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D4.2 Input module for the space domain

Executive Summary

This deliverable describes work done towards developing and evaluating the input modalities to support
the learning of spatial words in a target language by young children. It consists of published and
submitted work on the input device (a touch-screen computer) and on studies evaluating the ability of
children to understand and express spatial words in a second language through manipulating objects on
the screen using tapping and dragging.
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D4.2 Input module for the space domain

1 Overview of the Space Domain Input

Work Package 4, multimodal input processing, aims to leverage existing software and methods for
social signal processing. The solutions devised as part of this work package will provide the input
from sensing data to enable the lessons for the L2TOR evaluations. The intention is that wherever
possible, the input module should utilise current state-of-the-art software following evaluation of its
suitability for the specific scenarios in L2TOR. This approach encourages efficient use of resources,
whilst simultaneously providing substantial information for use by the robotic platform from the world
(and specifically, interacting partners) around it.

2 Tablet game

The Table Game is a HTML based 3D game (described in Deliverable 4.1) with collision detection
and virtual object manipulation through touch that supports spatial reasoning through Underworlds1 (a
“behind the scenes” 3D reasoning engine for spatial relations in a Human-Robot Interaction context
[1]). It has been further developed to allow the operator to design and build a variety of scenes within
the user interface. An editor has been embedded in the Tablet Game and a designer can easily add or
remove 3D objects and animations to the scene. An example of a scene developed with the editor can
be seen in Figure. 1.

Figure 1: Bakery scene designed with the game editor.

In this example, the designer added a number of 3D objects, some of them including animations
to provide a more life-like environment. An example is the oven which contains an animation of the
rising of bread. The completed scenes can be saved as JSON files locally that can later be loaded on
demand by the Interaction Manager. Additionally, the Tablet Game can move objects around the scene

1Underworlds is available as an open source project at https://github.com/underworlds-robot/
underworlds.
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D4.2 Input module for the space domain

when called from the Interaction Manager in various locations, for example to mimic a child running
up and down the road. Various effects have been added to the game to give feedback to the children
such as fireworks at the end of each scene, shaking or jumping 3D models and rolling animations. In
addition, the designer or the Interaction Manager can change the perspective of the scene by changing
the angle and distance of the camera in the 3 game engine. For example, the scenario might involve
interaction with specific areas of the scene therefore the camera can zoom in and change the angle to
allow easier object manipulation from the child. The modifiable camera perspective also has the benefit
of providing a better spatial understanding of the scene as it allows the child to a view on the scene
from different angles.

The collision model has been updated to allow seamless integration with Underworlds. Figure. 2
shows a Zoo scene from the spatial domain with multiple animals that the child must interact with
following the instructions of the robot. Underworlds is cloning the Tablet environment constantly and
is aware of the spatial relationships between the visible objects on the screen. Every time the child
is dragging a 3D object in the game, Underworlds will mirror the positions and produce a spatial
relationship between the objects. For example, if the child moves the giraffe on top of the lake,
Underworlds will output the spatial relation on top between the giraffe and the lake. The Interaction
Manager will use this output the check if the child has completed the required task and provide the
appropriate feedback via the robot and the Tablet Game.

Figure 2: Zoo scene for the space domain
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D4.2 Input module for the space domain

Finally, we added an error resuming function that allows the Tablet Game to resume the last saved
state of the scene if any of the modules that comprise the system crashes and the operator needs to
restart the system. In such as a case, all the modules will resume from the saved state allowing the
child to continue from the same point.

2.1 Further developments to Underworlds

To enable the teaching of the spatial domain the development efforts for Underworlds focused to now
include all the target spatial words required. It has also been integrated into the interaction manager to
enable quicker communication between the two modules. Further developments have also been made
to the way in which Underworlds loads models into a scene to reduce overall loading time and offer a
smoother user experience.

3 Evaluating the comprehension and production of spatial language

We have been investigating the use of spatial language in two ways:

1. Encouraging the production of spatial language in L2

2. Looking at how children use spatial language naturally in L1

3.1 Encouraging Production

We were especially looking at the difference between receptive (what we can understand) and productive
(what we can say) vocabularies. It has been established that the receptive vocabulary is often bigger
than productive vocabulary [2, 3], and that often L2 learners perform much worse on productive tests
than in receptive ones [4]. This has been formalised as a hierarchy [5] from bottom to top:

1. Passive recognition - The student is able to select the L1 word from a choice of words when
provided the word in L2.

2. Active recognition - The student is able to select the L2 word from a choice of words when
provided the word in L1.

3. Passive recall - The student is able to give the meaning of a word in L1 when provided the word
in L2.

4. Active recall - The student is able to give the L2 word when provided the word in L1.

We conducted a study to see if we could use a robot to encourage the production of spatial language.
Spatial language proves an interesting challenge for production as unlike an object it can’t be just be
pointed to, and is harder to explain using an image. We believed that a robot may give us a better
measure of a child’s language production capability due to previous evidence of their ability reduce
anxiety in students [6, 7].

For the study itself we used a Sandtray environment [8], with a child sitting opposite an agent(experimenter
or robot) across a large touch screen device(Figure. 3). After a lesson with a French tutor in the morn-
ing, in small groups, children would come to play the production quiz game individually. The game
itself involved the children describing in French the position of the teddy bear in relation to the chair in
the image displayed on the Sandtray using the words they had been taught. Children would play this
game either with a robot, or with one of the experimenters.

Date: 09/04/2018
Version: No 1.0

Page 7



D4.2 Input module for the space domain

Figure 3: A child interacting with the robot in our study. The agent – in this case a robot – stands
opposite from the child. An interactive table (sandtray) displays an image of a teddy bear and a chair.
The child must use a word from a second language to describe the position of the bear in relation to the
chair.

We found that the robot was able to match a human experimenter, despite the greater social ability
that the person was able to display. This is a very encouraging result, as it demonstrates the robot is
able to assess production as well as comprehension of learned words. The set of encouragement that
could be given was severely limited so as not to change the nature of the task. This made the game
very repetitive for an experimenter, which could have led to breaks in protocol. As expected this was
a challenging task for the children, and it could be emotionally stressful for an experimenter attempt
to assess the children without breaking protocol when they were struggling. Further developments in
social robotics may lead to robots being able to surpass a human in the ability to encourage production.

3.2 Use of Spatial Language

We wanted to look at the natural use of spatial language in L1 for young children to establish a
benchmark for how spatial language was used by children that could inform future design decisions.
We also wanted to see if this was affected by the presence of a robot. For this study we used the same
sandtray environment as in section 3.1. In the study children were asked to describe the location of
objects –using a reference map (Figure 4– to a manipulator (either another child, an experimenter, or
the robot) who would then move the objects on the sandtray to place them in the position described.

We found in contradiction to typical HRI implementations, these revolve around a single complete
description that eliminates ambiguity, that the process of describing the position of objects was much
more fluid and ambiguous. Rather than a ‘walkie-talkie’ like interaction the manipulator was often
involved in the description process, by guessing based on limited information, enabling the describer to
use more words to narrow down a position.
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Figure 4: An example of the reference map given to a child to describe. The eight items (face, crocodile,
elephant, zebra, hippo, lion, giraffe and ball) are shown in the desired location that they need to be
moved to. The child describes the position on his map for an agent to manipulate into the correct
position.

4 Annex descriptions

4.1 Wallbridge, C.D. (2018), Encouraging the Production of Spatial Concepts in L2
for Young Children Using a Robot Peer

Bibliography – Wallbridge, C.D., Van den Berghe, R., Hernandez Garcia, D., Kanero, J., Lemaignan,
S., Belpaeme, T. (2018) Encouraging the Production of Spatial Concepts in L2 for Young Children
Using a Robot Peer. Submitted to The 27th IEEE International Conference on Robot and Human
Interactive Communication (ROMAN 2018).
Abstract – When discussing second language learning, we must recognize the difference between
the language we understand (receptive vocabulary) and the language we use (productive vocabulary).
As receptive vocabulary is considered to be an easier and more sensitive measure of a student’s
knowledge, productive vocabulary is not often measured. At the same time, previous studies on foreign
language learning have found that robots can help to reduce language anxiety, leading to improved
results. We conducted a study with 25 children to measure the effectiveness of a robot measuring and
encouraging production compared to a human experimenter. We found that a robot is able to match the
experimenter’s performance in getting children to produce, despite the person’s advantages in social
ability, and discuss the extent to which a robot may be suitable for this task.
Relation to WP – Increasing input to robotic systems of L2.

4.2 Wallbridge, C.D. (2018), Spatial Referring Expressions in Child-Robot Interac-
tion: Let’s Be Ambiguous!

Bibliography – Wallbridge, C.D., Lemaignan, S., Senft, E., Edmunds, C., Belpaeme, T. (2018)
Spatial Referring Expressions in Child-Robot Interaction: Let’s Be Ambiguous!. To be published in
Proceedings of the 4th Workshop on Robots for Learning - Inclusive Learning.
Abstract – Establishing common ground when attempting to disambiguate spatial locations is difficult
at the best of times, but is even more challenging between children and robots. Here, we present a
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study that examined how 94 children (aged 5-8) communicate spatial locations to other children, adults
and robots in face-to-face interactions. While standard HRI implementations focus on non-ambiguous
statements, we found this only comprised about 20% of children’s task based utterances. Rather, they
rely on brief, iterative, repair statements to communicate about spatial locations. Our observations offer
strong experimental evidence to inform future dialogue systems for robots interacting with children.
Relation to WP – Design considerations for input on spatial language.
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Encouraging the Production of Spatial Concepts in a Second Language
with a Robot Peer

Christopher D. Wallbridge1, Rianne van den Berghe2, Daniel Hernandez Garcia1, Junko Kanero3,
Séverin Lemaignan1, Charlotte Edmunds1, Tony Belpaeme1,4

Abstract— When discussing second language learning, we
must recognize the difference between the language we un-
derstand (receptive vocabulary) and the language we use
(productive vocabulary). As receptive vocabulary is considered
to be an easier and more sensitive measure of a student’s
knowledge, productive vocabulary is not often measured. At the
same time, previous studies on foreign language learning have
found that robots can help to reduce language anxiety, leading
to improved results. We conducted a study with 25 children to
measure the effectiveness of a robot measuring and encouraging
production compared to a human experimenter. We found that
a robot is able to match the experimenter’s performance in
getting children to produce, despite the person’s advantages in
social ability, and discuss the extent to which a robot may be
suitable for this task.

I. INTRODUCTION

Learning the language of a new home region is vital
for migrant children. It is required for them to integrate
with their peers, and necessary to prevent them from falling
behind in school. Children need the opportunity to practice
their language skills, but it may be difficult if no one at
home is able to speak the language of the host region.
Finding qualified teachers or tutors that know both the new
language and the language of children’s old homeland can
also be challenging. With robots we may be able to support
children’s language learning needs.

When learning a second language (L2), it is difficult
to master vocabulary both receptively and productively. L2
learners may find themselves capable of understanding the
L2, while still struggling to produce L2 words. Indeed,
previous research has shown that receptive vocabulary tends
to be bigger than productive vocabulary in first language
(L1) [1], [2], and that L2 learners obtain lower scores on
productive tests as compared to receptive tests [3]. Thus,
people are able to recognize more words than they can
produce, both in their L1 and L2. This has been formalised
into a hierarchy for word knowledge by Laufer et al. [4],
based on knowing the words passively or actively and in
being able to recognize them or recall them. The hierarchy is
as follows, from easiest to most difficult: passive recognition

1With the Centre for Robotics and Neural Systems, Univer-
sity of Plymouth Drake Circus, Plymouth, Devon, PL4 8AA, UK
<firstname.lastname>@plymouth.ac.uk

2With the Department of Special Education: Cognitive and Motor Disabil-
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3With the Department of Psychology, Koç University, Rumelifeneri Yolu,
Sarıyer 34450, Istanbul, Turkey jkanero@ku.edu.tr

4With the IDLab Imec, Ghent University, iGent Toren, Technologiepark-
Zwijnaarde 15 B-9052 Gent, Belgium tony.belpaeme@ugent.be

Fig. 1: A child interacting with the robot in our study. The
agent – in this case a robot – stands opposite from the child.
An interactive table displays an image of a teddy bear and
a chair. The child must use a word from a second language
to describe the position of the bear in relation to the chair.

→ active recognition → passive recall → active recall. These
are defined as follows:

• Passive recognition - The student is able to select the
L1 word from a choice of words when provided the
word in L2.

• Active recognition - The student is able to select the L2
word from a choice of words when provided the word
in L1.

• Passive recall - The student is able to give the meaning
of a word in L1 when provided the word in L2.

• Active recall - The student is able to give the L2 word
when provided the word in L1.

This poses a challenge for L2 vocabulary interventions
in which the trainer wants to assess the trainee’s learning
gains: L2 learners have difficulty learning the words pro-
ductively (i.e. learning to produce foreign words), and will
struggle to actively recall newly learned L2 words. There
are several tests to assess an L2 learner’s productive vocab-
ulary, including assessments in which the participant has to
describe pictures (e.g., the Expressive Vocabulary Test [5],
the Expressive One-Word Picture Vocabulary Test [6], or
the Clinical Evaluation of Language Fundamentals Test [7],
writing tests in which the learner has to fill in the blank
(e.g., the Productive Vocabulary Levels Test [8]), or, for very



young children, parental or teacher reports [9].
In many situations, it may not be possible to use one of

these tests. For example, when the words learned concern
abstract concepts, which cannot be easily depicted, it is not
possible to use a picture test. If the learner is illiterate, one
cannot use a writing test. Parents or teachers may struggle
to report the childs L2 if they do not speak that language
themselves. To further complicate the issue, producing L2
words may be intimidating for L2 learners. Even if the
learner is able to produce the word, they may not produce it
due to anxiety of pronouncing the word incorrectly [10].

A social robot may help overcome some of the issues
described above in assessing L2 learners vocabulary. While
not being able to solve by itself the issue of vocabulary
being more difficult to learn productively than receptively,
a social robot may help in innovating novel ways to assess
L2 vocabulary, or in reducing L2 anxiety in L2 vocabulary
test settings. A robot may be less intimidating than an
adult assessor, especially for young children, encouraging
more speech production. This study evaluates whether school
children may produce more L2 words in a productive L2
vocabulary test when playing with a social robot than with
an adult. Below, we discuss relevant robot-assisted language
learning (RALL) studies before detailing our study.

II. PREVIOUS WORK

RALL has been found to be effective in reducing foreign
language anxiety (FLA), and teaching robots are able to
improve oral skills of young students learning English as
a foreign language [11]. Alemi et al. [12] performed a
study using a robot teaching assistant. In the study, Persian-
speaking students in Iran were taught English. A survey of
the students showed that those who learned from the robot
were significantly less anxious compared to the control group
that did not have the robot. While a number of factors were
thought to contribute to this reduction in anxiety, the authors
claimed a major reason to be intentional mistakes the robot
made. The mistakes not only gave the students a chance to
correct the robot, but also made them less afraid of making
errors of their own.

When looking at speaking skills, the focus can not just
be on vocabulary gains, but pronunciation as well. Lee
et al. [13] conducted a series of lessons to help Korean
children from grades 3 to 5 (roughly 8 to 10 years old)
learn English. In South Korea children start learning English
from grade 3. As part of a lesson series they were given
a pronunciation training with a robot, that used a lexicon
that included often confused phonemes, so that the robot
could correct the child’s pronunciation. It was reported that
the children’s speaking skills improved significantly with
a large effect size when measured by a teacher. As well
as the improvement in speaking skills all three affective
factors – interest, confidence and motivation – all improved
significantly.

Instances of robots acting as care-receivers also occur in
RALL. In a study by Tanaka and Matsuzoe [14], Japanese
children were given the role of teaching English verbs to a

NAO robot. The children had to guide the robot’s arm to act
out the target verbs, e.g. brushing teeth. In a comprehension
post-test the children answered correctly more often with
words they had taught the robot than those learnt during a
regular verb-learning game. While the robot only learned
from ‘Direct’ teaching, where the child was guiding the
motion of the robot, there was a high frequency of verbal
teaching using English.

We can see that there are many instances where RALL
is able to assist in teaching an L2 to students. Many of
these show a reduction in FLA and increase in confidence
and willingness to learn in the students. In all these cases,
however, they use the robot to teach, whether directly in the
role or acting as a care receiver or assistant. Robots were not
used in assessment, and in most cases the tests performed
were aimed at measuring the comprehension of the L2 words
that were being taught. We want to explore the possibility of
using a robot to assess the L2 production of children. Due to
the reported reductions in anxiety and increase in confidence
when using a robot, we may see an increase in the amount
of production.

III. STUDY DESIGN

This study was conducted at a local school with English-
speaking 5- to 6-year-old children. We decided to teach
spatial language, more specifically spatial prepositions, be-
cause while those concepts are more abstract than physical
objects, we can still represent them using images. Spatial
language itself is also particularly challenging to L2 learners
as the meaning can often differ depending on context and
the referent. Every morning, five children were randomly
selected to participate in the study for that day and assigned
a condition, balanced across gender. These five children were
first given a French lesson before playing our production quiz
game on an interactive table [15] individually throughout the
rest of the day (Figure 1). An agent (robot or experimenter
depending on our condition) is placed opposite to the child
and gives instructions and encouragement to the children.
The interactive table displays an image of a teddy bear and
a chair. The child would have to use one of the French words
taught to describe the position of the bear relative to the chair.

As well as the teacher three experimenters were involved
in the study:

1) Lead Experimenter - The lead experimenter acted as
the interaction point for the children outside of the one
to one sessions. Either the lead experimenter or the
wizard was required to be in the presence of the child
while outside their classroom. The lead experimenter
was certified in the children’s health and well being,
and was there to ensure the health and safety of the
children as required by the school.

2) Wizard Experimenter - The wizard experimenter con-
trolled the robot remotely via a laptop interface. The
wizard experimenter was also certified in the children’s
health and well being, but had minimal interaction with
the children so as to minimise interference during the
study.



3) Blind Experimenter - The blind experimenter facili-
tated the interactions before the main study began,
provided the comprehension test and acted as the agent
in the child-human condition. The blind experimenter
was unaware of the purpose of the study to reduce
influencing the outcome.

A. Hypotheses

With our study we wanted to test the following hypothesis:
H1 The presence of a robot will allow children to produce

more spatial words verbally in an L2 than when
working with a human experimenter.

We expected to see with our data similar findings to those
of Laufer et al. [4]:

H2 Comprehension (passive recognition) is easier than
production (active recall), and a hierarchy between the
two can be shown.

B. Teaching

The children were taught five French words: Nounours
(Teddy Bear), chaise (chair), devant (in front of), sur (on),
sous (under). Of these, the first two were supporting words
and the last three were the target words for the study. The
content of the lesson was created and taught by a professional
French teacher, with a goal of enabling the children to
produce these words after one lesson. We decided to use
a professional teacher as we did not want a robot teacher
that would also influence our results. It has also been shown
that human teachers can still outperform a robot teacher.
[16]. The lead experimenter acted as a teacher’s assistant.
The children were taught in groups of five. The lesson was
designed to last 30 minutes.

The teacher started the lesson by introducing the children
to the support words. At all stages the children were encour-
aged to repeat any French words they heard. The children
were taught a song that used the three target words and hand
gestures to go along with them. After singing, the children
would position themselves relative to the chair based on the
words announced by the teacher. The children were then each
given a teddy bear and repeated the process with the bear.
The children then played a game of ‘Telephone’. In this game
one child was first given one of the target words, and each
child would whisper the word to the next child down the line
until the last child. The last child would announce to the rest
of the group the word they heard. The game was repeated
several times with the children re-organised into a different
order so that the announcing child changed each time. This
was followed by a game of ‘Corners’. In each corner of the
lesson area, a teddy was placed in a position relative to a
chair that referred to one of the target words. The children
were then encouraged to sing and move around until the
teacher would stop them, and say one of the target words.
The children then had to move to the relevant corner and say
the word three times. Variants of this game were then played
in teams with the chairs lined up, and then individually.
Finally each child was told to say one of the target words
and then go stand by the correct chair. The lesson wrapped

Fig. 2: A child being administered the comprehension test
before moving onto the main production quiz.

up with one more repetition of the song they had been taught
near the beginning.

During the interaction we also established any prior
Knowledge in the target language. They were split into the
following categories:

1) No Exposure - The children have not been exposed to
any French, other than potentially those used in popular
culture e.g. C’est la vie.

2) Beginner - The child has potentially received some
lessons in French and knows simple phrases that do
not include our target words e.g. Je m’appelle John.

3) Intermediate - The child has knowledge of French,
including our target words.

4) Advanced - The child has an intricate knowledge of
French, and is able to produce words with a high
capability or are fluent.

Children of intermediate or advanced knowledge were
excluded from the data analysis. 25 children took part in
our study of which three were excluded from the analysis of
results, leaving 22 children.

C. Individual Interactions

Upon completing another familiarity task and a 10 minute
activity with the robot–that required the child to describe the
position of objects to the robot in English–a comprehension
test was administered by a blind experimenter who was
unaware of the purpose of the study (Figure 2). This served
as a small refresher of what the children had learned earlier
in the day, as well as allows us to establish a baseline for
the efficacy of the lesson. For the comprehension test there
were 6 sheets with 3 images each (representing the 3 target
words), placed on the left, in the centre or on the right.
Together, the 6 sheets covered all possible permutations of
the 3 target words (devant, sur, sous) with each of the 3
positions. The images were similar but not the same as the
ones used for the production quiz questions. For each sheet
the experimenter asked the child to point at the picture that



Fig. 3: The ‘wizard’ experimenter was positioned behind the
child to minimise interaction between them.

matches the statement (see below). If the child pointed to
the wrong picture they were allowed to try again until they
pointed to the correct image. We repeated each target word
twice to account for guessing and to ensure they weren’t
just picking based on location on the question sheet. The
statements and their order were the same for every child:

1) Le nounours est sous la chaise.
2) Le nounours est devant la chaise.
3) Le nounours est sur la chaise.
4) Le nounours est devant la chaise.
5) Le nounours est sur la chaise.
6) Le nounours est sous la chaise.

The child then played the production quiz with either the
robot or the blind experimenter based on the group they
were in (child-robot or child-human). In both conditions,
the production quiz was displayed on the sandtray. The
robot was controlled through a Wizard-of-Oz interface, with
the ’wizard’ sat behind the child, out of sight, so as to
minimise effects on the child (Figure 3). The rules of the
game were explained by the agent (blind experimenter or
robot). The child was sat in front of the sandtray upon
which the production quiz game was displayed. The agent
sat opposite the child. The sandtray displayed an image of
the teddy bear in a position relative to the chair, and the
agent or child must answer “Où est le nounours?” (Where
is the teddy bear?). The agent was to give the answer in the
form “sur/sous/devant la chaise”, but any answer given by
the child that included one of the target words ‘sur’, ‘sous’ or
‘devant’ was accepted. Each correct answer scored a point. If
either the question was answered correctly or both the child
and the agent answered incorrectly then the production quiz
moved onto the next question. If the child did not answer
after a short period then the agent would give encouragement
in proceeding levels:

1) Encourage the child to guess e.g. “Just have a guess”.
2) Targeted encouragement, such as asking them to re-

member the lesson from the morning.

8

10

12

14

4 6 8
Quiz Score

To
ta

l A
tte

m
pt

s 
at

 C
om

pr
eh

en
si

on
 T

es
t

Condition
Human
Robot

Fig. 4: A comparison between the score in the production
quiz and the number of attempts required to complete the
comprehension test. No significant correlation was found.

3) The agent will attempt the question.
• If the child was ahead on points then the agent

(adult/robot) would answer correctly so as to keep
up an appearance of a challenging opponent in the
game.

• If the child was level or behind the agent
(adult/robot) then the agent would answer incor-
rectly to demonstrate a willingness to answer even
if wrong.

If the child still did not have a guess after all stages then
the game proceeded as if they had answered incorrectly. The
agent began the production quiz after explaining how to play
by answering the first question correctly. There were nine
subsequent questions which we expected the child to answer,
three for each target word.

IV. RESULTS

A. Participants

25 children took part in our study of which three were
excluded from our analysis of results leaving us with 22
children. 11 Children were in the Human Condition (4
Female) and 11 in the Robot Condition (6 Female). There
were 11 5 year olds (6 Female) and 11 6 year olds (4
Female). Of these children two had an L1 other than English
(1 Female), but their English level was high enough to still
participate.

B. Comprehension

We measured the answers on the comprehension test as
the number of attempts to find the correct answer. The mean
total number of attempts for the comprehension test was
9.5 (SD=1.92), with 6 being the highest possible score and
18 being the lowest. In the Human condition the children
averaged 9.73 (SD=2.20) attempts at the comprehension test
while in the Robot condition the children averaged 9.27
(SD=1.68). Using a Welch Two Sample t-test, no significant
difference between the two conditions was found (t= -0.55, df
=18.72 p=0.59). This shows that the groups between our two



No. Spatial Words Quiz Score

Human Robot Human Robot

0.0

2.5

5.0

7.5

10.0

12.5

Condition

A
m

ou
nt

Fig. 5: Analysis of L2 spatial words used during the pro-
duction quiz. Left: spatial words used without additional
prompting to attempt the question; right: number of correct
words said by the children during the production quiz.
In both cases no significant difference was found between
the robot and adult conditions. Error bars are showing the
standard deviation.

conditions were roughly equal in ability before beginning
the production quiz. The number of attempts was similar
throughout the task, and no learning effect was seen when
the first half and the second half of the comprehension test
were compared (first half: mean=4.5, SD=1.26; second half:
mean=5 SD=0.93; t=-1.50, df = 38.51, p=0.14).

C. Production

Children in the child-human condition scored M=6.64
(SD=1.43) out of 9 on the production quiz and M=6.18
(SD=2.18) in the child-robot condition. Using a Welch Two
Sample t-test no significant difference between the two
conditions was found (t=-0.58, df =17.27, p=0.57).

We also analysed the total number of spatial vocabulary
used in L2 (Figure 5). Due to a break in protocol, children
were sometimes prompted to attempt a question again instead
of moving on in the production quiz. As such our analysis is
on words used without being prompted for an additional at-
tempt. In the Robot condition, the children averaged M=9.45
(SD=2.46) spatial words, compared to M=9.36 (SD=1.91) in
the Human condition. Using a Welch Two Sample t-test no
significant difference was found (t=0.10, df=18.4, p=0.92).

Finally we analysed the amount and level of encourage-
ment given (see levels in Section III-C). While encoding
encouragement given to the children we added a fourth level
for analysis of the results:

4) Encouragement is given that changes or disrupts the
task, e.g. telling the child that the current question is
the same as a previous one.

The mean amount of encouragement given was M=12.36
(SD=7.46) in the Human condition and M=13.09 (SD=7.78)
in the Robot condition. No significant difference was found
between the conditions (p=0.83). However we see a signifi-
cant difference in the average maximum level of encourage-
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Fig. 6: Analysis of the average maximum level of encour-
agement reached across conditions. A significant difference
is seen between the two conditions, Human and Robot. Error
bars are showing the standard deviation.

ment per question across the two conditions (Robot: M=1.12,
SD=0.57. Adult: M=2.09, SD=1.09, p=0.02). This is strongly
influenced by the amount of level 4 encouragement given by
the adult, of which we see 33 instances across 10 children.
We see a significant difference between the average amount
of level 4 encouragement given per child between the amount
given in the first half of the study compared to the second
showing an increase in deviation from the protocol over
time (First Half: M=1.25, SD=.0.88. Second Half: M=4.25,
SD=2.64, p=0.04).

D. Comprehension and Production

Across both conditions the children had an average score
on the production quiz of 6.41 (SD=1.82) out of 9 and is
significantly above chance (p=0.03). A negative but non-
significant correlation was found between attempts at the
comprehension test and their production quiz score (Pear-
son’s r=-0.29, p=0.19). The lack of correlation suggests that
abilities in comprehension and production are not directly
related.

We also looked at the hierarchy between comprehension
and production. We marked a child as having achieved
comprehension on a particular word if they required less
than four attempts across the two relevant questions in the
comprehension test. For example if we were looking at
whether a child could comprehend the word ‘sur’ we would
look at the number of attempts they took for questions
three and five. If a child takes two attempts on question
three and one attempt on question five their total number
of attempts for ‘sur’ would be three. We would mark this
child as being able to comprehend ‘sur’. We marked a child
as being able to produce a word if they scored at least two
points in the production quiz on the three relevant questions.
Using Guttman’s Coefficient of Reproducibility (reported in
Table I), we were unable to find a hierarchy. A hierarchy
would show that comprehension is needed for production.
Guttman’s Coefficient measures whether such a hierarchy



exists based on the number of deviations from that hierarchy.
A coefficient of over 0.9 is expected to display such a
hierarchy.

Sur Sous Devant

No. Deviations 5 3 4
Guttman’s Coefficient λ4 0.11 0.57 0.56

TABLE I: Table detailing the number of deviations from
the expected hierarchy and the Guttman’s Coefficient of
reproducibility. In the case of all three words, we fail to
meet the reliability expectation of 0.9

V. DISCUSSION

A. Effectiveness of the robot to support L2 production

The scores from the production quiz are higher than we
expected. From the literature we expected L2 production to
be difficult for the children, and our expert tutor believed
that it would take two to three sessions for most children to
produce at all. The observed prowess of the children may
be partially explained by the design of the lessons, directly
aimed at encouraging the children to produce the target
words for this study. It should be noted that most productions
were only single words. Only two children produced any
of the support words (nounours – teddy bear, and chaise –
chair).

While this study does not show statistical improvement to
a child’s ability to produce by using a robot over a person,
it does show equal performance in this task. It may still
be desirable to use a robot to allow standardization and
automation of assessment. With a minimal amount of support
being provided by an agent, only a narrow set of phrases can
be given – otherwise the nature of the task could be changed
from production. This can make interactions very repetitive
for the assessor. Though the scores were higher than expected
it still proved to be a challenging task for the children. With
the minimal amount of support available to an experimenter
it could be emotionally stressful to be unable to intervene
when a child is finding the task difficult.

Several factors may contribute to the high performance of
the experimenter. Even within the context of a limited set
of responses a person is able to provide much better cues
and encouragement based on reading the child. These kind
of social skills are still a gold standard to which robotics
researchers strive. Though this experiment was conducted
using a ‘wizard’, their position and the time delay in actions
for the robot prevented this fine grained social interaction.
Some of the cues provided by the experimenter were not
programmed into the robot but should be added into its
repertoire

1) Direct phonetic cues - Giving part of the word e.g. the
starting s.

2) Indirect phonetic cues - Giving clues to the word about
how it sounds e.g. “It’s the one with a strange sound
in it”

3) Rhythmic cues - Giving the syllables of the word e.g.
“Duh-dum”. This may work well for the small target
vocabulary, like ours, where this could refer to a single
word, but may be less effective in larger vocabularies.

4) Gestural cues - Movements with the hands that mimic
gestures used by the teacher in the lesson.

Despite the more limited social skills of the robot, it was
still able to match the performance of a person. This may
be the expected reduction of anxiety balancing the limited
social behaviours.

However we also saw a large amount of encouragement
given to the children by the blind experimenter that was
outside of the original protocol, that could be deemed to have
affected the scores of the children in an undesirable way.
While in the first half the amount of these encouragements
by the experimenter remained low, there was a sharp increase
in the latter half. This could be caused by forgetting the
protocol over the days of the study or just growing more lax
in its use, or even the emotional stress that is put on a person
by the children’s difficulties.

The presence of a wizard in the room may also have been
a contributing factor. The presence of a person, even when
not in view, may have prevented the robot from reducing
anxiety as much as it could have done, as the child might be
aware someone else is listening in. However the majority of
children did appear to forget that he was there, and focused
on the robot.

Finally, it must be noted that the school where we per-
formed the study cultivated a much friendlier relationship
between adults in the school and the students than is typically
seen. This may have made the children feel more comfortable
and confident in the presence of our experimenter, reducing
anxiety. Future work will focus on broadening this study to
multiple schools to see whether our results can be replicated
in different settings.

B. Relative difficulty of comprehension versus production

The lack of correlation shown between the production quiz
score and the number of attempts on the comprehension test
(Figure 4) shows that there was no direct relation between
comprehension and production vocabularies. However when
we look at the possibility of a hierarchy from comprehension
to production we do not find evidence to support a hierarchy.
This could have had several causes. While we were hoping
to find support within our data, we were not directly testing
for this hierarchy. Laufer et al. [4] looked at students 16
years and older at high school and university who had been
studying their L2 as part of a national curriculum between
6 and 9 years. Ours is based on a single lesson focused
entirely on being able to say the target words. The younger
children in our study may also have been more receptive
to learning words productively, as they are still increasing
their phonological vocabulary. These skills have been shown
to have a correlation with word vocabulary [17]. These
factors could account for an increase in deviations from the
previously established hierarchy.



VI. CONCLUSION

We hypothesized that a robot could surpass human perfor-
mance in encouraging the production of spatial language: this
hypothesis is not supported by our study; however, the robot
nevertheless matches the performance of a human facilitator.
This was despite the greater social ability of the human
experimenter, and is suggestive that the robot does make
the children less anxious. Future work expanding the robot’s
social ability may improve the robot’s ability to assess and
support a student’s learning. Measuring the production skills
of a child at this level is a repetitive and lengthy task. An
autonomous robot that is able to measure the production level
of a child may alleviate these factors, enabling more accurate
data collection for both research and assessment purposes.

Currently we are planning on expanding this work to more
schools while increasing the social skills of the robot.
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Abstract

Establishing common ground when attempting to disambiguate spatial
locations is difficult at the best of times, but is even more challenging between
children and robots. Here, we present a study that examined how 94 children
(aged 5-8) communicate spatial locations to other children, adults and robots in
face-to-face interactions. While standard HRI implementations focus on
non-ambiguous statements, we found this only comprised about 20% of children’s
task based utterances. Rather, they rely on brief, iterative, repair statements to
communicate about spatial locations. Our observations offer strong experimental
evidence to inform future dialogue systems for robots interacting with children.

1 Introduction

For children arriving in a new country, learning the language of their new home is an
important part of their integration. Proficiency in the language of the host country is a
vital condition for success at school. Even for children of migrants born in the host
country, this may be an issue if the language used at school cannot be reinforced in the
home. As tailored language classes are expensive and limited in time, we wish to
explore if robot tutors can be used to complement language tutoring. This is
encouraged by robots having been shown to be able to reduce anxiety in a second
language learning when acting as a peer [1]. However there is still much to be
considered when designing a robotic language tutor [5].

Figure 1. A child interacting
with the robot in our study.

While most language tutoring systems
focus on the learning of nouns and verbs, we wish to
study the learning of spatial language instead: the
vocabulary and grammatical constructions serving
the communication of spatial relations. Spatial
language is particularly challenging, as the semantics

are often vague, context dependant and referent dependant. For example, in “the apple
next to the bowl” the spatial referent “next” does not have boolean membership, but
rather has a graded membership depending on the distance between objects and the size
of the objects. A typical assumption in Natural Language Interaction Systems (NLIS) is
that referring expressions (RE) are unambiguous descriptions of object locations and
that a linguistic interaction between a user and a computer system follows a quite
structured and clear interaction flow using unambiguous utterances [8]. This might be
the case for spoken interfaces in banking systems or telephone ordering, but the
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literature in socio-linguistics and dialogue systems show that language is much more
dynamic than NLIS typically allows for, and this is specifically prominent in spatial RE.

Socio-linguistics suggests that people do not tend to use fully specified RE. Instead,
they reduce the cognitive load by under-specifying the description and then rely on a
strategy of repair to correct misunderstanding if necessary [7]. Rather than this being a
one-way communication, it is a fundamentally social process. The person being
addressed is expected to be an active contributor to the process of reaching common
ground. Each participant in the conversation will contribute until a grounding criterion
is met [6], i.e. when each contributor to the communication believes that they have
understood enough for their current purpose. Pickering and Garrod [11] describe this
partial alignment of common ground as the natural way in which we communicate. Full
common ground is only necessary when there is difficulty reaching alignment.

Dialogue management systems have to take into consideration these under specified
statements. One assumption that often made in interaction between two agents is that
what is said by one, is how the other understands it. However this is not always true,
even in human-human interaction [10]. Instead, continuous communication can allow a
system to re-evaluate its belief state of the current environment, and the belief state of
other communicative agents. For spatial tasks they are able to use contextual language
to help with the positioning of an item [2]. Instead of complex statements that try to
pinpoint the exact location in one sentence, a series of much simpler statements is used.

By contrast, implementations of RE generation and understanding for use in
robotics often follow Gricean Maxims [9], such as the Incremental Algorithm [8]. These
algorithms focus on a single statement that eliminates ambiguity. While communicating
clearly and unambiguously about spatial references is one solution to the problem of
communicating about space, more recent systems also incorporate perspective
taking [12], which may alleviate the need for precise but verbose REs. With perspective
taking we do see a more interactive approach. But this process still relies on reaching
full alignment by eliminating ambiguity.

Our present study provides real-world data of children establishing common ground
in the natural course of playing a game. We observed them either interacting with other
children, with adults or with a robot using a Wizard of Oz setup. The study provides
opportunities for the children to use a large set of spatial language, perspective taking
and establishing a common point of reference, whilst being easy to replicate.

2 Study Design

Figure 2.The experimental
setup. A top down view show-
ing the position of the manipu-
lator and describer sitting oppo-
site each other with the “Sandtray”
screen in the middle. The experi-
menter is sitting to the side with a
camera recording the participants.
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We collected data from 94 children
between the ages of 5 and 8. They were assigned
to one of three conditions: child-child, child-adult
or child-robot. For the child-child and child-adult
conditions children from two different schools
were used. They participated during the day
at their school in a room for individual teaching.
In the child-child condition two children
from the same class participated together. In the
child-adult condition a child participated with an
experimenter. Those in the child-robot condition

were recruited from register held by the Babylab at the University of Plymouth.
Following a sandbox paradigm [3], one child and a partner (child, robot or adult) are

sitting on opposite sides of a large touchscreen (Fig. 2). The screen presents a
background with different areas: a castle, a desert, two rivers with bridges, a lake, two
beaches and many bushes or trees.
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One agent, hereafter called the describer, has to guide the other agent, called the
manipulator, to move items on the touchscreen to a desired location. The describer is
provided with a reference map, which is kept hidden from the manipulator, with the
desired position of eight items (Fig. 3).

While it has been shown that pointing can influence the words used [13], the task
could be easily completed without words if gestures were allowed. As we were focused
on the language being used, the describer was instructed not to use pointing gestures. If
children attempted to use pointing they were reminded that this was not allowed.

Figure 3.An example of the
reference map given to a
child to describe. The eight
items (face, crocodile, elephant,
zebra, hippo, lion, giraffe and ball)
are shown in the desired location
that they need to be moved to.
The child describes the position
on his map for an agent to manip-
ulate into the correct position.

The touchscreen presents a background
with different areas (Fig. 3). Eight movable
items have to be moved to specified locations
on the map. The reference maps were designed
to elicit a number of different ways to describe
the position of objects. Some objects were facing
a particular direction, to encourage locutions
like ‘in front of’ or ‘behind’. Features, such as the

bridges and bushes, were repeated so as to require disambiguation. Verbal
disambiguation was also elicited by the relatively small size of the screen, which limits
the effectiveness of joint gaze to identify the correct location for an object.

In the case of the child-child and child-adult conditions, after the first map was
completed, the role of manipulator and describer would be swapped. In the case of the
child-robot condition the child would be invited to describe the second map. The robot
itself would appear to move objects around the touchscreen via the use of a Wizard of
Oz control interface, held by an experimenter. The experimenter is able to move an
object on their interface, the robot would then move its hand to point at the object and
then move its hand to point at the target location, with the object moving with it.

3 Results

For statistical power reasons, we focused our current observation of results on the
child-child interaction (Child-Child=60, Child-Adult=26, Child-Robot=8), while
providing more qualitative observations of the other conditions in the discussion.

We observed an average of 7.12 (SD=7.50) repair statements used per round (one
round consisted of one map with eight objects to be moved). The SD shows large
inter-personal variations. There were comparatively few cases of repair statements
requiring spatial perspective taking (M=0.56 per round). Despite being told not to use
them, there was an average of 2.43 (SD=3.03) pointing gestures used per round.

Figure 4. Break down of on-
task statements. Ambiguous
descriptive statements were a sig-
nificantly higher proportion than
the other statement types.
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We took all the on-task statements
from a sample of 10 child-child sessions,
giving us data from 20 children. The statements
were divided into the following categories:
Ambiguous-Descriptive (statement refers to more
than one location e.g.’the zebra is on a bridge’),
Contextual (statement following from previous
statements, that would make no sense to a third
person entering the conversation e.g. ’the other
one’), Negation(statement indicating that it is an

incorrect location with no further description e.g. ’no’), Non-Ambiguous (statement that
describes only one possible location e.g. ’the crocodile is in the big lake’) and Pointing.

On average Ambiguous-Descriptive statements were used 38.6% of the time,
Contextual in 13.1%, Negation in 9% and Non-Ambiguous in 23.2%. Using a Welch
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two-sample t-test we find that the Ambiguous-Descriptive statements are used
significantly more than any other type of statements, and Cohen’s d test shows a large
effect size in each case (Contextual: t(38) = 4.2, p < .001, d = 1.34; Negation:
t(38) = 7.8, p < .001, d = 2.48; Non-Ambiguous: t(38) = 3.7, p < .001, d = 1.17).

4 Discussion

Our observations show that interactions between children (and between children and
robots) are highly dynamic, fast-paced and relying on the situatedness and embodiment
of the conversation partners [4], very unlike the “walkie-talkie exchanges” typically used
in Human-Robot Interaction. Between children, as soon as the manipulator has enough
information to make a guess they will often start moving the objects, without waiting
until enough information is given as to be non-ambiguous. This has two possible
outcomes: either they guess right, or it causes the describer to generate a repair
statement. It also appears that typically it is easier for the describer to let the
manipulator start moving the objects – knowing that the position they described is
ambiguous – so that they may then generate a short, easily understood, repair, reducing
the cognitive load. In fact we see that the robot’s inability to change course after it has
started moving an object caused frustration to the child describing.

In the child-robot condition there appeared to be a reduction of the repair
statements when the robot moved items incorrectly. This could be caused by many
factors, such as the children feeling more nervous with the robot, the expectations they
have of its abilities and the absence of some basic social cues, such as back channelling
and lack of eye contact, all of which made the interaction laborious.

Pointing was still prevalent, despite it being disallowed and discouraged (even the
experimenter was found pointing or indicating directions). Future work could look at a
different methodology to encourage the combination of gestures and language.

5 Conclusion

Counter to many implementations that seek to eliminate ambiguity entirely, we find
that children tend to use many ambiguous statements when describing the location of
objects. As such the robot, when being given RE, must expect ambiguous statements. It
should not wait for further information, but rather start acting on the information it
has, as this will also assist in the process of description. This also means that the robot
should be prepared to react quickly to repair statements by enabling it to diverge from
its current action to take into account the new information.

This also means the robot should be allowed to be ambiguous in its descriptions. This
may be beneficial to reduce processing requirements for the robot itself, but also may
help reduce the cognitive load for its conversational partner. When doing so, the robot
should monitor closely the reaction of its partner, and be prepared to provide timely
repairs to lead the implicit, interactive disambiguation process.

Our next steps are to implement a more interactive robot to collect more data with
children interacting with the robot. Using this data we will be able to build an effective
framework for natural spatial communication between children and robots.
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J. Kanero, J. Kennedy, A. C. Küntay, O. Oudgenoeg-Paz, et al. Guidelines for
designing social robots as second language tutors. International Journal of Social
Robotics, 2017.

6. H. H. Clark and E. F. Schaefer. Contributing to discourse. Cognitive science,
13(2):259–294, 1989.

7. H. H. Clark and D. Wilkes-Gibbs. Referring as a collaborative process. Cognition,
22(1):1–39, 1986.

8. R. Dale and E. Reiter. Computational interpretations of the Gricean maxims in
the generation of referring expressions. Cognitive science, 19(2):233–263, 1995.

9. H. P. Grice, P. Cole, J. Morgan, et al. Logic and conversation. 1975, pages 41–58,
1975.
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