNDERWORLDS
facilitates the implementation of such a spatio-temporal rea-
soning pipeline, where perception and high-level reasoning
(including complex, human-aware reasoning) have to be
tightly integrated. Because of the decoupling of each of the
clients in the network, UNDERWORLDS also practically sup-
ports software development spread across multiple partners
in different countries, with different expertise.

V. DISCUSSION AND CONCLUSION
A. Relation to existing robotic middleware

Like traditional robotic middleware, UNDERWORLDS of-
fers a form of distributed computation based on message
passing. However, it distinguishes itself from existing mid-
dlewares (including ROS extensions like DyKnow [27]) in
significant ways. Most importantly, UNDERWORLDS pur-
posefully does not offer any general capability to distribute
computation and data streams amongst independent com-
ponents: it focusses specifically on distributing environment
models, both spatial (geometric models) and temporal (events
and situations). In that sense, UNDERWORLDS really is a
distributed datastructure that addresses the specific needs
of spatio-temporal modelling, including the modelling of
hypothetical, alternative world models, something that tra-
ditional middlewares like ROS do not address adequately.
Second, and as presented above, UNDERWORLDS offers
specific mechanisms for the representation and manipulation
of alternative world models that are not directly achievable
with traditional tools.

While using standard middleware as underlying transport
for UNDERWORLDS would be technically feasible and rel-
atively easy to implement, it does not offer any clear ad-

vantage over lighter and dedicated message passing libraries
like ZeroMQ or gRPC (the later being the one used by
UNDERWORLDS).

B. Future work

As illustrated in section IV, UNDERWORLDS is already
deployed and used on the field. Several features are however
still under development.

1) Representation capabilities: as presented in section 1I,
the current version of UNDERWORLDS allows to represent
objects, abstract entities like groups and perspectives. Fields
are also part of the UNDERWORLDS design, but are not
yet implemented. Fields are commonly used to represent
continuously-valued spatial entities. Fields might or might
not be spatially bounded. Examples include the working
space of a robot arm (spatially bounded), the field of view
of a camera (spatially bounded), proxemics (potentially un-
bounded). We plan to represent fields in UNDERWORLDS
using the memory-efficient octomaps [28] or NDT-OM
maps [29]. Similarly to geometric data,these datastructures
will not be directly stored with the nodes (nodes will refer to
them through handles), but unlike geometric data, they will
not be treated as immutable datasets by the server, permitting
real-time updates.

Representation of uncertainty: currently node positions
are stored as 4 x 4 transformation matrices, relative to the
node parent. This representation is efficient, and conveniently
matches traditional representation systems (including ROS
TF frames or OpenGL transformations). However, the ex-
plicit management of uncertainties is instrumental to many
robotic applications, and we plan to add full support for
position uncertainties to UNDERWORLDS. We plan to add
this support by adding a pose covariance matrix to the nodes,
and equipping the different UNDERWORLDS helper tools with
corresponding support (like covariance ellipses visualisation
in uwds view).

2) Implementation and Integration: we plan to continue
to improve the integration of UNDERWORLDS into existing
software architectures. A short-term goal is to provide ex-
cellent C++ support, with a high-level, user-friendly C++
client library. This is critical for a broader adoption of
UNDERWORLDS within the robot community. Support for
other languages might follow, depending on demands and
open-source contributions.

C. Conclusion

We have introduced UNDERWORLDS, a novel framework
for shared and composable spatio-temporal representations of
a robot’s world. The key contributions of our approach are:
a composite data structure for environment representation
within a robotic software architecture, made of a scene graph
and a timeline; a mechanism to efficiently and transparently
share this data structure amongst a set of clients (the software
modules of the robot); a cascading architecture permitting the
explicit of representation of alternative states of the world
while maintaining a network of dependencies.



We have additionally presented a concrete instantiation of
a system relying on UNDERWORLDS for its representation
needs, and we have sketched future directions of develop-
ment.

We believe this work can practically support existing
robotic architectures with state-of-the-art spatio-temporal
representation capabilities. We also hope that this line of
research can lead to a better understanding of the represen-
tation needs of modern robotic systems, and participate to
the emergence of a possible common representation platform
for robots, building on previous formalisation efforts like the
RSG-DSL domain specific language [30].
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