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D4.1 Input Module for Number Domain

Executive Summary

This document outlines the current implementation and evaluations leading to the input module for
the L2TOR number domain. Specifically, evaluations of Automatic Speech Recognition (ASR), face
detection, face recognition, and object recognition in the context of child-robot interaction are described.
The implementation of components for the L2TOR system is derived from these evaluations and will
be detailed here.
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1 Overview of the Number Domain Input

Work Package 4, multimodal input processing, aims to leverage existing software and methods for
social signal processing. The solutions devised as part of this work package will provide the input
from sensing data to enable the lessons for the L2TOR evaluations. The intention is that wherever
possible, the input module should utilise current state-of-the-art software following evaluation of its
suitability for the specific scenarios in L2TOR. This approach encourages efficient use of resources,
whilst simultaneously providing substantial information for use by the robotic platform from the world
(and specifically, interacting partners) around it.

The work in this deliverable describes the research undertaken in the design and development of
the software prototype for the multimodal input interpretation for the number domain (Milestone 7).
The specific input modalities considered here are speech (Section 2), in the form of automatic speech
recognition (ASR) and voice activity detection (VAD), and vision, in the form of face detection and
face recognition (Section 3), and object tracking (Section 4). These modalities are included in Tasks
4.1, 4.2 and 4.6 from the Description of Action. Some of this work additionally serves as preliminary
investigation for, or overlaps with the requirements of, D4.2 which is concerned with the spatial domain;
these aspects will not be discussed here, but in D4.2, due in M27.

The software prototype associated with this deliverable comes in the form of a series of components
(available from the L2TOR Git repository). Section 5 describes the implementation of these components,
and also provides a brief overview of how these components fit into the main L2TOR system that will
be used in the number domain evaluations.

2 Speech Input

Speech is manifestly key in language learning, an application reliant upon verbal channels of com-
munication. This is particularly apposite when interacting with children as young as those under
consideration in the L2TOR project (aged 3-5 years old), who have limited reading and writing capabil-
ities. This includes not only appropriate speech production by robots, but detecting, transcribing and
understanding speech from young users as well. A prerequisite to this interpretation of speech is having
a sufficiently accurate transcription of what is being said. For this reason, high-quality Automatic
Speech Recognition (ASR) is a vital component for producing autonomous human-robot interaction;
this is discussed in Section 2.1. It is also useful to know when a child is speaking. This would enable a
robot to generate autonomous behaviour contingent on that of the child, e.g., the robot could focus its
attention towards the child at appropriate moments in the interaction. Voice Activity Detection (VAD)
in the context of child speech is therefore discussed in Section 2.2.

2.1 Automatic Speech Recognition

ASR engines have undergone significant improvements in recent years, particularly following the
introduction of new techniques such as deep learning [1]. However, these engines are commonly
evaluated against standardised datasets of adult speech [2]. One might naively assume that these
improvements will also translate to child speech, and will cope relatively well with noisy (i.e., real
world) environments, such as those experienced in applied HRI. However, this is often observed to not
be the case, cf. [3].

As part of the research undertaken for T4.1 for the L2TOR project, we systematically evaluate a
number of state-of-the-art Automatic Speech Recognition engines under a variety of environmental
conditions. Using a combination of restricted and free speech from 11 children, we explore the impact
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D4.1 Input Module for Number Domain

of background noise, microphone quality, microphone placement, and providing a grammar to ASR
engines. The findings in full can be seen in [4]; included as Annex 6.1 here. A summary of the
outcomes from this evaluation is reproduced below:

• Constrain the interaction by leading the child to a limited set of responses. This typically works
well for older children, but carries the risk of making the interaction stale.

• Use additional input/output devices. A touchscreen has been found to be a particularly effective
substitute for linguistic input [5], but also other devices –such as haptic devices– should be
considered.

• Place the young user in the optimal location for ASR. The location and orientation relative to the
microphone (and robot) has a profound impact on ASR performance. A cushion, stool or chair
can help children sit in the optimal location.

• Constrain the grammar of the ASR. While not all ASR engines allow for this, some will allow
constraints or “hints” on what is recognised. This proves to be valuable in constrained interaction
settings, for example, when listening only for numbers between 1 and 10.

• Background noise appears to be less of an issue than initially anticipated. It appears that the
current ASR engines have effective noise cancelling mechanisms in place. Nevertheless, “the
less noise, the better” remains true, particularly when interacting at a distance from the robot.

• A lack of ASR performance does not mean that the robot should not produce speech, as speech
has been found to be particularly effective to engage children.

To summarise, ASR performance is not currently sufficient to understand open speech from children.
The robot will need to direct the child towards answers with a small number of responses to maximise
the likelihood of accurate recognition. Using an external microphone and a cloud-based recogniser can
lead to improvements in recognition when using a restricted grammar, however, this adds potentially
impractical requirements for interaction scenarios (such as placing large and expensive, studio-grade
microphones beside the robot, with a reliable internet connection). Simply using a small off-board
microphone does not provide a significant improvement above the built-in robot microphone, so the
built-in microphone should be preferred for speech recognition tasks. Nevertheless, numbers from
1 to 10 are only accurately recognised 61% of the time (95% CI [48%,73%]). Possible responses
must be restricted to a smaller set of options, or alternatives to speech input must be offered, such as
touchscreen input.

These evaluations were conducted in English, which is likely to have the largest amount of raw
data for training speech recognisers. Other languages used in the project, such as Dutch and Turkish
will likely experience even lower recognition rates. Through small-scale pilots to verify whether this
was the case, we see that the performance for Dutch numbers from 1 to 10 spoken by a native child
achieves 20% recognition using the built-in NAO recogniser, whilst Turkish is not currently supported
as a language. For off-board microphones and cloud-based ASR engines, results for Turkish and Dutch
were similar to that of English in number word (translations of 1 through 10) recognition.

2.2 Voice Activity Detection

Voice Activity Detection (VAD) separates speech segments from non-speech segments in an audio
signal by using signal processing. VAD plays an important role in a variety of applications such as voice
recognition, speech enhancement, and speech coding where there is a requirement to classify audio
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Implementation VAD method
openSmile1 LSTM RNN
webrtcvad2 Gaussian Mixture Model

VAD-python3 Energy Based

Table 1: VAD implementations

True positive False positive Failed detections
OpenSmile 62% 23% 15%
webrtcvad 43% 50% 7%
VAD-python 26% 63% 11%

Table 2: VAD Results

data based as containing speech or non-speech data. The most common VAD algorithms are based on
an energy threshold, however some rely on more sophisticated models such as pattern recognition.

For Task 4.2, we reviewed and tested several state of the art VAD implementations as shown in
table 1.

In order to compare the VAD algorithms, we used pre-recorded samples of childrens voices from
Task 4.1. To simplify the evaluation, we used one female and one male voice of 30 seconds duration
that included some natural background noise from the school environment. Table 2 shows the results
divided into true or false positives and failed detections (failed to detect voice).

Based on the results, it is clear that the OpenSmile VAD, which is based on a LSTM Recurrent
Neural Network, outperforms the other two implementations, especially in situations with dynamic
levels and different types of background noise as found in school environments. For that reason, we
decided to utilise openSmile as the voice activity detector in L2TOR, as its trained model copes well
with childrens voices in noisy environments. Additionally, OpenSmile allows us to parametrize its
options to finely tune to the environment.

3 Identifying and Interacting with Children

WP4 is responsible for perceiving and analysing the environment through a variety of sensors and
provide meaningful information to the InteractionManager module (see WP5). Part of the perceptions
capabilities of the robot is the Face detection which is required for believable and contingent social
interaction between the robot and the humans. In addition, face recognition allows the robot to
personalise its behaviour and tutoring based on the recognised user. Both recognizers inform task 4.2
and have been combined into the Perception module that handles the information from the sensors and
the robots as described in the next two sections.

3.1 Face Recognition

Face recognition is one of the most challenging task for the computers. That is true especially when
the users to be recognized are 4 to 5 years old as the recognisers have been optimised for adult faces.
In L2TOR, we utilise the embedded ALFaceRecognition approach that is installed on the Nao robots
and is based on OMRON’s OKAO libraries. This recogniser works by comparing the user’s face with a
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Figure 1: Setup used to evaluate the effectiveness of face detection in a spontaneous interaction between
two children. Children are facing each other and sit on cushions. Each child wears a bright sports bib,
either purple or yellow, to facilitate later identification. Cameras are mounted at position where the
robot would be observing the children.

preloaded user database and returns a confidence value of the closest match(es). Tests in a university
environment showed that accuracy drops significantly when the lighting conditions change or when a
large number of users are added to the database. We conclude that face recognition is currently not
mature enough for use in real-world environments.

For that reason, a backup option will be used which allows manual identification by an operator.
This will allow the robot to correctly recognise the user, even if the system fails to perform the automatic
face recognition.

3.2 Face Detection and Tracking

Face detection is the process of finding a human face and keep tracking it until it moves out of the
viewing point of the camera. NAO robots provide the ALFaceDetection module that uses the frontal
camera on the head to detect and track a user. While this module offers sufficient face tracking, it
inherently restricts the operation of the tracker as the camera is mounted on the head which is constantly
moving while its performing behaviours. To overcome this issue, we used a Microsoft Kinect V2 sensor
on a fixed location in front of the user that captures depth and image information (RGBD). The face
tracking on Kinect provides a stable reference point of the head in 3D space along with its orientation.
The Perception module receives face information from both Kinect and the robot and distributes them
to the corresponding modules.

We evaluated face detection using the setup shown in figure 1. We use the face detection software
from the gazr library4, which relies on the dlib face tracker 5, which in turn is an implementation
of [6]. We recorded 64 children between the ages of 4 and 8. Interactions lasted from 5 to 40 min
(M=21m58s, SD=11m2s), which resulted in 2,232,978 video frames. The children’s faces were
detected in 1,208,309 of these frames, equating to M=54% of the frames (SD=22%, meaning that
there is considerable variation between children). This illustrates the challenge of solely relying on
face detection to drive the interaction: children are very dynamics, frequently looking away from the

4https://github.com/severin-lemaignan/gazr
5http://blog.dlib.net/2014/08/real-time-face-pose-estimation.html
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screen, the cameras and from each other. This negatively impacts the possibility to reliably detect their
faces. Ensuing from that, the reliability of measures relying on face analysis (such as the detection of
emotions or engagement) is restricted by the ability to detect faces.

4 Identifying and Tracking Objects

As part of the work undertaken for T4.1 for L2TOR we conducted a review of available technology for
real-world object recognition and tracking. The findings in full have been submitted to HAI 2017 6 and
the paper has been included as Annex 6.2 in this document.

Our review took into account factors that would affect the studies we intend to conduct, and present
challenges to deployment into multiple schools. These factors include changing backgrounds,lighting
conditions and occlusion. A number of techniques were considered based on 2D video stream, RGB-D
streams (colour and depth), and non-vision based.

The following is a summary of the findings from the paper:

• Fiducial markers provided highly stable and accurate pose information. However it is highly
vulnerable to occlusion. It also requires the use of additional blocks for affixing the markers.

• Feature tracking methods were unable to handle varying backgrounds. This causes issue when
the camera is moving, or if a participant enters the view.

• Template matching was robust, but does not scale well with multiple objects.

• Machine learning performs well for the objects it has been trained for, but is unable to handle
iconic representations of objects it has learned. This means a specific dataset for training, which
would require a lot of time to prepare. Preparation of our own data set would also be necessary
to obtain proper depth information.

• The implementation of tabletop segmentation that was tested was unstable, producing a lot of
false positives. The planar segmentation itself could be useful when implemented with another
method.

• Intel’s Realsense SDK performed well, but would sometimes lose an object, requiring the object
to be moved before it was re-acquired. While not common this would still cause too many
problems during a study, or when deployed at schools.

• None of the vision based techniques were fully capable of performing to the required standard on
their own. Time spent developing a pipeline of vision techniques would be required to develop a
robust system.

• Magnetic sensors perform well for tracking a single object. However to distinguish between
multiple objects requires the use of RFID tags. The sensors can also only measure a few
centimetres above them.

• An NFC mat is highly reliable and accurate. Similar to the magnetic sensor however it can only
measure a few centimetres above the actual mat itself. Still for many of the situations required
for the lessons this may be the most accurate and reliable. The mats themselves however cost
roughly e1400 each.

6http://hai-conference.net/hai2017/
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Work by Vlaar et al. [7] has shown that in the context of learning a second language, that real world
objects present no advantage to learning new words than using objects displayed on a tablet. Based on
these findings, and the review of object tracking techniques it has been decided that the focus will be
on the use of a virtual scene on a tablet.

Underworlds 7 is a software framework for tracking geometric and temporal representations for
robots. Work has been completed to enable the use of this software for the representation of the position
of objects for the L2TOR project. Further details can be found in Section 5.

5 Software Prototype

Figure 2 represents the agreed architecture of the L2TOR project for both number and spatial domains.
WP4 is responsible for Underworlds, Perception Manager and the Tablet Game.

Figure 2: L2TOR architecture

5.1 Underworlds

Underworlds is a software framework for tracking geometric and temporal representations for robots.
Underworlds is currently coded in Python, but future plans include the addition of C++ wrappers.
Work has been completed for L2TOR to allow Underworlds to communicate with other modules in the
project via the use of JSON messages. The interaction manager module is able to send a message to
Underworlds to load a scene that is to be used for the current lesson. Messages can also be sent from the
tablet game to update Underworlds with the new locations of objects after they have been moved. This
framework also allows for messages from software that is providing the location of physical objects,
if this is still introduced at a later date. Underworlds can also calculate the basic spatial relations
necessary for the lessons in the number domain and communicate these to the interaction manager.
The calculation of spatial relations will be further updated for the spatial domain.

7https://github.com/severin-lemaignan/underworlds
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5.2 Tablet Game

Tablet Game is a HTML based 3D game (Figure 3) that allows object manipulation through touch and
provides a basic collision detection model to enable spatial reasoning. We decided to use a 3D version
of a game as it enhances the fidelity of digital representations and spatial abilities of the user. This game
allow the users the drag a number of objects in X and Y axis (we disabled the Z axis as it is difficult to
manipulate through touch and simplifies the interaction) according to robot’s instructions. The game is
capable of loading numerous 3D objects dynamically with textures. Each scene is loaded via JSON
messages that inform the locations and characteristics of each object (e.g., shadows, collisions, rotation,
colour etc.). The game is connected to the rest of the system via the Web Socket protocol and sends
updates for the location of the objects on every touch. The game engine does not include any rules as
that is handled by the InteractionManager in WP5.

Figure 3: Tablet Game

5.3 Perception Manager

The Perception Manager is the centralised module that handles all the incoming data about the
surroundings through the sensors. This module comprises of the VAD detector, Kinect module and
NAO perception. Perception Manager initialises and starts the VAD detector which can run either
on the tablet or on the operator’s computer as long as the selected microphone is close to the user.
The manager filters the messages and forwards them to the rest of the system with the following
structure: startVAD and stopVAD with timestamps. At this stage, Kinect module retrieves the position
and orientation of the user’s head and calculates the approximate gaze of the user. This in turn will
allow InteractionManager to facilitate more natural interactions through direct gaze. Additionally, head
location will be used by Output Manager to track the user’s face in real time. NAO perception is a
python module that sits as a service on the robot and manipulates the data from both ALFaceDetection
and ALFaceRecognition.
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6 Annex Descriptions

6.1 Kennedy, J. et al. (2017), Child Speech Recognition in Human-Robot Interaction:
Evaluations and Recommendations

Bibliography - Kennedy, J., Lemaignan, S., Montassier, C., Lavalade, P., Irfan, B., Papadopoulos, F.,
Senft, E., Belpaeme, T. (2017) Child Speech Recognition in Human-Robot Interaction: Evaluations
and Recommendations. In Proceedings of the 12th IEEE/ACM International Conference on Human
Robot Interaction. DOI: 10.1145/2909824.3020229

Abstract - An increasing number of human-robot interaction (HRI) studies are now taking place
in applied settings with children. These interactions often hinge on verbal interaction to effectively
achieve their goals. Great advances have been made in adult speech recognition and it is often assumed
that these advances will carry over to the HRI domain and to interactions with children. In this paper,
we evaluate a number of automatic speech recognition (ASR) engines under a variety of conditions,
inspired by real-world social HRI conditions. Using the data collected we demonstrate that there is still
much work to be done in ASR for child speech, with interactions relying solely on this modality still
out of reach. However, we also make recommendations for child-robot interaction design in order to
maximise the capability that does currently exist.

Relation to WP - This work directly contributes to Task T4.1.

6.2 Wallbridge, C.D. et al. (2017), Qualative Review of Object Recognition Techniques
for Tabletop Manipulation

Bibliography - Wallbridge, C.D., Lemaignan, S., Belpaeme, T. (2017) Qualative Review of Object
Recognition Techniques for Tabletop Manipulation. Submitted to HAI

Abstract - This paper provides a qualitative review of different object recognition techniques relevant
for near-proximity Human-Robot Interaction. These techniques are divided into three categories: 2D
correspondence, 3D correspondence and non-vision based methods. For each technique an implemen-
tation is chosen that is representative of the existing technology to provide a broad review to assist
in selecting an appropriate method for tabletop object recognition manipulation. For each of these
techniques we give their strengths and weaknesses based on defined criteria. We then discuss and
provide recommendations for each of them.

Relation to WP - This work directly contributes to Task T4.1.

Date: 05/05/2016
Version: No 1.0

Page 13



D4.1 Input Module for Number Domain

A Annexes

Date: 05/05/2016
Version: No 1.0

Page 14



Child Speech Recognition in Human-Robot Interaction:
Evaluations and Recommendations

James Kennedy
∗

Plymouth University, U.K.
Séverin Lemaignan

Plymouth University, U.K.
Caroline Montassier

INSA Rouen, France

Pauline Lavalade
Université Pierre et Marie

Curie, France

Bahar Irfan
Plymouth University, U.K.

Fotios Papadopoulos
Plymouth University, U.K.

Emmanuel Senft
Plymouth University, U.K.

Tony Belpaeme
Plymouth University, U.K.
Ghent University, Belgium

ABSTRACT
An increasing number of human-robot interaction (HRI)
studies are now taking place in applied settings with chil-
dren. These interactions often hinge on verbal interaction
to effectively achieve their goals. Great advances have been
made in adult speech recognition and it is often assumed
that these advances will carry over to the HRI domain and
to interactions with children. In this paper, we evaluate a
number of automatic speech recognition (ASR) engines un-
der a variety of conditions, inspired by real-world social HRI
conditions. Using the data collected we demonstrate that
there is still much work to be done in ASR for child speech,
with interactions relying solely on this modality still out of
reach. However, we also make recommendations for child-
robot interaction design in order to maximise the capability
that does currently exist.

Keywords
Child-Robot Interaction; Automatic Speech Recognition;
Verbal Interaction; Interaction Design Recommendations

1. INTRODUCTION
Child-robot interaction is moving out of lab and into ‘the

wild’, contributing to domains such as health-care [2], educa-
tion [15,25], and entertainment [20]. An increasing amount
is being understood about how to design interactions from a
nonverbal behaviour perspective [13,14], but many of these
domains hinge on effective verbal communication. This in-
cludes not only appropriate speech production by robots, but
transcribing and understanding speech from young users as
well. A prerequisite to this interpretation of speech is having
a sufficiently accurate transcription of what is being said.
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For this reason, high-quality Automatic Speech Recogni-
tion (ASR) is a vital component for producing autonomous
human-robot interaction. ASR engines have undergone sig-
nificant improvements in recent years, particularly following
the introduction of new techniques such as deep learning [26].
However, these engines are commonly evaluated against stan-
dardised datasets of adult speech [23]. One might naively
assume that these improvements will also translate to child
speech, and will cope relatively well with noisy (i.e., real-
world) environments, such as those experienced in applied
HRI. However, this is often observed to not be the case,
cf. [19].

In this paper we seek to evaluate the state-of-the-art in
speech recognition for child speech, and to test ASR engines
in settings inspired by real-world child-robot interactions. We
record a variety of pre-determined phrases and spontaneous
speech from a number of children speaking English using
multiple microphones. We separate recordings by whether
they are comparatively clean, or contain noise from the real-
world environment. Through consideration of the results, we
highlight the limitations of ASR for child speech, and also
make a number of interaction design recommendations to
maximise the efficacy of the technology currently available.

2. BACKGROUND
Speech recognition has undergone significant advances,

building on or moving on from the use of Hidden Markov
Models (HMM) towards using deep neural networks (DNN).
DNNs have been shown to outperform older HMM based
approaches by some margin against standard benchmarks [12].
For example, in a Google speech recognition task a deep
neural network reduced the Word Error Rate (WER) to
12.3%, a 23% relative improvement on the previous state-of-
the-art [12].

However, these benchmarks are based on adult speech cor-
pora, such as the TIMIT corpus [17]. It has been noted by
other researchers that there is a lack of corpora for children’s
speech, leading to a lack of training data and a lack of bench-
marking for children’s speech recognition models [5, 9, 11]. It
is commonly assumed that the recent improvements observed
in adult speech recognition mean that child speech recogni-
tion improved at the same pace, and recognising children’s
utterances can be achieved with a similar degree of success.
However, anecdotal evidence suggests that this is not the



case; Lehman et al. [19] state that recognition of children’s
speech “remains an unsolved problem”, calling for research
to be undertaken to understand more about the limitations
of ASR for children to ease interaction design.

Children’s speech is fundamentally different from adult
speech: the most marked difference being the higher pitched
voice, due to children having a shorter, immature vocal
tract. In addition, spontaneous child speech is marked by
a higher number of disfluencies and, especially in younger
children, language utterances are often ungrammatical (e.g.,
“The boy putted the frog in the box”). As such, typical
ASR engines, which are trained on adult speech, struggle
to correctly recognise children’s speech [8, 24]. An added
complexity is caused by the ongoing development of the vocal
apparatus and language performance in children: an ASR
engine trained for one age group is unlikely to perform well
for another age group.

There have been various attempts to remedy this, from
adapting adult-trained ASR engines to the spectral charac-
teristics of children’s speech [18,22], to training ASR engines
on child speech corpora [6, 8, 10], or combinations of both.
For example, Liao et al. [21] have used spoken search instruc-
tions from YouTube Kids to train DNNs with some success,
resulting in a WER between 10 and 20%. In [24] vocal-tract
length normalisation (VTLN) and DNN are used in combi-
nation, and when trained on read speech of children aged
between 7 and 13 years, result in a WER of approximately
10%. It should be noted that these results are achieved in
limited domains, such as spoken search instructions, read
speech, or number recognition [22]. Also, the circumstances
in which the speech is recorded are typically more controlled
than interactions encountered in HRI, where ambient noise,
distance and orientation to the microphone, and language
use are more variable.

Whilst children’s speech recognition in general is a chal-
lenge, HRI brings further complexities due to factors such
as robot motor noise, robot fan noise, placement and orien-
tation of microphones, and so on. Many researchers adopt
interaction approaches that do not rely on verbal interaction
due to the unreliability of child ASR, particularly in ‘wild’
environments. Wizard of Oz (WoZ) approaches have proven
popular to substitute for sub-optimal speech recognition and
natural language interaction, but when autonomy is impor-
tant, WoZ is impractical and the use of mediating interfaces
to substitute for linguistic interaction has proven successful.
Touchscreens, for example, can serve as interaction devices,
they provide a focus for the interaction while constraining
the unfolding interaction [1]. However, if we wish the field to
continue to progress into real-world environments, then it is
unrealistic to exclude verbal interaction due to the prevalence
of this communication channel in natural interaction.

3. RESEARCH QUESTIONS
The previous section highlights that the current perfor-

mance of ASR for child speech remains unclear. We wish to
address this by exploring different variables in the context of
child speech, such as the type of microphone, the physical lo-
cation of the speaker relative to a robot, and the ASR engine.
These variables motivate a set of research questions presented
below, all in the context of child speech. Their evaluation will
be conducted with the aim of producing evidenced guidelines
for designing verbal human-robot interactions with children.

Figure 1: Equipment layout for recording children in
a school. The Aldebaran NAO is turned on (but not
moving) and records to a USB memory card. The
studio microphone and portable microphone record
simultaneously.

Q1 Do external microphones produce better results than
robot-mounted microphones?

Q2 How can physical interaction setups be optimised for
ASR?

Q3 Is there a benefit to using cloud-based or off-board ASR
engines compared to a stock robot ASR engine?

Q4 What is the impact of ‘real-world’ noise on speech
recognition in an HRI inspired scenario?

4. METHODOLOGY
In order to address the research questions posed in the

previous section, a data collection and testing procedure was
designed. At the time of writing, no corpus of child speech
suitable for the intended analysis was publicly available. As
such, there is a need for the collection of this data; the
procedure for this will be outlined here.

4.1 Participants
A total of 11 children took part in our study, with an aver-

age age M =4.9, SD=0.3; 5F/6M. The age group is motivated
by the many large-scale initiatives in the US, Europe and
Japan exploring linguistic interactions in HRI [2,3,19,20,25],
and the fact that this age group is preliterate, so cannot in-
teract using text interfaces. All children had age-appropriate
competency in speaking English at school. All participants
gave consent to take part in the study, with the children’s
parents providing additional consent for participation, and
recording and using the audio data. The children were re-
warded after the study with a presentation of social robots.

4.2 Data Collection
In order to collect a variety of speech utterances, three

different categories were devised: single word utterances,
multi-word utterances, and spontaneous speech. The single
word and multi-word utterances were collected by repeating



after an experimenter. This was done to prevent any issues
with child reading ability. Spontaneous speech was collected
through retelling a picture book, ‘Frog, Where Are You?’ by
Mercer Mayer, which is a common stimulus for this activity in
language development studies [4]. The single word utterances
were numbers from 1 to 10, and the multi-word utterances
were based on spatial relationships between two nouns, for
example, ‘the horse is in the stable’. Five sentences of this
style were used; the full set can be downloaded from [16].

The English speech from children was collected at a pri-
mary school in the U.K. This served two purposes: firstly,
to conduct the collection in an environment in which the
children are comfortable, and secondly, to collect data with
background noise from a real-world environment commonly
used in HRI studies, e.g., [15]. An Aldebaran NAO (hard-
ware version 5.0 running the NaoQi 2.1.4 software) was used
as the robotic platform. This was selected as it is a com-
monly used platform for research with children, as well as
for its microphone array and commercial-standard speech
recognition engine (provided by Nuance). The robot would
record directly from the microphones to a USB memory stick.
Simultaneously, a studio grade microphone (Rode NT1-A)
and a portable microphone (Zoom H1) were also recording.
The studio microphone was placed above the robot and the
portable microphone just in front of the robot (Fig. 1).

4.3 Data Processing

Encoding and Segmentation.
All audio files were recorded in lossless WAV format (min-

imum sampling rate of 44kHz). The audio files from each of
the three microphones were synchronised in a single Audacity
project. The audio files were then split to extract segments
containing the speech under consideration. These segments
were exported as lossless WAV files, resulting in 16 files per
microphone (48 in total) per child. The spontaneous speech
was transcribed and split into sentences. This produced a
total of 222 spontaneous speech utterances of various lengths
(M = 7.8 words per utterance, SD = 2.6). The full dataset
(audio files and transcripts) is available online at [16].

Noisy vs. Clean Audio Recordings.
As the recordings of children in English were collected dur-

ing the course of a school day, there is a range of background
noise. To study the impact of noise on ASR performance, it
is desirable to separate the recordings into those that have
minimal background noise (‘clean’ recordings) and those that
have marked background noise (‘noisy’ recordings). Some
noise is unavoidable, or would be present in any HRI sce-
nario, such as robot fan noise, so these were considered ‘clean’.
Other noise, such as birds outside, other children shouting
from the adjacent room, doors closing, or coughing would
be considered ‘noisy’. This means that the clean recordings
are not noise-free like those from a studio environment, but
are a realistic representation of a minimal practical noise
level in a ‘wild’ HRI scenario, thereby allowing us to evaluate
recognition accuracy with greater veracity.

To appropriately categorise the recordings as clean or noisy,
each one was independently listened to by 3 human coders
with the guidance from above as to what is considered clean
vs. noisy. Overall agreement levels between coders was
good, with Fleiss κ = .74 (95% CI [.65,.84]) for the fixed
utterances and κ = .68 (95% CI [.60,.75]) for the spontaneous
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Figure 2: Locations at which speech it played to the
NAO to explore how the physical layout of interac-
tions may influence speech recognition rates.

utterances. A recording was categorised as noisy or clean if
all 3 coders agreed it was respectively noisy or clean. Where
there was any disagreement between coders, the recordings
were omitted from analysis of noise impact (59 fixed and 54
spontaneous utterances were excluded). This resulted in 80
noisy recordings, and 37 clean recordings being analysed from
the fixed utterances set and 83 clean/85 noisy recordings from
the spontaneous utterances set. For some children, the NAO
recording failed due to technical difficulties. Therefore, when
comparing across microphones, the fixed utterance selection
is reduced to 29 clean recordings and 60 noisy recordings.

Manipulation of the Sound Location.
To evaluate the impact of distance and angle on speech

recognition, it was necessary to vary the distance between
the robot and child, while at the same time keeping the
speech utterances constant. As children struggle to exactly
reproduce speech acts and over 500 utterances are needed to
be recognised, we used pre-recorded speech played through
an audio reference speaker (the PreSonus Eris E5) placed at
different locations around the robot. In order to match the
original volume levels, a calibration process was used where
a recording would be played and re-recorded at the original
distance between the child and the robot. The audio signal
amplitudes between the original and recorded file were then
compared. The speaker volume was iteratively revised until
the amplitudes matched. This volume was then maintained
as the speaker was moved to different distances and angles
from the robot, while always facing the robot (to address, at
least in part, Q2 from Sec. 3); see Fig. 2 for a diagram of
these positions.

4.4 Measures
For recognition cases where a multiple choice grammar

is used (i.e., the list of possible utterances is entirely pre-
defined, and the recognition engine’s task is to pick the correct
one), the recognition percentage is used as the metric. Each
word or sentence correctly recognised adds 1; the final sum
is divided by the number of tested words or sentences. All
Confidence Intervals calculated for the recognition percentage
include continuity correction using the Wilson procedure. We



use the same metric when using template-based grammars
(Sec. 5.2.1).

For the cases in which an open grammar is used, we use
the Levenshtein distance as a metric at the letter level. This
decision was made as it reduces punishment for small errors
in recognition, which would typically not be of concern for
HRI scenarios. For example, when using the Levenshtein
distance at the word level (as with Word Error Rate), if the
word ‘robots’ is returned for an input utterance of ‘robot’,
this would be scored as completely unrecognised. At the
letter level, this would score a Levenshtein distance of 1,
as only a single letter needs to be inserted, deleted or sub-
stituted (in this example, the letter ‘s’) to get the correct
result. To compare between utterances, normalisation by
the number of letters in the utterance is then required to
compensate for longer inputs incurring greater possibility of
higher Levenshtein distances.

5. RESULTS
This section will break down the results and analysis such

that the research questions are addressed. The results are
split into two main subsections concerning: 1) technical
implementation details, and 2) general ASR performance.
The intention is to then provide a practical guide for getting
the best performance from ASR in HRI scenarios, as well as
an indication of the performance level that can be expected
more generally for child speech under different circumstances.

5.1 Technical Best Practices
Throughout this subsection, the ASR engine will remain

constant so that other variables can be explored. In this
case, the ASR engine used is the one that comes as default
on the Aldebaran NAO, provided by Nuance (VoCon 4.7).
A grammar is provided to this engine, consisting of numbers
(as described in Sec. 4.2) and single word utterances. Longer
utterances, along with open grammar and spontaneous speech
will be explored in the subsequent subsection.

5.1.1 Type of microphone
Upon observation of the results it became clear that the

robot-mounted microphone was vastly outperforming the
portable and studio microphones. When visually comparing
the waveforms, there was a noticeable difference in recorded
amplitude between the NAO signal and the other two mi-
crophones. This was despite the standalone microphone
input gains being adjusted to maximise the signal (whilst
preventing peak clipping). To increase the signal ampli-
tude whilst maintaining the signal-to-noise ratio, the files
were normalised. This normalisation step made a significant
difference to the results of the speech recognition. For the
portable microphone, the recognition percentage after normal-
isation (70%, 95% CI [59%,79%]) was significantly improved
compared to before normalisation (2%, 95% CI [0%,9%]);
Wilcoxon signed-rank test1 Z = −7.483, p < .001, r = 0.67. A
similar improvement was observed for the studio microphone
when comparing before (5%, 95% CI [2%,12%]) and after
(81%, 95% CI [70%,88%]) normalisation; Z = −7.937, p <
.001, r = 0.71 (Fig. 3). This suggests that the NAO mi-
crophones are tuned to maximise the speech level, and if

1Due to the recognition being binary on single word inputs,
the resulting distributions are non-normal, so non-parametric
tests are used for significance testing.
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Figure 3: A comparison of recognition percentage
of English words and short sentences spoken by chil-
dren, split by microphone before and after normali-
sation. *** indicates significance at the p<.001 level.
The recognition is much improved for the portable
and studio microphones following normalisation.
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Figure 4: Recognition percentage of numbers spo-
ken by children, split by microphone type (62 utter-
ances). *** indicates significance at the p<.001 level,
** indicates significance at the p<.01 level. The stu-
dio microphone provides the best ASR performance,
but the difference between on- and lower quality off-
board microphones is relatively small.

external microphones are to be used, then normalisation of
the recordings should be considered a vital step in process-
ing prior to sending to an ASR engine. Therefore, for the
remainder of the analysis here, only normalised files are used
for the studio and portable microphones.

In exploring Q1, it is observed that the differences between
microphones is smaller than may have been expected. The
NAO microphones are mounted in the head of the robot near
a cooling fan which produces a large amount of background
noise. It could therefore be hypothesised that the ASR
performance would greatly increase by using an off-board
microphone, and that using a higher-quality microphone
would improve this further. Using Friedman’s test, a signif-
icant difference at the p < .05 level is found between the
NAO (61%, 95% CI [48%,73%]), portable (65%, 95% CI
[51%,76%]), and studio (84%, 95% CI [72%,92%]) micro-
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Figure 5: Recognition percentage of single word ut-
terances spoken by children, split by background
noise level (83 total utterances). Noise level does
not have a significant effect on the recognition rate.

phones; χ2(2) = 9.829, p = .007. Post-hoc Wilcoxon signed-
rank pairwise comparisons with Bonferroni correction reveal
a statistically significant difference between the portable and
studio microphones (Z = −3.207, p < .001, r = 0.29; Fig.
4), and between the NAO and studio microphones (Z =
−2.746, p = .006, r = 0.24). Differences between the portable
and NAO microphones (Z = −0.365, p = .715, r = 0.03) were
not significant. This suggests that there is no intrinsic value
to using an off-board microphone, but that a high quality
off-board microphone can improve the ASR results. The
difference between the robot microphone and the external
studio grade microphone is fairly substantial, with a recogni-
tion percentage improvement of around 20%point (r = 0.28).
It would be scenario specific as to whether the additional
technical complexity of using a high-quality external micro-
phone would be worth this gain, and indeed, in scenarios
where the robot is mobile, use of a studio grade microphone
may not be a practicable option.

5.1.2 Clean vs. Noisy Recording Environment
Splitting the files by whether they were judged to be clean

or noisy (as described in Sec. 4.3), it was observed that
the noise did not appear to have a significant impact on the
results of the ASR. Using the studio microphone (i.e., the best
performing microphone) for the number utterances, a Mann-
Whitney U test reveals no significant difference between
clean (81%, 95% CI [60%,93%]) and noisy (81%, 95% CI
[68%,90%]) speech; U = 740.5, p = .994, r = 0.00 (Fig. 5).
The apparent robustness of the ASR engine to noise is of
particular benefit to HRI researchers given the increasingly
‘real-world’ application of robots, where background noise is
often near impossible (nor desirable) to prevent.

However, this does not mean that noise does not play a
role in recognition rates. In this instance, the ASR engine is
restricted in its grammar; the effect of noise in open grammar
situations is explored in the next subsection. Additionally,
when the distance of the sound source to the microphone is
varied, background noise becomes a greater factor.

5.1.3 Sound Source Location
Measurements were made as in Fig. 2 using the built in

NAO microphone, with the replayed audio from the studio
microphone (as described in Sec. 4.3). Due to the number
of data points this generates (540 per child), the findings in
full will not be produced here, but to get a high-level picture
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Figure 6: Interpolated heatmap of recognition per-
centage as a function of distance and orientation to
the robot. Interpolation has been performed based
on the measurements made at the small white cir-
cles. On the left is the heatmap for the noisy audio,
whereas the right is for clean audio. The clean au-
dio is better recognised at further distances from the
robot, however, in both cases, recognition accuracy
is 0% to the side and behind the robot.

of how the distance and orientation influences recognition
rates, a heatmap can be seen in Fig. 6.

Two observations can be made from this data that have
particular relevance for HRI researchers. The first is the
platform-specific observation that with the NAO robot (cur-
rently one of the most widely used research platforms for
social HRI) the utterance recognition rate drops dramati-
cally once the sound source reaches a 45 degree angle to the
robot head, and becomes 0 once it reaches 90 degrees. The
implication of this is that when using the NAO, it is vital to
rotate the head to look at the sound source in order to have
the possibility of recognising the speech. This is of course
dependent on the current default software implementation;
four channels of audio exist, but for ASR only the front two
are used, and so a workaround could be created for this. The
second, broader observation, is that the background noise
and distance seem to influence recognition rates when com-
bined. Fig. 5 shows how little impact noise has when the files

Distance (cm) Clean % [95% CI] Noisy % [95% CI]

25 73 [52,88] 77 [64,87]
50 65 [44,82] 44 [31,58]
75 27 [12,48] 23 [13,36]
100 4 [0,22] 18 [9,30]

Table 1: ASR recognition rates for children counting
from one to ten. Recordings were played frontally at
different distances from the robot. Note how recog-
nition falls sharply with distance when the speech
contains noise.



are fed directly into the robot ASR, but when combined with
distance, there is a marked difference beyond 50cm. Table 1
shows the measurements for the first metre directly in front
of the robot; at 25cm the difference between clean and noisy
files are minimal, however at 50cm, the difference is more
pronounced, with recognition rates dropping fast.

5.2 ASR Performance with Children
The previous subsection addressed variables in achieving

a maximal possible speech recognition percentage through
modifying the technical implementation, such as different
microphones, distances to a robot, orientation to a robot,
and background noise levels. This subsection will provide
a complementary focus on exploring the current expected
performance of ASR with children under different speech
and ASR engine conditions. This will include a comparison
of differing length utterances, spontaneous utterances, and
different ASR engines with varying grammar specifications.
For all analyses in this section, the studio microphone signal
is used to provide the best quality sound input to the speech
engines (and provide a theoretical maximal performance).

5.2.1 Impact of Providing a Grammar
Tests on child speech in the previous subsection were

performed with single word utterances, with a grammar
consisting of only those utterances. This kind of multiple
choice is relatively straightforward, and this carries over to
slightly longer utterances too. We compare the recognition
rate of the fixed multi-word utterances (34 spatial relation
sentences as described in Sec. 4.2) under 3 conditions using
the built-in NAO ASR: 1) with a fixed grammar containing
the complete utterances, e.g., “one” or “the dog is on the
shed” (i.e., multiple choice), 2) with a template grammar
for the sentences (as seen in Fig. 8), and 3) with an open
grammar. This progressively reduces the prior knowledge
the ASR engine has about what utterances to expect. The
full mix of noisy and clean utterances were used as there
was no observed significant correlation in any of the three
conditions between ASR confidence level and noise condition,
nor between noise condition and resulting recognition rates.
The grammar condition has a significant impact on the recog-
nition percentage; Friedman’s test χ2(2) = 39.92, p < .001.
Post-hoc Wilcoxon signed-rank pairwise comparisons with
Bonferroni correction reveal a statistically significant differ-
ence between the multiple choice (74%, 95% CI [55%,86%])
and template grammars (53%, 95% CI [35%,70%]); Z =
−2.646, p = .008, r = 0.32. The template grammar in turn
offers a significant improvement over the open grammar (0%,
95% [0%,13%]); Z = −4.243, p < .001, r = 0.51 (Fig. 7).

5.2.2 Comparison of ASR Engines
Finally, we look at how different ASR engines perform,

under identical recording conditions. We compare the Google
Speech API (as found in the Chrome web browser for in-
stance), the Microsoft Speech API (as found in the Bing
search engine), CMU PocketSphinx, and the NAO-embedded
Nuance VoCon 4.7 engine; studies were run in August 2016.
The audio samples are those recorded with the studio micro-
phone; they include native and non-native speakers as well
as noisy and clean samples; they include both the fixed sen-
tences and the spontaneous speech; no grammar is provided
to the engine (i.e., open grammar).

As performing recognition with an open grammar is a
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Figure 7: Recognition percentage when providing a
fixed grammar, a template grammar, and an open
grammar on short utterances. The fixed ‘multiple
choice’ grammar produces the best recognition, fol-
lowed by a template. The open grammar, on aver-
age, recognises almost no sentences correctly.

the dog

fish

horse

is in

next to

in front of

behind

on top of

the pond

shed

car

stable

horse

Figure 8: Template for the grammar provided to the
ASR for the fixed utterances. 75 different sentences
can be generated from this grammar.

Google API then the wraps looks at the dog [LD=0.17]
Microsoft API rat look at dogs [LD=0.48]
PocketSphinx look i personally [LD=0.83]

Table 2: Recognition results and Levenshtein dis-
tance for three ASR engines on the input utter-
ance “then the rat looked at the dog”. The NAO-
embedded Nuance engine did not return any result.

much harder challenge for recognition engines, the recognition
percentage alone is no longer a sufficient measurement to
compare between performance of ASR engines due to the
very low number of exact utterance recognitions across all
engines. Instead we use the Levenshtein distance (LD) at
the letter level. As the utterance length for the spontaneous
speech is also variable, the Levenshtein distance is normalised
by utterance length (as per Sec. 4.4). This provides a value
between 0 and 1, where 0 means the returned transcription
matches the actual utterance, and 1 means not a single letter
was correct. Values in between indicate the proportion of
letters that would have to be changed to get the correct
response, therefore lower scores are better. Table 2 provides
one recognition example with the corresponding Levenshtein
distances.

While the LD provides a good indication of how close the
result is from the input utterance, the examples in Table 2



evidence that this metric does not necessarily reflect seman-
tic closeness. In this particular case, the Bing result “rat look
at dogs” is semantically closer to the original utterance than
the other answers. For this reason, we assess recognition
performance in open grammar using a combination of three
metrics: 1) the Levenshtein distance; 2) raw accuracy (i.e.,
the number of exact matches between the original utterance
and the ASR result); 3) a manually-assessed ‘relaxed’ ac-
curacy. The utterance would be considered accurate in the
‘relaxed’ category if small grammatical errors are present,
but not semantic errors. Grammatical errors can include
pluralisation, removal of repetitions, or small article changes
(‘the’ instead of ‘a’). For example, if an input utterance of
“and then he found the dog” returned the result “and then
he found a dog”, this would be considered accurate, however
“and then he found the frog” would produce a similar LD, but
the semantics have changed, so this would not be included
in the relaxed accuracy category.

Table 3 shows that when the input utterance set is changed
to use spontaneous speech, the average normalised LD does
not change much for any of the ASR engines. Nor do the
LD rates change much when only clean spontaneous speech
is used, providing further evidence for the minimal impact
of noise as established in Sec. 5.1.2. However, there is a
marked difference between Google and the other recognition
engines. The average LD from Google is around half that of
the other engines, and the number of recognised sentences in
both the strict and relaxed categories is substantially higher.
The recognition performance remains however generally low:
using relaxed rules, the currently best performing ASR engine
(Google Speech API) for our data recognises only about 18%
of a corpus of 222 child utterances (utterances have a mean
length of M = 7.8 words, SD = 2.6).

To help decide whether or not the results returned from
Google would actually be usable in autonomous HRI sce-
narios, it is necessary to determine when the utterance is
correctly recognised. This is typically indicated through
the confidence value returned by the recognition engine. To
further explore this, we assess the number recognition per-
centage at different thresholds within the confidence level
(Fig. 9). A total of 101 results from the 222 passed to the
recogniser returned a confidence level (a confidence value
is not returned when the uncertainty of the ASR engine is
too high). To achieve just below 50% semantically correct
recognition accuracy, the confidence threshold could be set
to 0.8, which would only include 36 utterances. While a
clear improvement over the 18% previously achieved when
not taking into consideration the confidence value, a 50%
recognition rate is arguably not sufficient for a smooth child-
robot verbal interaction, and would still require the system
to reject nearly 2/3 of the child utterances.

6. DISCUSSION
Our results show that, at the time of writing, automatic

speech recognition still does not work reliably with children,
and should not be relied upon for autonomous child-robot
interaction.

Speech segmentation is one aspect that we did not in-
vestigate. The segmentation of speech units and rejecting
non-speech parts is an important factor in speech recognition.
For example, noise can be mistakenly recognised by ASR
engines as speech, or a pause in the middle of a sentence
might interrupt the segmentation. Existing solutions (like a
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Figure 9: Histogram of recognition percentage (us-
ing the relaxed, manually coded criteria) for spon-
taneous speech grouped by confidence levels (indi-
cated by the number above each bar) returned by
Google ASR. The average Levenshtein Distance is
also shown on the secondary axis. Recognition in-
creases with higher confidence ranges, but few ut-
terances have a high confidence.

beep sound indicating when to talk) are not ideal for children
of this age. Our manual segmentation likely leads to better
results than would be expected with automatic segmentation.

We did not analyse if gender had an effect on ASR due to
the age of the children used in the study. It has been shown
that there are no significant differences in the vocal tract
between genders at the age under consideration (5-6 years
old) [7], so we do not expect differing performance based on
gender.

Mitigation strategies for poor ASR performance depend
on the ASR engine. We have specifically investigated the use
of constrained grammar with the NAO’s Nuance engine; and
the use of the recognition confidence with the Google ASR.
While severely constraining the interaction scope, none of
these techniques were found to provide satisfactory results.
In our most favourable test case (children speaking numbers
from one to ten in front of the robot, at about 25cm; the
robot having an explicit ‘multiple choice’ grammar), the ASR
would return an incorrect result in one of four cases, and
could not provide any meaningful confidence value. This
result is disappointing, particularly when considering that
interactions based on ‘multiple choice’ are difficult to rely on
with children, as they tend not to remember and/or comply
to the given set of recognisable utterances.

Template-based grammars (or ‘slot-filling’ grammars) where
the general structure of the sentence is known beforehand,
and only a limited set of options are available to fill the
‘gaps’ are a potentially interesting middle-ground between
‘multiple choice’ grammars and open speech. However, we
show that in our test case (grammar depicted in Fig. 8), the
correct utterance was recognised in only 50% of the cases,
again without any useful confidence value.

In the realm of open grammars, the Google Speech API
returned the most accurate results by a large margin. When
run on grammatically correct, regular sentences (the ones
generated from the grammar depicted in Fig. 8), it reaches
38% accuracy in recognition when minor grammatical differ-
ences are allowed. This result, while likely not yet usable in
today’s applications, is promising. However, when looking



Google Bing Sphinx Nuance
M LD [95%CI] % rec. M LD [95%CI] % rec. M LD [95%CI] % rec. M LD [95%CI] % rec.

fixed
(n=34)

0.34 [0.24,0.44]
11.8
[38]

0.64 [0.56,0.71]
0

[0]
0.68 [0.64,0.73]

0
[0]

0.76 [0.73,0.80]
0

[0]

spontaneous
(n=222)

0.39 [0.36,0.43]
6.8

[17.6]
0.64 [0.61,0.67]

0.5
[2.4]

0.80 [0.77,0.84]
0

[0]
0.80 [0.78,0.82]

0
[0]

spontaneous
clean only

(n=83)
0.40 [0.35,0.45]

6.0
[16.9]

0.63 [0.58,0.68]
1.2

[1.2]
0.78 [0.72,0.85]

0
[0]

0.78 [0.75,0.81]
0

[0]

Table 3: Comparison between four ASR engines using fixed, all spontaneous, and clean spontaneous speech
utterances as input. Mean average normalised Levenshtein Distance (M LD) indicates how good the tran-
scription is. % rec indicates the percentage of results that are an exact match for the original utterance, with
the values in square brackets [ ] indicating matches with ‘relaxed’ accuracy.

at children’s spontaneous speech, the recognition rate drops
sharply (to around 18% of successful recognition). This dif-
ference can be explained by the numerous disfluencies and
grammatical errors found in natural child speech. To provide
an example, a relatively typical utterance from our data was
“and... and the frog didn’t went to sleep”. The utterance has
a repetition and disfluency at the start, and is followed by
grammatically incorrect content. This is, in our opinion, the
real challenge that automatic child speech recognition faces:
the need to account for the child-specific language issues,
beyond the mere differences between the acoustic models of
adults vs. children. This is a challenge not only for speech-
to-text, but as well for later stages of the verbal interaction,
like speech understanding and dialogue management.

Our results allow us to make a number of recommendations
for designing child-robot interaction scenarios that include
verbal interaction. Most of these are also applicable to adult
settings and would be expected to contribute to a smoother
interaction.

• Constrain the interaction by leading the child to a
limited set of responses. This typically works well
for older children, but carries the risk of making the
interaction stale.

• Use additional input/output devices. A touchscreen
has been found to be a particularly effective substitute
for linguistic input [1, 14], but also other devices –such
as haptic devices– should be considered.

• Place the young user in the optimal location for ASR.
The location and orientation relative to the microphone
(and robot) has a profound impact on ASR performance
(Sec. 5.1.3). A cushion, stool or chair can help children
sit in the optimal location.

• Constrain the grammar of the ASR. While not all
ASR engines allow for this (cf. Bing), some will allow
constraints or“hints”on what is recognised. This proves
to be valuable in constrained interaction settings, for
example, when listening only for numbers between 1
and 10 (Sec. 5.2.1).

• Background noise appears to be less of an issue than
initially anticipated. It appears that the current ASR
engines have effective noise cancelling mechanisms in
place. Nevertheless, “the less noise, the better” remains
true, particularly when interacting at a distance from
the robot (Sec’s 5.1.2 & 5.1.3).

• A lack of ASR performance does not mean that the
robot should not produce speech, as speech has been
found to be particularly effective to engage children.

We opted to evaluate the ASR capabilities of the Aldebaran
NAO platform, as it is the most commonly used robot in
commercial and academic HRI. While the NAO system under
performs for child speech, some performance could be gained
through using a high-quality external microphone and cloud-
based ASR, with Google as clear favourite.

7. CONCLUSION
Language is perhaps the most important modality in

human-to-human interaction and as such, functional nat-
ural language interaction forms a formidable prize in human-
machine interaction. Speech recognition is the entry point
to this and while there has been steady progress in speaker-
independent adult speech recognition, the same progress is
currently lacking from children’s speech recognition. For var-
ious reasons –pitch characteristics of children’s voices, speech
disfluencies, and unsteady developmental changes– child
speech recognition is expected to require a multi-pronged
approach and recognition performance in unconstrained do-
mains is currently too low to be practical.

This has a profound impact on the interaction between
children and technology, especially where pre-literacy chil-
dren are concerned, typically ages 6 and younger. As they
have no means of entering input other than by speaking to
the device, the interaction with pre-literacy children stands
or falls with good speech recognition.

Our results show that natural language interactions with
children are not yet practicable. Today, building rich and
natural interactions between robots and children still requires
a complex alchemy: a careful design of the interaction that
leads the responses of the young user in such a way that
restrictive ASR grammars are acceptable, the understanding
and production of rich non-verbal communication cues like
gaze, and a judicious use of supporting technology such as
touchscreens.
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Using gaze patterns to predict task intent in
collaboration. Frontiers in Psychology, 6, 2015.

[14] J. Kennedy, P. Baxter, and T. Belpaeme. Nonverbal
Immediacy as a Characterisation of Social Behaviour
for Human-Robot Interaction. International Journal of
Social Robotics, in press.

[15] J. Kennedy, P. Baxter, E. Senft, and T. Belpaeme.
Social Robot Tutoring for Child Second Language
Learning. In Proceedings of the 11th ACM/IEEE
International Conference on Human-Robot Interaction,
pages 67–74. ACM, 2016.

[16] J. Kennedy, S. Lemaignan, C. Montassier, P. Lavalade,
B. Irfan, F. Papadopoulos, E. Senft, and T. Belpaeme.
Children speech recording (English, spontaneous speech
+ pre-defined sentences). Data set, 2016.
http://doi.org/10.5281/zenodo.200495.

[17] L. F. Lamel, R. H. Kassel, and S. Seneff. Speech
database development: Design and analysis of the
acoustic-phonetic corpus. In Speech Input/Output
Assessment and Speech Databases, 1989.

[18] L. Lee and R. Rose. A frequency warping approach to
speaker normalization. IEEE Transactions on Speech
and Audio Processing, 6(1):49–60, Jan 1998.

[19] J. F. Lehman. Robo fashion world: a multimodal
corpus of multi-child human-computer interaction. In
Proceedings of the 2014 Workshop on Understanding
and Modeling Multiparty, Multimodal Interactions,
pages 15–20. ACM, 2014.

[20] I. Leite, H. Hajishirzi, S. Andrist, and J. Lehman.
Managing chaos: models of turn-taking in
character-multichild interactions. In Proceedings of the
15th ACM International Conference on Multimodal
Interaction, pages 43–50. ACM, 2013.

[21] H. Liao, G. Pundak, O. Siohan, M. Carroll, N. Coccaro,
Q.-M. Jiang, T. N. Sainath, A. Senior, F. Beaufays,
and M. Bacchiani. Large vocabulary automatic speech
recognition for children. In Proceedings of Interspeech,
2015.

[22] A. Potamianos and S. Narayanan. Robust recognition
of children’s speech. IEEE Transactions on Speech and
Audio Processing, 11(6):603–616, 2003.

[23] M. L. Seltzer, D. Yu, and Y. Wang. An investigation of
deep neural networks for noise robust speech
recognition. In Proccedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing,
pages 7398–7402. IEEE, 2013.

[24] R. Serizel and D. Giuliani. Deep-neural network
approaches for speech recognition with heterogeneous
groups of speakers including children. Natural Language
Engineering, 1:1–26, 2016.

[25] F. Tanaka, K. Isshiki, F. Takahashi, M. Uekusa, R. Sei,
and K. Hayashi. Pepper learns together with children:
Development of an educational application. In
Proceedings of the IEEE-RAS 15th International
Conference on Humanoid Robots, HUMANOIDS 2015,
pages 270–275. IEEE, 2015.

[26] D. Yu and L. Deng. Automatic Speech Recognition: A
Deep Learning Approach. Springer, 2015.



Qualitative Review of Object Recognition Techniques for
Tabletop Manipulation

Anonymous Author
for Submission
City, Country
e-mail address

Anonymous Author
for Submission
City, Country
e-mail address

Anonymous Author
for Submission
City, Country
e-mail address

ABSTRACT
This paper provides a qualitative review of different object
recognition techniques relevant for near-proximity Human-
Robot Interaction. These techniques are divided into three
categories: 2D correspondence, 3D correspondence and non-
vision based methods. For each technique an implementation
is chosen that is representative of the existing technology to
provide a broad review to assist in selecting an appropriate
method for tabletop object recognition manipulation. For each
of these techniques we give their strengths and weaknesses
based on defined criteria. We then discuss and provide recom-
mendations for each of them.

Author Keywords
object detection; pose detection; tabletop manipulation.

INTRODUCTION

Context: near object interaction
This paper takes a practical approach to survey the technical
landscape on the problem of small object identification and 6D
object localisation in a cluttered environment – a context often
termed as object recognition for tabletop manipulation. Our
approach is practical: we consider a typical interaction setup
(Fig. 1) where the robot needs to accurately and robustly iden-
tify and localise objects in order to manipulate them, commu-
nicate about them or reason on their geometric properties and
relations. Critically, the object recognition technique needs to
be suitable for actual experimental work, including field exper-
iments: it must be reasonably easy to deploy the system in a
range of dynamic human environments, without having to rely
on expensive or cumbersome physical sensors, or expensive
computation. We also take a short to medium horizon: not
all techniques we evaluate are commonly available yet, but
all have the potential to be robust implementations in the near
future.

This paper tries to remedy a lack of information on deploy-
ment details in HRI contexts: many traditional assessments do
not report on practical considerations. We need to take into
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account many different factors. For example, how robust is
the detection and pose recognition when there are frequent
changes to the environment, such as varying backgrounds or
changing lighting conditions.

Figure 1. A close proximity interaction setup, typically found in human-
robot interaction and cognitive robotics scenarios. While the number
and nature of objects varies from one experiment to another, key scene
characteristics are usually constant: relatively small objects (e.g. largest
side being less than 10 cm), presence of occlusions, limited working
space, and the presence of both textured and texture-less objects.

In this paper we compare across three families of techniques.
The first is techniques that rely on 2D images, from which we
track a selection of points. Back projection on these points
allow the estimation of an object’s 6D position. The second
family of methods use 3D templates. 3D objects are compared
against a known point cloud to find the position and orienta-
tion of an object. The final family relies on techniques that
do not use traditional vision techniques, for example RFID
technology.

Surveys on Object Detection
As a cornerstone of many robotic applications, research on
object recognition and localisation has been reviewed in nu-
merous past literature surveys. These surveys typically focus
on one family of techniques or algorithms, typically using syn-
thetic datasets to quantitatively compare the performances of
the state of the art. We summarise hereafter the main findings
for each of the localisation techniques.

Techniques based on 2D correspondences
When perceptual data consists of camera images, pre-stored
templates of objects are often matched against the incoming
video stream using 2D correspondence techniques. Li et al. [9]
conducted a survey of visual feature detection. In the review



they categorise these techniques based on the fundamental
principle by which they detect features, such as edge, blob
or corner detection. Feature detection methods vary in per-
formance based on the application context, but among them
feature based techniques such as A-KAZE, ORB and SURF
are popular in object recognition and tracking contexts [5].

Techniques based on 3D correspondences
The increased availability and popularity of 3D cameras has
driven the need for 3D object matching techniques. Diez et
al. [6] performed a qualitative review of 3D registration tech-
niques, in which a mapping is made between 3D images or
a 3D templates and an image. They specifically reviewed a
variety of detectors and descriptors for 3D registration. De-
scriptors and detectors attempt to minimise the number of
points required before using such brute force techniques to
perform accurate identification. Note that while these are used
to select salient points, they nearly always end up using itera-
tive closest point (ICP) algorithms, which find corresponding
points between a template and an unknown object. The more
points that are used, the more accurate the detection is, but
using more points has an exponential impact on computational
requirements.

Non vision-based techniques
Many other reviews also focus on technologies not relying on
visual perception. RFID can be used for coarse localisation,
and has been shown to have an accuracy of a few centimetres
[13]. The techniques used in their review are meant for local-
isation within a room, while our focus is on techniques that
work on the scale of under a metre, for example localising
objects on a tabletop. But reduced distance holds potential for
increased accuracy, as objects are nearer to the RFID readers.
Mautz [10] conducted a wide survey of a number of indoor
positioning techniques for a range of applications. Most of the
techniques reviewed are localisation for navigation, and are
not practical for use in a tabletop situation. However, among
the suitable methods identified for the accuracy we require for
tabletop recognition was magnetic technology, which is able
to reach millimetre levels of precision. Hostettler et al. [8]
look at using Anoto positioning technology to localise a robot.
They concluded that using a printed pattern that they are able
to position a robot with high accuracy and with robustness to
lighting and occlusion conditions, the technology was only
restricted by the size and quality of the sheets that could be
printed with the pattern.

Approach and Methodology
We compare a number of existing implementations of a wide
range of techniques for object and pose detection. We chose a
selection of implementations based on availability, ability to
process in real-time and that could be considered representa-
tive of that technology. Each of these methods was compared
against the following criteria:

1. Degrees of Freedom: The degrees of freedom that the
method is able to measure (position and orientation).

2. Detection Stability: How stable was the method of detec-
tion. Would an object be lost even if nothing was happening,
or were false positives generated.

3. Rotation Invariance: Is the method able to track the object
when it is rotated.

4. Distance Invariance: How much does the distance of the
object affect the tracking for that method.

5. Environment Interference: Is the method able to cope
with changes to the background and lighting.

6. Occlusion: Can the method detect objects that are being
occluded by other objects from the perspective of the robot.

7. Practical Use: Any additional notes such as extra equip-
ment required that may affect the usability of the system in
an experiment.

Each method is briefly described will be provided and an
assessment based on the above criteria. A table of results
provides a side by side comparison of each implementation.
Finally we discuss and provide recommendations on each
method.

ASSESSMENT OF OBJECT DETECTION METHODS

3D pose estimation from 2D images
These techniques use a standard 2D cameras. From this, image
features are extracted that can be used to identify the object.
These features can then be used to provide a 3D position by
back projecting the 2D points to 3D reference points, using
algorithms like ‘perspective-n-point’(PnP) [7].

Fiducial markers
Fiducial markers look similar to 2D barcodes that can be
printed out or displayed on a screen for detection. Each of
these markers can be assigned an ID, and multiple markers
can be attached to one object. The tags must be attached to a
flat surface to allow them to be read and a pose estimation to
be made. In this paper we used Chilitags [4].

Figure 2. Object with a fiducial marker, which allows it to be identified
and tracked.

Changing the size of the markers can be used to affect the
distance at which a marker can be read. The tracking is of-
ten lost while the objects are moving, but the objects are
re-acquired quickly once they are set back down. The tags
are highly susceptible to occlusion, a small amount is enough
to lose tracking. The corners are particularly susceptible to



this. Because of the requirement to have a flat surface for
the marker, irregularly shaped objects may be challenging to
attach a marker to. We overcame this by using an additional
cube attached below the object (see fig. 2).

Feature tracking
Three feature tracking methods were tested using the imple-
mentations provided by OpenCV1; SURF [2], A-KAZE [1]
and ORB [12]. In each case an image is used as a target for the
feature detection. These methods are classed as blob detection
method, which look for areas of pixels that are similar to each
other but contrast their surroundings. SURF approximates
a Hessian matrix to rapidly find areas of interest. A-KAZE
(Fig. 3) is an accelerated form of KAZE, using nonlinear dif-
fusion filtering to detect areas. Normal Gaussian methods blur
the edges of objects leading to reduced accuracy, but KAZE
ensures that the blurring methods are adapted to natural bound-
aries. ORB uses a form of corner detection based on FAST as
a keypoint detector and uses BRIEF as a descriptor.

All three of these methods struggle with changing back-
grounds. A-KAZE and ORB are much more robust to the
rotation of the object compared to SURF. While they all strug-
gle with variations of distance, SURF is a marginally better
than A-KAZE and ORB. While SURF is meant to be able to
handle rotation, the objects in our evaluation have typically
simple features and repetitive textures, which SURF struggles
to handle. As these feature trackers determine which features
they are going to track, they are not known in advance, this
makes it more challenging to implement a PnP system for
getting 3D coordinates.

Template matching
Template matching (Fig. 4), while a relatively old technique,
was also considered; we tested using the implementation from
OpenCV. An image is used as the target for template matching.
This target image is then compared pixel by pixel against an
image, and the strongest match is returned as a bounding box.

Multiple target images will be required per object to provide
proper 6D pose estimation. Template matching is able to
handle a range of distances well. It also has some tolerance to
rotation. However it is not able to handle varying backgrounds.

Deep Learning
Deep learning relies on the training of Neural Networks on a
dataset of pictures. These pictures contain the objects to be
recognised and tracked with bounding boxes and classification.
Here we used Faster R-CNN [11] to test Deep Learning. We
used a pre-trained network2 that was trained on the PASCAL
VOC 2007 dataset. This technique provides accurate bounding
boxes on target objects, though does sometimes lose an object
(Fig 5).

It was also assessed if the pre-trained network would be able
to detect an iconic representation of the animals that it had
been trained on. It was however unable to (Fig 6), so training
would be required on the specific objects to be used as part of
the experimental setup.
1http://opencv.org/
2https://github.com/smallcorgi/Faster-RCNN_TF

This method only provides bounding boxes of the objects, but
unlike template matching these cannot be compared against
a known object. For instance the network used was trained
to recognise sofas from a large number of sofas. But without
knowing the dimensions of the sofa in a particular image we
cannot tell if an object is large and far away, or small and
nearby. This makes it difficult to provide a 6D estimation.
This method also requires a lot of processing power to process
in real time, and would likely need an additional computer,
and not be run directly on a robot like the Nao.

3D pose estimation from 3D sensor data
In recent years RGBD cameras, which return 3D scene data in
addition to a 2D image, have been widely used in HRI. The
Microsoft Kinect technology or the Intel Realsense technol-
ogy have proven particularly popular. Here we evaluate their
software in the context of object localisation and pose reading.
The techniques that look at are fairly computationally inten-
sive, but not so intensive as to require more than a tablet or
laptop to process the data. An external laptop could be added
to a setup using a robot with limited processing power, such
as a Nao.

For 3D object matching, we evaluate two different software
implementation: “Tabletop” from the Object Recognition
Kitchen (ORK)3 implemented using ROS, and the Intel Re-
alsense SDK 4.

Planar segmentation and iterative fitting
Tabletop uses planar segmentation to separate the surface of
a table and segment objects that are on top. These objects
are then compared to a database containing meshes of known
objects using simple iterative fitting (related to ICP[3]). This
method performed well with different object rotations and
scales, and was unaffected by a change in background. How-
ever this method generated too many false positives to be
considered a stable option for close proximity human-robot
interaction scenarios.

Intel Realsense tracking
In the Intel Realsense SDK, Object Tracking (C++) for the
SR300 was used. This method relies on having a 3D mesh
of the object, which it then used for matching. During our
investigation we were unable to specify the exact method used
by the Intel SDK as it has not been published (see discussion
session). In general the objects were recognised and tracked
accurately, returning both position and orientation. However,
objects were sometimes lost for no apparent reason and would
need to be moved for them to be recognised again. This
technique is able to handle a small amount of occlusion. At
the time of writing the tracking feature for the SDK is only
available for Windows, so implementing for integration with a
robot may prove more challenging than other methods that can
easily be integrated or already have a ROS implementation.

3http://wg-perception.github.io/object_recognition_core/index.html
4http://www.intel.co.uk/content/www/uk/en/architecture-and-
technology/realsense-overview.html



Figure 3. Image showing target on the left, with an object being tracked through a rotation on the right using A-KAZE.

Figure 4. Left: Sample target image for template matching. Right: Test
image showing a match with a flipped object.

Figure 5. Images showing two similar pictures that have been processed
by Faster R-CNN, on the left the sofa is detected, on the right the sofa is
missed.

Non-Vision Based Techniques
This section details methods that do not rely on the use of
cameras, but instead the use of additional equipment.

Magnetic Field sensors
Magnetic Field sensors use one or more Hall effect sensors
to read the position and orientation of a magnetic tag. Near
Field Communication (NFC) tags can be used in addition to
the magnet sensor to distinguish between different tags. We
evaluated the GaussSense5 solution, a small and affordable
magnet sensor with a high degree of sensitivity. It is able to
measure orientation and measures up to 3-4cm away from the
sensor. It does however only cover a very small area. Many
sensors would be required to cover a larger, the price may then
5http://gausstoys.com/

Figure 6. Images showing two pictures of cows, on the left a real cow that
is detected by Faster R-CNN trained on the PASCAL VOC 2007 dataset,
on the right an iconic toy cow that is missed.

become a consideration, with a 16x16cm board costing $350.
GaussSense also requires the use of an Arduino to process
the data received. The addition of the NFC sensor for object
identification introduces a considerable amount of noise to
pose reading. Also, due to fitting on top of the magnet sensor,
the magnet and tag have to practically be in constant contact
in order to be detected.

NFC solutions
Several NFC sensors a can be combined into an NFC array,
allowing for detection over a larger area. We evaluated the
ePawn6 mat, an NFC sensor board covering a 32x32cm area.
The ePawn mat, using a 2D matrix of sensors, can locate a tag
with millimetre accuracy. Using two tags in an object allows
the calculation of orientation in the plane of an object. Tags
themselves are 2cm in diameter so would be able to fit on
or inside small objects. Tags only really work well while in
contact with the mat. The prototype we evaluated currently
costs e1400.

Summary of Results
We provide a summary of results in Table 1. We give a based
on the criteria defined in section 1.3.

DISCUSSION AND RECOMMENDATIONS
Of all the 2D vision based techniques fiducial markers were
probably the most reliable. However its sensitivity to occlu-
sion means it is unsuitable for a study where the objects are
6http://epawn.fr/



Method Degrees of Freedom Sta. RInv. DInv. Env. Occ. Practical Use

2D w/ PnP

Fiducial Markers 6D Very High Very High High Very High Very Low Markers on flat surfaces
A-KAZE 6D Moderate Very High Low Low Moderate

ORB 6D Moderate Very High Low Low Moderate
SURF 6D Moderate Moderate Moderate Low Moderate

Template Matching 6D Very High High High Low Moderate
Deep Learning (Faster R-CNN) Planar High Very High Very High Very High High High Training Requirement

Depth Mapping

ORK 6D Very Low High High High Moderate RGB-D Camera
Realsense SDK 6D High High High High Moderate RGB-D Camera

Non-Vision Based

GaussSense Planar w/ Rotation Low Very High Very High Very High Very High Sensor Board
ePawn Planar w/ Rotation Very High Very High Very High Very High Very High Sensor Board

Table 1. Table showing a summary of the different object detection methods and their performance. Sta.: Detection Stability. RInv.: Rotation Invariance.
DInv.: Distance Invariance. Env. Environment Interference. Occ.: Occlusion

Figure 7. Image showing the ePawn NFC Mat

frequently moved around by hand and placed behind other
objects. Another challenge is often the attachment of fiducial
markers onto objects: curved or irregular objects often prove
challenging to attach the markers to. However, fiducial mark-
ers might bring benefits not offered by other technologies: the
ease of displaying fiducial markers on a screen, or printing
out markers, and the high accuracy it can provide, means that
it is suitable for calibrating multiple cameras quickly in an
experimental setup.

The feature tracking methods (A-KAZE, ORB and SURF) all
have issues with dynamic backgrounds, which is an issue when
the camera is not static or when subjects in the interaction are
in view. It should be noted that the objects being used for
this assessment were all relatively simple toys, which lacked
rich texture. These methods may perform better on other,
more textured, objects, but it may still require combining these
methods with other algorithms to get a truly robust detection
system.

Template matching, while relatively old, was among the most
robust of the 2D methods. To provide a 6D pose estimation
however this method will require a lot of templates to compare
against. Therefore this method will not scale well with mul-
tiple objects. It may be better to use this method to increase

the stability of other techniques where it could be used for
foreground selection.

The Faster-RCNN that we tested can only provide a bound-
ing box for our objects, this means we cannot get a full 6D
pose estimation this technique alone. However its reliability
means that it could be very useful as a foreground selection
technique to be used in a pipeline with other methods. Recent
research looks into using a CNN that is able to handle 3D pose
estimation [14], but it is unlikely that a training set for specific
experimental requirements exist as these networks are only
just emerging. The process of generating the required training
data and then training the network is a process that potentially
requires months of work before being usable in an experiment.

The implementation of tabletop in ORK provided too many
false positives to be feasible for use in our future studies.
However we only tried one camera, the Intel SR300. Other
hardware or updates to software drivers may increase perfor-
mance. By making use of the planar segmentation part of
the process it would be possible to subtract the background
for use in other detection methods, causing this to no longer
be an issue for those methods which struggle with varying
backgrounds.

The Intel Realsense SDK performed better with a lot higher
stability compared to ORK. However the issue where it would
sometimes lose an object while not common is still enough
to cause issues in a study. This however is probably the best
method available if it is a requirement to track objects while
they are being moved. We were unable to find the exact tech-
nique that Intel Realsense used, as it has not been published,
but due to its performance it was still included in this review.
It appears to identify contours in the object before we assume
using ICP to match these points to the points of objects stored
in the database.

None of the vision based techniques were fully capable of
performing the required level of object recognition in a prac-
tical tabletop setting. However a pipeline of techniques has
the potential to overcome the weaknesses that are shown with
just a single method. For instance the 2D techniques could
be used to provide a bounding box and classification of the



object, allowing a 3D technique to provide precision depth
and pose information.

The GaussSense magnetic sensor performs well when tracking
a single object. However an NFC module is required to be
able to distinguish between multiple objects. For this reason it
would be recommended to just use an NFC sensor when using
multiple objects.

The ePawn NFC mat is probably the best method reviewed
here for use in object recognition with tabletop manipulation.
Its downside is that it cannot provide full 6D pose estimation,
and the need for additional sensor equipment in the form of
a RFID matrix. It is however suitable for many cases where
objects need to be tracked, and potential interactions can be
shaped around this limitation. NFC also has an advantage of
being a known and reliable technique, as it used widely in
contactless technology, such as debit cards and key fobs.

ACKNOWLEDGEMENTS
This work has been completed as part of the L2TOR project
which is funded by the H2020 Framework Programme of the
EC, grant number: 688014.

REFERENCES
1. Pablo F Alcantarilla and T Solutions. 2011. Fast explicit

diffusion for accelerated features in nonlinear scale
spaces. IEEE Trans. Patt. Anal. Mach. Intell 34, 7 (2011),
1281–1298.

2. Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006.
Surf: Speeded up robust features. Computer
vision–ECCV 2006 (2006), 404–417.

3. Paul J Besl and Neil D McKay. 1992. Method for
registration of 3-D shapes. In Robotics-DL tentative.
International Society for Optics and Photonics, 586–606.

4. Quentin Bonnard, Séverin Lemaignan, Guillaume
Zufferey, Andrea Mazzei, Sébastien Cuendet, Nan Li,
Ayberk Özgür, and Pierre Dillenbourg. 2013. Chilitags 2:
Robust Fiducial Markers for Augmented Reality and
Robotics. (2013). http://chili.epfl.ch/software

5. Hsiang-Jen Chien, Chen-Chi Chuang, Chia-Yen Chen,
and Reinhard Klette. 2016. When to use what feature?
SIFT, SURF, ORB, or A-KAZE features for monocular

visual odometry. In Image and Vision Computing New
Zealand (IVCNZ), 2016 International Conference on.
IEEE, 1–6.

6. Yago Diez, Ferran Roure, Xavier Lladó, and Joaquim
Salvi. 2015. A qualitative review on 3D coarse
registration methods. ACM Computing Surveys (CSUR)
47, 3 (2015), 45.

7. Martin A Fischler and Robert C Bolles. 1981. Random
sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography.
Commun. ACM 24, 6 (1981), 381–395.

8. Lukas Hostettler, Ayberk Özgür, Séverin Lemaignan,
Pierre Dillenbourg, and Francesco Mondada. 2016.
Real-time high-accuracy 2D localization with structured
patterns. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on. IEEE, 4536–4543.

9. Yali Li, Shengjin Wang, Qi Tian, and Xiaoqing Ding.
2015. A survey of recent advances in visual feature
detection. Neurocomputing 149 (2015), 736–751.

10. Rainer Mautz. 2012. Indoor positioning technologies.
(2012).

11. Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
2015. Faster r-cnn: Towards real-time object detection
with region proposal networks. In Advances in neural
information processing systems. 91–99.

12. Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. 2011. ORB: An efficient alternative to SIFT or
SURF. In Computer Vision (ICCV), 2011 IEEE
International Conference on. IEEE, 2564–2571.

13. T Sanpechuda and L Kovavisaruch. 2008. A review of
RFID localization: Applications and techniques. In
Electrical Engineering/Electronics, Computer,
Telecommunications and Information Technology, 2008.
ECTI-CON 2008. 5th International Conference on, Vol. 2.
IEEE, 769–772.

14. Paul Wohlhart and Vincent Lepetit. 2015. Learning
descriptors for object recognition and 3d pose estimation.
In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3109–3118.


	Executive Summary
	Principal Contributors
	Revision History
	Overview of the Number Domain Input
	Speech Input
	Automatic Speech Recognition
	Voice Activity Detection

	Identifying and Interacting with Children
	Face Recognition
	Face Detection and Tracking

	Identifying and Tracking Objects
	Software Prototype
	Underworlds
	Tablet Game
	Perception Manager

	Annex Descriptions
	Kennedy, J. et al. (2017), Child Speech Recognition in Human-Robot Interaction: Evaluations and Recommendations
	Wallbridge, C.D. et al. (2017), Qualative Review of Object Recognition Techniques for Tabletop Manipulation

	Annexes
	Kennedy et al. 2017
	Wallbridge et al. 2017

